Skip to main content

Crop It, but Not Too Much: The Effects of Masking on the Classification of Melanoma Images

  • Conference paper
  • First Online:
Book cover KI 2021: Advances in Artificial Intelligence (KI 2021)

Abstract

To improve the accuracy of convolutional neural networks in discriminating between nevi and melanomas, we test nine different combinations of masking and cropping on three datasets of skin lesion images (ISIC2016, ISIC2018, and MedNode). Our experiments, confirmed by 10-fold cross-validation, show that cropping increases classification performances, but specificity decreases when cropping is applied together with masking out healthy skin regions. An analysis of Grad-CAM saliency maps shows that in fact our CNN models have the tendency to focus on healthy skin at the border when a nevus is classified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berseth, M.: ISIC 2017 - skin lesion analysis towards melanoma detection. CoRR abs/1703.00523 (2017). http://arxiv.org/abs/1703.00523

  2. Bissoto, A., Fornaciali, M., Valle, E., Avila, S.: (De)constructing bias on skin lesion datasets. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  3. Burdick, J., Marques, O., Weinthal, J., Furht, B.: Rethinking skin lesion segmentation in a convolutional classifier. J. Digit. Imaging 31(4), 435–440 (2017). https://doi.org/10.1007/s10278-017-0026-y

    Article  Google Scholar 

  4. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection 2018 (2019). http://arxiv.org/abs/1902.03368

  5. Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172. IEEE, Washington, DC, April 2018. https://doi.org/10.1109/ISBI.2018.8363547

  6. Curiel-Lewandrowski, C., Novoa, R.A., Berry, E., Celebi, M.E., et al.: Artificial Intelligence Approach in Melanoma. In: Fisher, D., Bastian, B. (eds.) Melanoma, pp. 1–31. Springer, New York (2019). https://doi.org/10.1007/978-1-4614-7322-0_43-1

    Chapter  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE, Miami, June 2009. https://doi.org/10.1109/CVPR.2009.5206848

  8. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  9. Giotis, I., Molders, N., Land, S., Biehl, M., et al.: MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 42(19), 6578–6585 (2015). https://doi.org/10.1016/j.eswa.2015.04.034

    Article  Google Scholar 

  10. ISIC: International Skin Imaging Collaboration. https://www.isic-archive.com/

  11. Kawahara, J., Hamarneh, G.: Visual diagnosis of dermatological disorders: human and machine performance, June 2019. http://arxiv.org/abs/1906.01256

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  13. Marchetti, M.A., Codella, N.C., Dusza, S.W., Gutman, D.A., et al.: Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge. J. Am. Acad. Dermatol. 78(2), 270-277.e1 (2018). https://doi.org/10.1016/j.jaad.2017.08.016

    Article  Google Scholar 

  14. Masood, A., Ali Al-Jumaily, A.: Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int. J. Biomed. Imaging 2013, 1–22 (2013). https://doi.org/10.1155/2013/323268

    Article  Google Scholar 

  15. Nguyen, D.M.H., Ezema, A., Nunnari, F., Sonntag, D.: A visually explainable learning system for skin lesion detection using multiscale input with attention U-net. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 313–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58285-2_28

    Chapter  Google Scholar 

  16. Nunnari, F., Sonntag, D.: A software toolbox for deploying deep learning decision support systems with XAI capabilities. In: Proceedings of the 13th ACM SIGCHI Symposium on Engineering Interactive Computing Systems. ACM (2021). https://doi.org/10.1145/3459926.3464753

  17. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation of black-box models. In: Proceedings of the British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  18. Qian, C., Liu, T., Jiang, H., Wang, Z., et al.: A detection and segmentation architecture for skin lesion segmentation on dermoscopy images. CoRR abs/1809.03917 (2018). http://arxiv.org/abs/1809.03917

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  21. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA: Cancer J. Clin. 69(1), 7–34 (2019). https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, September 2014. http://arxiv.org/abs/1409.1556

  23. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  24. Wahlster, W., Winterhalter, C.: German standardization roadmap on artificial intelligence. Technical report, DIN e.V. and German Commission for Electrical, Electronic & Information Technologies of DIN and VDE (2020)

    Google Scholar 

  25. Winkler, J.K., Fink, C., Toberer, F., Enk, A., et al.: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 155(10), 1135 (2019). https://doi.org/10.1001/jamadermatol.2019.1735

    Article  Google Scholar 

Download references

Acknowledgments

The research has been supported by the Ki-Para-Mi project (BMBF, 01IS19038B), the pAItient project (BMG, 2520DAT0P2), and the Endowed Chair of Applied Artificial Intelligence, Oldenburg University (see https://uol.de/aai/. We would like to thank all student assistants that contributed to the development of the platform (see https://iml.dfki.de/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Nunnari .

Editor information

Editors and Affiliations

Appendices

A MedNode Results

Table 3 and Table 4 show the results of the experiments on the MedNode dataset.

Table 3. Classification performance on the MedNode dataset. Italic text indicates values significantly below the baseline (condition A).
Table 4. Significant differences between masking conditions in the MedNode dataset.
Table 5. Classification performance on the ISIC2016 dataset. Italic text indicates values significantly below the baseline (condition A).

B ISIC2016 Results

Table 5 and Table 6 show the results of the experiments on the ISIC2016 dataset.

Table 6. Significant differences between masking conditions in the ISIC2016 dataset.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunnari, F., Ezema, A., Sonntag, D. (2021). Crop It, but Not Too Much: The Effects of Masking on the Classification of Melanoma Images. In: Edelkamp, S., Möller, R., Rueckert, E. (eds) KI 2021: Advances in Artificial Intelligence. KI 2021. Lecture Notes in Computer Science(), vol 12873. Springer, Cham. https://doi.org/10.1007/978-3-030-87626-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87626-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87625-8

  • Online ISBN: 978-3-030-87626-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics