Skip to main content

Unsupervised Domain Adaption via Similarity-Based Prototypes for Cross-Modality Segmentation

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health (DART 2021, FAIR 2021)

Abstract

Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaption attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xue, Y., Feng, S., Zhang, Y., Zhang, X., Wang, Y.: Dual-task self-supervision for cross-modality domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 408–417. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_40

    Chapter  Google Scholar 

  2. Chen, C., Dou, Q., Chen, H., et al.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imag. 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  3. Chen, C., Dou, Q., Chen, H., et al.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: AAAI, vol. 33 no. 01, pp. 865–872 (2019)

    Google Scholar 

  4. Zou, D., Zhu, Q., Yan, P.: Unsupervised domain adaptation with dual-scheme fusion network for medical image segmentation. In: IJCAI, pp. 3291–3298 (2020)

    Google Scholar 

  5. Vesal, S., Gu, M., Kosti, R., et al.: Adapt everywhere: unsupervised adaptation of point-clouds and entropy minimisation for multi-modal cardiac image segmentation. IEEE Trans. Med. Imag. (2021). https://ieeexplore.ieee.org/document/9380742

  6. Liu, Z., Zhu, Z., Zheng, S., et al.: Margin Preserving Self-paced Contrastive Learning Towards Domain Adaptation for Medical Image Segmentation. arXiv preprint arXiv:2103.08454 (2021)

  7. Marsden, R.A., Bartler, A., Döbler, M., et al.: Contrastive Learning and Self-Training for Unsupervised Domain Adaptation in Semantic Segmentation. arXiv preprint arXiv:2105.02001 (2021)

  8. Chung, I., Kim, D., Kwak, N.: Maximizing Cosine Similarity Between Spatial Features for Unsupervised Domain Adaptation in Semantic Segmentation. arXiv preprint arXiv:2102.13002 (2021)

  9. Tomar, D., Lortkipanidze, M., Vray, G., et al.: Self-attentive spatial adaptive normalization for cross-modality domain adaptation. IEEE Trans. Med. Imag. (2021). https://ieeexplore.ieee.org/document/9354186

  10. Chen, Y.C., Lin, Y.Y., Yang, M.H., et al.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: CVPR, pp. 1791–1800 (2019)

    Google Scholar 

  11. Wang, J., Huang, H., Chen, C., Ma, W., Huang, Y., Ding, X.: Multi-sequence cardiac MR segmentation with adversarial domain adaptation network. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 254–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_27

    Chapter  Google Scholar 

  12. Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV., pp. 2223–2232 (2017)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Mao, X., Li, Q., Xie, H., et al.: Least squares generative adversarial networks. In: CVPR, pp. 2794–2802 (2017)

    Google Scholar 

  15. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

  16. Dou, Q., Ouyang, C., Chen, C., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., et al.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Zhang, Q., Zhang, J., Liu, W., et al.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. arXiv preprint arXiv:1910.13049 (2019)

  20. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: CVPR, pp. 6936–6945 (2019)

    Google Scholar 

  21. Cycada: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1994–2003 (2018)

    Google Scholar 

  22. Tsai, Y.H., Hung, W.C., Schulter, S., et al.: Learning to adapt structured output space for semantic segmentation. In: CVPR, pp. 7472–7481 (2018)

    Google Scholar 

  23. Huo, Y., Xu, Z., Moon, H., et al.: Synseg-Net: synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imag. 38(4), 1016–1025 (2018)

    Article  Google Scholar 

  24. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  25. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008). https://www.jmlr.org/papers/v9/vandermaaten08a.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Ju, C., Ma, C., Zhang, X. (2021). Unsupervised Domain Adaption via Similarity-Based Prototypes for Cross-Modality Segmentation. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health. DART FAIR 2021 2021. Lecture Notes in Computer Science(), vol 12968. Springer, Cham. https://doi.org/10.1007/978-3-030-87722-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87722-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87721-7

  • Online ISBN: 978-3-030-87722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics