Skip to main content

Collision Avoidance for Mobile Robots Using Proximity Sensors

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12998))

Included in the following conference series:

Abstract

Due to the rise of e-commerce material handling industry has been experiencing significant changes, especially in the COVID-19 pandemic. Notwithstanding the broad utilization of Automated Guided Vehicles (AGVs) for many years, the demand for Autonomous Mobile Robot (AMR) is rapidly increasing. One of the main challenges in autonomous operation in an unstructured environment is gapless perception. In this paper, we present a concept for reactive collision avoidance using Capacitive Proximity Sensor (CPS), with the goal to augment robot perception in close proximity situations. We propose a proximity-based potential field method using capacitive measurement for collision avoidance. A local minima problem is solved by applying tangential forces around the virtual obstacle points. We evaluate the proof-of-concept both in simulation and on a real mobile robot equipped with CPS. The results have shown that capacitive sensing technology can compensate localization tolerance and odometry drift closing the perception gap in close proximity scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alagi, H., Navarro, S.E., Mende, M., Hein, B.: A versatile and modular capacitive tactile proximity sensor. In: 2016 IEEE Haptics Symposium (HAPTICS), pp. 290–296 (2016). https://doi.org/10.1109/HAPTICS.2016.7463192

  2. Alajlan, A.M., Almasri, M.M., Elleithy, K.M.: Multi-sensor based collision avoidance algorithm for mobile robot. In: 2015 Long Island Systems, Applications and Technology, pp. 1–6 (2015). https://doi.org/10.1109/LISAT.2015.7160181

  3. Almasri, M.M., Alajlan, A.M., Elleithy, K.M.: Trajectory planning and collision avoidance algorithm for mobile robotics system. IEEE Sens. J. 16(12), 5021–5028 (2016). https://doi.org/10.1109/JSEN.2016.2553126

    Article  Google Scholar 

  4. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991). https://doi.org/10.1109/70.88137

    Article  Google Scholar 

  5. Cherubini, A., Chaumette, F.: Visual navigation of a mobile robot with laser-based collision avoidance. Int. J. Robot. Res. 32, 189–205 (2013). https://doi.org/10.1177/0278364912460413. https://hal.inria.fr/hal-00750623

  6. Evans, J., Patrón, P., Smith, B., Lane, D.M.: Design and evaluation of a reactive and deliberative collision avoidance and escape architecture for autonomous robots. Auton. Robots 24(3), 247–266 (2008). https://doi.org/10.1007/s10514-007-9053-8

    Article  Google Scholar 

  7. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997). https://doi.org/10.1109/100.580977

    Article  Google Scholar 

  8. Guizzo, E.: Three engineers, hundreds of robots, one warehouse. IEEE Spectr. 45(7), 26–34 (2008). https://doi.org/10.1109/MSPEC.2008.4547508

    Article  Google Scholar 

  9. Heilig, A., Mamaev, I., Hein, B., Malov, D.: Adaptive particle filter for localization problem in service robotics. In: MATEC Web of Conferences, vol. 161, p. 01004 (2018). https://doi.org/10.1051/matecconf/201816101004. https://www.matec-conferences.org/10.1051/matecconf/201816101004

  10. Hellström, T.: Robot navigation with potential fields. UMINF (2011)

    Google Scholar 

  11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings, 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505 (1985). https://doi.org/10.1109/ROBOT.1985.1087247

  12. Kondak, K., Hommel, G.: Computation of time optimal movements for autonomous parking of non-holonomic mobile platforms. In: Proceedings 2001 ICRA, IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3, pp. 2698–2703 (2001). https://doi.org/10.1109/ROBOT.2001.933030

  13. Lagisetty, R., Philip, N.K., Padhi, R., Bhat, M.S.: Object detection and obstacle avoidance for mobile robot using stereo camera. In: 2013 IEEE International Conference on Control Applications (CCA), pp. 605–610 (2013). https://doi.org/10.1109/CCA.2013.6662816

  14. Minguez, J., Montano, L.: Extending collision avoidance methods to consider the vehicle shape, kinematics, and dynamics of a mobile robot. IEEE Trans. Rob. 25(2), 367–381 (2009). https://doi.org/10.1109/TRO.2009.2011526

    Article  Google Scholar 

  15. Ohya, A., Kosaka, A., Kak, A.: Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Trans. Robot. Autom. 14, 969–978 (1998)

    Article  Google Scholar 

  16. Oyekanlu, E.A., et al.: A review of recent advances in automated guided vehicle technologies: integration challenges and research areas for 5g-based smart manufacturing applications. IEEE Access 8, 202312–202353 (2020). https://doi.org/10.1109/ACCESS.2020.3035729

    Article  Google Scholar 

  17. Rabl, A., Salner, P., Büchi, L., Wrona, J., Muehlbacher-Karrer, S., Brandstötter, M.: Implementation of a capacitive proximity sensor system for a fully maneuverable modular mobile robot to evade humans. In: Proceedings of the Austrian Robotics Workshop (2018)

    Google Scholar 

  18. Schwartz, J.T., Sharir, M.: On the “piano movers’’ problem i. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36(3), 345–398 (1983). https://doi.org/10.1002/cpa.3160360305

    Article  MathSciNet  MATH  Google Scholar 

  19. Seki, H., Kamiya, Y., Hikizu, M.: Real-time obstacle avoidance using potential field for a nonholonomic vehicle. In: Silvestre-Blanes, J. (ed.) Factory Automation, chap. 26. IntechOpen, Rijeka (2010). https://doi.org/10.5772/9508

  20. Tian, J., Gao, M., Lu, E.: Dynamic collision avoidance path planning for mobile robot based on multi-sensor data fusion by support vector machine. In: 2007 International Conference on Mechatronics and Automation, pp. 2779–2783 (2007). https://doi.org/10.1109/ICMA.2007.4303999

  21. Trenkle, A., Stoll, T., Bär, R.: Fifi fürs lager. Logistik heute 2013(6), 34–35 (2013)

    Google Scholar 

  22. Ulrich, I., Borenstein, J.: Vfh+: reliable obstacle avoidance for fast mobile robots. In: Proceedings, 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), vol. 2, pp. 1572–1577 (1998). https://doi.org/10.1109/ROBOT.1998.677362

  23. Ulrich, I., Borenstein, J.: Vfh/sup */: local obstacle avoidance with look-ahead verification. In: Proceedings 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No.00CH37065), vol. 3, pp. 2505–2511 (2000). https://doi.org/10.1109/ROBOT.2000.846405

  24. Wada, H., et al.: Dynamic collision avoidance method for co-worker robot using time augmented configuration-space. In: 2016 IEEE International Conference on Mechatronics and Automation, pp. 2564–2569 (2016). https://doi.org/10.1109/ICMA.2016.7558970

  25. Yasin, J.N., Mohamed, S.A.S., Haghbayan, M.H., Heikkonen, J., Tenhunen, H., Plosila, J.: Low-cost ultrasonic based object detection and collision avoidance method for autonomous robots. Int. J. Inf. Technol. 13(1), 97–107 (2021). https://doi.org/10.1007/s41870-020-00513-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilshat Mamaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Mamaev, I., Alagi, H., Abel, B., Hein, B. (2021). Collision Avoidance for Mobile Robots Using Proximity Sensors. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87725-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87724-8

  • Online ISBN: 978-3-030-87725-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics