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Abstract. This paper deals with the description of a drone manage-
ment system for long-term missions called DronePort. First, the issue
of long-term missions and possible approaches are outlined. Further, the
individual components of proposed system, both hardware, and software
are introduced. The DronePort system relies on battery swapping. By
storing the battery in a battery compartment, the system is not strictly
designed for one type of drone, but with simple modification, it is ca-
pable of maintaining a flight of various Vertical Take-Off and Landing
(VTOL) drones. Afterward, more attention is paid to the simulation en-
vironment, which will greatly facilitate the development of the entire
system. The simulation includes both drones equipped with a down-
facing camera and a DronePort landing platform, which is fitted with
an ArUco marker for precise landing. Next, the DronePort Traffic Con-
trol system is presented, which is tasked with communicating with the
drones, scheduling battery swapping, and planning trajectories for the
flight to and from the DronePort landing platform. The system uses the
standard MAVLink protocol for communication, enabling use with a va-
riety of MAVLink compatible drones. Finally, an example of collision-free
trajectory planning considering battery capacity is presented. Trajectory
was found in terms of Chebyshev pseudospectral optimal control.

Keywords: Aerial robotics - Drones - Battery management - Traffic
control - Robot simulation

1 Introduction

Nowadays, one of the biggest challenges in the drone field is the long-term mis-
sions with multiple drones, which brings new demands for autonomy [1,2]. The
vast majority of drones use Lithium-Polymer (LiPo) batteries, and usually, they
last for only several tens of minutes in the air. In most applications, a hard-
wired drone is out of the question because of the limited operating area and the
increase in weight of the entire system due to cables.

There are applications with wireless charging such as [2], nevertheless, this
solution is more time demanding than the standard battery swapping method
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and requires staying on the ground. The standard method is to allocate the
person who will operate the charging station. However, the employment of drones
is usually considered to minimize the involvement of human operators to increase
workplace safety and minimize personnel costs.

The state-of-the-art research shows that the most efficient method, which
solves the power supply and charging issues, is autonomous battery swapping.
Several experimental solutions are tightly adapted to specific drone models and
batteries [3,4]. DronePort (DP) system proposed in this paper can operate var-
ious drones with Vertical Take-Off and Landing (VTOL) ability. It is capable of
swapping batteries of various sizes and shapes.

The article is structured as follows. The subsequent section outlines the en-
tire DP system with a description of its parts. Next, the simulation environ-
ment is described to streamline the development of the whole system. Then the
DronePort Traffic Control system is introduced, and an example of trajectory
planning is presented.

2 DronePort System

The DP system is an early-stage project with the goal of automating long-
term drone missions. The development of the system involves the University of
West Bohemia and SmartMotion, where SmartMotion is mainly responsible for
the creation of the entire DP landing platform and battery storage. The system
consists of two main parts. The first part is hardware, which consists of a landing
platform and a battery compartment placed on the drone.

The landing platform is equipped with an ArUco code that allows safe and
precise on-spot landing. It also includes battery storage and a smart multi-slot
battery-charging station. The size and weight of the DP landing platform allow it
to be moved by two people. A robotic manipulator is used to remove the battery
from the drone, plug it into the charging station, and plug the charged battery
into the drone. The battery compartment allows easy handling by a robotic
manipulator and can be supplemented in the future with an NFC tag for easy
identification of the battery by the system.

The DP system will also be equipped with a computer capable of connecting
with the drones, downloading the necessary information, scheduling, and sending
commands with battery swapping missions. In order to achieve wide usability of
the system, it will use the standard MAVLink protocol [5] for communication. We
intend to use drones equipped with Pixhawk PX4 autopilot for testing, but it is
possible to interact with all drones communicating via MAVLink. So far, the PX4
software-in-the-loop (SITL) simulated drone in Gazebo has been successfully
withdrawn from the mission to the desired coordinates, and the mission has
been backed up in case of problems. Afterward, the simulated drone took off
and successfully resumed its mission. The drone communication application was
implemented in Python and was based on the pymavlink! library.

! https://github.com/ArduPilot /pymavlink
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Next, the software part of the project will be briefly described. Drone state
estimation is not performed by the DP system. This fact makes the system very
versatile and does not require a specific set of sensors. The only requirement is
a down-facing camera due to the detection of the ArUco code on the landing
platform. The system will estimate the battery’s state, which will also be affected
by the long-term behavior of the battery. This state will also be predicted based
on drone and smart charger data for optimal scheduling of battery replacement.

Another software component is the landing controller, where the orienta-
tion and position data of the ArUco code is used. The next component is the
DronePort Traffic Control system (DPTC), which, based on information received
from the drones and the DP landing platform, decides on the scheduling of bat-
tery swapping and plans trajectories for an approach to the DP landing platform
and subsequent return to the mission. DPTC will be discussed in more detail
in Section 4. Another essential component is the simulation of the whole sys-
tem, which serves as a tool for testing all parts of the DP system in a virtual
environment and will be described in more detail in the following section.

3 Simulation

In order to reduce the cost and effort of the task, the simulation environment
is used. In this section, we describe and discuss the design of the DronePort
simulation. A brief overview of available simulators capable of simulating one
or multiple drones will be presented in the first part. As will be mentioned,
the Gazebo simulator, together with the PX4 controller, was chosen for our
experiments. In the next part, DronePort simulation in Gazebo simulator[6] will
be described. The third part of this section focuses on the unique DronePort
model generation developed to reduce modeling effort.

3.1 Available open-source simulation software

Based on our research and several survey papers on this topic, such as [7], [§],
[9], [10], we put together the following list of simulators capable of simulating
missions of one or multiple drones. The well-known simulator is Gazebo which is
based on Ogre 3D graphic engine. It can be easily extended using plugins written
in the C+4 programming language. Moreover, it can be connected to the PX4
controller using PX4-SITL_gazebo? plugin suite.

Several simulators are built on the top of the Gazebo simulator, such as
RotorS[11] or BebopS[12]. It is a set of models, sensors, and controllers that can
communicate with the Gazebo simulator.

There also exist simulators that are not built on the top of the Gazebo. The
following projects can be mentioned. The first one is open source AirSim [13]
simulator developed by Microsoft. Its interesting feature is the photorealistic
graphics which enables to solve machine vision problems inside the simulation.

% https://github.com/PX4/PX4-SITL_gazebo
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Another interesting fact is that the AirSim can be run using Unreal Engine or
Unity as its 3D graphics engine. Similar photorealistic graphics based on the
Unity engine is available inside FlightMare [14] simulator developed by Robotics
and Perception Group at ETH Zurich. Another option with photorealistic graph-
ics is NVIDIA ISAAC[15] which is primarily intended to use NVIDIA Hardware.

Finally, more general simulators such as V-Rep[16] or Webots[17] can be
mentioned. We chose the combination of the Gazebo simulator and PX4 con-
troller for our experiments because it offers a well-known extensible environment
with sufficiently simplified graphics to perform traffic control experiments with
a DronePort model.

3.2 DronePort simulation

DronePort model for simulation is simplified. The model’s geometry is created
using SDF? specification used by Gazebo simulator and consists of a blue block
of model body and of the thin block textured using ArUco code. The model is
shown in 1.

Fig. 1: Example of DronePort object and Iris drone in Gazebo simulator.

The software for the DronePort model is shown in Fig. 2. It consists of several
parts that will be described in the following text. The main part is a DronePort
Control Software that can be implemented in an arbitrary programming lan-
guage. It handles the state of the DronePort device — either simulated or real.
The control software is connected to the rest of the system and with a simulator
using MAVLink protocol — see MAVLink Router block in the scheme. As visible
from the scheme, MAVLink Router is connected with both the PX4 controller

3 http://sdformat.org/spec
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for communication with drones and Gazebo Plugins to communicate with the
simulated world in Gazebo. The last part of the scheme is a camera plugin con-
nected to a simulated drone. It provides source image data for the ArUco code
detector, which is used during the landing maneuver of the drone.

DronePort Control Software

1

PX4 <«—>» MAVLink Router <«——>» Gazebo Plugins
‘ 1
AruCo code... < Camera Plugin [« Gazebo

Fig. 2: DronePort simulation scheme

The DronePort model in the Gazebo is equipped with a Gazebo plugin that
broadcast its GPS coordinates using MAVLink message. This plugin is based
on the gazebo_mavlink_interface plugin from the mentioned PX4-SITL_gazebo
plugin suite.

3.3 Generation of a unique DronePort model

During the development of the DronePort model, the first intention was to create
a unique DronePort during the initialization of the simulation. Unfortunately,
it was discovered that it is no simple task to set texture with ArUco code on
the fly. Thus, the generator of unique models from the template was developed
in Python. Its purpose is to generate a model with particular properties such
as ArUco code, size, color, and MAVLink protocol settings. Moreover, it can
be connected to the simulation using software like Tmux and Tmuxinator, and
thus, it can be launched before the simulation starts.

In practice, the simulation is based on the clear Gazebo without Robot Op-
erating System (ROS). On the other hand, the support for ROS can be easily
added to the model using a particular plugin. With a model generator, it is
possible to run either simple or complex scenarios with one or multiple drones
and one or multiple DronePort devices. Thus, a simulation of traffic control with
DronePort can be performed. More about traffic control will be described in the
following parts of the paper.
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4 DronePort Traffic Control

This section describes the DronePort Traffic Control (DPTC) system, which is
complemented by an example of collision-free drone trajectory planning concern-
ing battery capacity is presented. The main task of the DPTC is to schedule the
replacement and subsequent recharging of drone batteries at the DP platform. It
will do so by monitoring and predicting the state of drone batteries and register-
ing the number and state of batteries available on the DP platforms. Opposed
to [3], the DPTC will optimally schedule the interruption and resumption of
the current drone missions, considering the DP landing platforms availability,
availability of charged batteries at the DP platforms, and minimizing mission
interruption time. The DPTC will take care of the trajectory re-planning to the
DP platform according to the current mission progress and the resumption of
the original mission after battery replacement.

The functionality of the entire system can be inferred from the data flow for
the DPTC API shown in Fig. 3. From DPTC’s perspective, the whole system
is divided into four parts. The first part is Ground Control (GC), which is not
manipulated by DPTC and is only used to operate the drone. The second part is
the drone itself which contains a battery compartment. The drone communicates
with the GC and sends information to the DP platform. DPTC will be able to
operate several drones at the same time. The drone contains low-level control
and mission control, which executes commands from the GC and DPTC. The
third part is the battery compartment, which contains an NFC tag to identify
the battery. For each battery, the system makes a prediction of the state based
on the measurement. The last part is the DronePort platform, which includes
smart battery chargers that perform charging and measure battery status. The
computer in the DP platform runs the DPTC, which schedules drone withdrawals
from missions and handles communication with the drones. The activity of the
DPTC from the drone’s perspective is illustrated in Fig. 4.

The design of the data structure used to store the information used in the
DPTC is shown in Fig. 5. The data should contain information about all the
essential parts of the DP, i.e., drones, landing platforms, and charging stations.
About the batteries, the current parameters and their history could be stored.
In the case of drones, their battery ID, position, status, or mission plan could
be stored. Data about a DP platform could include its location, geofence, and a
list of components (batteries, chargers, assigned drones). For the time being, the
system is considered fully centralized due to the fact that only one DP landing
platform is considered. However, in the future, more platforms could be involved
in the system, even with several DPTCs, where drones would be serviced, for
example, based on airspace zoning and the occupancy of individual platforms.

Further, an example of collision-free drone trajectory planning will be demon-
strated. The trajectory will be planned considering the State of Charge (SoC)
of the battery [18]. The trajectory planning problem will be described as an op-
timal control problem (OCP) [19]. First, the Chebyshev pseudospectral method
(PSM) will be introduced and employed to acquire the solution to the OCP. Sub-
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Fig. 3: Data flow of DronePort Traffic Control system API
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Drone
Batte ID
Y Status
BatterylD operational, disarmed, etc.
Stats Position
?e;):é'?\fg)dnatl:hzlt’g?ﬁg, etc global position and heading DronePort platform
! L BatterylD
ChargelLevel MissionPlan PortiD
MaxCapacity list of items Status .
occupied, full charging slots, free
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Type of battery . Position
?ar%meters;_fmtyst be imtable global position and heading
or Drone, litetime, etc. SafeArea

History geofencing with global coordinates
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operational time, age, etc. ListOfDrones
7/ list of drone IDs
Charging slot ListOfBatteries
list of BatterylDs
ChargerlD ListOfChargingSlots
Status list of ChargerIDs
occupied, free, error, etc.

Fig.5: Proposed Data Structure

sequently, the parameters of the problem will be described. Finally, the solution
will be presented.

4.1 Chebyshev Pseudospectral Optimal Control

In this part, the Chebyshev pseudospectral method (PSM) [20-22] will be pre-
sented in the context of its utilization in solving the OCP. The PSM gives an
exact solution to the problem at “grid” or so-called “collocation” points. It ap-
proximates the function outside these points by a basis set of functions usually
composed of trigonometric functions or polynomials. Approximation of function
and its error is clearly shown in Fig. 6. Each basis set has its unique set of opti-
mal collocation points. The points are usually the roots of function, which can
be augmented by boundary points. The presence of boundary points is essential
for boundary value problems such as OCP.

The standard Chebyshev polynomial of the first kind [21] with a grid con-
taining the boundary points is chosen. The integral objective is approximated
with Clenshaw—Curtis quadrature, and the derivative which is needed for ap-
proximating dynamics is calculated using differential matrix. The Chebyshev
approximation can be used on the interval [—1,1]. Therefore, it is necessary to
transform the problem coordinates according to the end-points of the time vector
when solving the OCP.

PSM generally achieves higher accuracy at lower complexity than Finite Ele-
ment Method or Finite Difference Method and better solution convergence than
shooting methods [21]. Therefore, it is advantageous to use it for drone tra-
jectories as it allows fast computation when re-planning is required and low
complexity to be used even on a drone up-board computer.
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Fig. 6: Approximation of function with Chebyshev pseudospectral method

4.2 Trajectory Planning

This part will describe the parameters of the trajectory planning problem and
also provide implementation details. The state of the system consists of the
position and speed of the drone and the State of Charge (SoC). The control
vector is composed of the acceleration in the z, y, and z axis. The dynamics of
the drone are described by a simple model. The x-axis motion is described as

Ty = Vg, Uz = Qg, (1)

where 7, v,, and a, are position, velocity, and acceleration in x-axis, respec-
tively. Movement in the other axes is described in the same way. State of battery
is described in a standard manner using SoC which is given as 0.0 and 1.0 for
empty and full battery, respectively. The dynamics of SoC is described as

b= B, (v2 + vi +v2) + Dy, (2)

where b is the battery SoC, the linear discharge versus time is represented by the
parameter Dy and By is the coefficient of dependence on the square of the drone
velocity. Each state is bounded by a box constraint. The problem contains fixed
boundary points except for SoC b and end time t7, which have a free end-points.
Objective function includes SoC maximization.

The problem is further supplemented with constraints for obstacles in the
form

—|r—cily + R* <0, 3)

where 7 is position of drone, ¢; is center of i-th obstacle and R is a radius of
obstacle. Obstacles are sampled randomly through the whole space with uniform
distribution.
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4.3 Results

The trajectory planning problem was implemented in Python using the Pyomo
optimization toolbox [23]. The apparatus for the Chebyshev polynomial approx-
imation was rewritten based on the MATLAB implementation in [20]. The solu-
tion was sought on a standard desktop PC with Intel Core i9-9900 and Ubuntu
20.04 using well-known open-source NLP solver IPOPT [24]. The initial solution
was obtained in 74 iterations, where IPOPT ran for 46 s. The subsequent solu-
tion was acquired in 16 iterations and took 8.2 s. The drone successfully avoided
all obstacles and flew from the initial to the target point. The path of the drone
is shown in Fig. 7, where the blue spheres are obstacles, the green point is the
start, and red is the position of the goal. The SoC and other trajectory states,
together with the control trajectory, are shown in Fig. 8.

75

—-100

Fig. 7: Drone passage through an environment with obstacles.

The results show that the optimal trajectory that considers battery discharge
has been successfully found. The problem could be extended in the future, for
example, to reflect the temperature during battery discharge, scheduling battery
replacement at service stations or the interaction of several drones simultane-
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ously. Furthermore, the PSM could be extended by adaptive mesh refinement,
segmentation, or more accurate initialization.

5 Conclusion

The paper presented the DronePort system for smart drone management during
long-term missions. First, the purpose of the system was outlined, and its most
important parts were introduced. Afterward, the simulation environment was
described, which will significantly help to make the whole development more
efficient and at the same time reduce costs. Finally, the DronePort Traffic Con-
trol system for controlling and scheduling the swapping of drone batteries was
introduced. An example of collision-free trajectory planning considering battery
capacity using a Chebyshev pseudospectral optimal control was presented within
the Traffic Control.
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