Skip to main content

Semantic Segmentation in the Task of Long-Term Visual Localization

  • Conference paper
  • First Online:
  • 735 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12998))

Abstract

In this paper, it is discussed the problem of long-term visual localization with a using of the Aachen Day-Night dataset. Our experiments confirmed that carefully fine-tuning parameters of the Hierarchical Localization method can lead to enhance the visual localization accuracy. Next, our experiments show that it is possible to find an image’s area that does not add any valuable information in long-term visual localization and can be removed without losing the localization accuracy. The approach of using the method of semantic segmentation for preprocessing helped to achieve comparable state-of-the-art results in the Aachen Day-Night dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://colmap.github.io/.

  2. 2.

    https://sites.google.com/view/ltvl2020/challenges.

  3. 3.

    https://www.visuallocalization.net.

  4. 4.

    http://www.robustvision.net/rvc2018.php.

  5. 5.

    http://www.robustvision.net.

  6. 6.

    https://www.visuallocalization.net/workshop/eccv/2020/.

  7. 7.

    https://github.com/cvg/Hierarchical-Localization.

  8. 8.

    https://colmap.github.io/.

  9. 9.

    For example, car, bus, and truck classes have vehicles (the group of classes) as high-level interpretations.

  10. 10.

    https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes.

  11. 11.

    https://www.cityscapes-dataset.com.

  12. 12.

    https://github.com/NVIDIA/semantic-segmentation.

  13. 13.

    https://www.visuallocalization.net/benchmark/.

References

  1. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: towards the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  2. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017)

    Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision, February 2018

    Google Scholar 

  4. Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 12472–12482. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.01249

  5. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  6. Lee, D.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks (2013)

    Google Scholar 

  7. Liu, L., Li, Y., Tan, R.T.: Decoupled certainty-driven consistency loss for semi-supervised learning (2020)

    Google Scholar 

  8. Widya, A.R., Torii, A., Okutomi, M.: Structure from motion using dense CNN features with keypoint relocalization. IPSJ Trans. Comput. Vis. Appl. 10(1), 1–7 (2018). https://doi.org/10.1186/s41074-018-0042-y

    Article  Google Scholar 

  9. Revaud, J., et al.: R2D2: repeatable and reliable detector and descriptor. CoRR abs/1906.06195 (2019)

    Google Scholar 

  10. Sarlin, P., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12708–12717 (2019). https://doi.org/10.1109/CVPR.2019.01300

  11. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  12. Sattler, T., et al.: Benchmarking 6DOF outdoor visual localization in changing conditions. In: Conference on Computer Vision and Pattern Recognition, pp. 8601–8610 (2018)

    Google Scholar 

  13. Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image retrieval for image-based localization revisited. In: British Machine Vision Conference, September 2012

    Google Scholar 

  14. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Schönberger, J.L., Price, T., Sattler, T., Frahm, J.M., Pollefeys, M.: A vote-and-verify strategy for fast spatial verification in image retrieval. In: Asian Conference on Computer Vision (ACCV) (2016)

    Google Scholar 

  16. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  17. Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. Soc. Choice Welfare 36, 267–303 (2011). https://doi.org/10.1007/s00355-010-0475-4

  18. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation (2020)

    Google Scholar 

  19. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 1195–1204 (2017)

    Google Scholar 

  20. Toft, C., et al.: Long-term visual localization revisited. IEEE Trans. Pattern Anal. Mach. Intell. 14 (2020)

    Google Scholar 

  21. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  22. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  23. Yuan, Y., Wang, J.: OCNet: object context network for scene parsing. CoRR abs/1809.00916 (2018)

    Google Scholar 

Download references

Acknowledgements

This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Bureš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bureš, L., Müller, L. (2021). Semantic Segmentation in the Task of Long-Term Visual Localization. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87725-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87724-8

  • Online ISBN: 978-3-030-87725-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics