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Abstract. Image classification models deployed in the real world may
receive inputs outside the intended data distribution. For critical appli-
cations such as clinical decision making, it is important that a model
can detect such out-of-distribution (OOD) inputs and express its uncer-
tainty. In this work, we assess the capability of various state-of-the-art
approaches for confidence-based OOD detection through a comparative
study and in-depth analysis. First, we leverage a computer vision bench-
mark to reproduce and compare multiple OOD detection methods. We
then evaluate their capabilities on the challenging task of disease classi-
fication using chest X-rays. Our study shows that high performance in a
computer vision task does not directly translate to accuracy in a medical
imaging task. We analyse factors that affect performance of the methods
between the two tasks. Our results provide useful insights for developing
the next generation of OOD detection methods.

1 Introduction

Supervised image classification has produced highly accurate models, which can
be utilized for challenging fields such as medical imaging. For the deployment
of such models in critical applications, their raw classification accuracy does not
suffice for their thorough evaluation. Specifically, a major flaw of modern clas-
sification models is their overconfidence, even for inputs beyond their capacity.
For instance, a model trained to diagnose pneumonia in chest X-rays may have
only been trained and tested on X-rays of healthy controls and patients with
pneumonia. However, in practice the model may be presented with virtually in-
finite variations of patient pathologies. In such cases, overly confident models
may give a false sense of their competence. Ideally, a classifier should know its
capabilities and signal to the user if an input lies out of distribution.

In this work, we first explore confidence- and distance-based approaches for
out-of-distribution (OOD) detection on a standard computer vision (CV) task
and afterwards evaluate the best OOD detection methods on a medical bench-
mark dataset. Moreover, we provide a set of useful insights for leveraging OOD
approaches from computer vision to challenging medical datasets.
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Related work: OOD detection methods can be divided in two categories.
The first consists of methods that build a dedicated model for OOD detec-
tion [25]. Some works accomplish this via estimating density p(x) of ‘normal’
in-distribution (ID) data and then classify samples with low p(x) as OOD [10]
However, learning p(x) accurately can be challenging. An alternative is to learn
a decision boundary between ID and OOD samples. Methods [27] attempt this
in an unsupervised fashion using only ‘normal’ data. Nonetheless, supervised
alternatives have also been introduced for CV and medical imaging [6,24,29],
exposing the OOD classifier to OOD data during training. Such OOD data
can originate from another database or be synthesized. However, collecting or
synthesising samples that capture the heterogeneity of OOD data is challeng-
ing. Another approach for creating OOD detection neural networks (NNs) is
reconstruction-based models [8,21]. A model, such as an auto-encoder, is trained
with a reconstruction loss using ID data. Then, it is assumed that the recon-
struction of unseen OOD samples will fail, thus enabling their detection. This
approach is especially popular in medical imaging research [22,32,1,26,23], likely
because it produces a per-pixel OOD score, allowing its use for unsupervised
segmentation. It has shown promise for localisation of salient abnormalities but
does not reach the performance of supervised models in more challenging tasks.

The second category of OOD detection methods, which this study focuses
on, enhances a task-specific model to detect when an input is OOD. These ap-
proaches are commonly based on confidence of model predictions. They are
compact, integrated straight into an existing model, and operate in the task-
specific feature or output space. Their biggest theoretical advantage in compari-
son to training a dedicated OOD detector is that if the main model is unaffected
by a change in the data, the OOD detector also remains unaffected. A subset
of confidence-based methods has a probabilistic motivation, exploring the use
of the predictive uncertainty of a model, such as Maximum Class Probability
(MCP) [5], MCDropout [2] or ensembling [12]. Others derive confidence-scores
based on distance in feature space [31], or learn spaces that better separate sam-
ples via confidence maximization [14] or contrastive losses [31,28]. In medical
imaging, related work is mostly focused on improving uncertainty estimates by
DNNs [30,17], or analysing quality of uncertainty estimates in ID settings [19,9].
In contrast, investigation of OOD detection based on model confidence is limited.
A recent study compared MCDropout and ensembling [16] for medical imaging,
finding the latter more beneficial. The potential of other OOD detection methods
for medical imaging is yet to be assessed adequately, despite their importance
for the field.

Contributions: This study assesses confidence-based methods for OOD de-
tection. To this end, we re-implement and compare approaches, shown in Fig-
ure 1, in a common test-bed to accomplish a fair and cohesive comparison. We
first evaluate those approaches on a CV benchmark to gain insights for their
performance. Then, we benchmark all approaches on real-world chest X-rays [7].
We find that the performance of certain methods varies drastically between OOD
detection tasks, which raises concerns about their reliability for real-world use,
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and we identify a method that is consistently high performing across tasks. Fi-
nally, we conduct an empirical analysis to identify the factors that influence the
performance of these methods, providing useful insights towards building the
next generation of OOD detection methods.

2 Out-of-Distribution Detection Methods

ODINMahalanobis DUQMCP

OOD
OOD

OOD

OOD

Fig. 1: Overview of the OOD detection methods studied: Maximum Class Prob-
ability (baseline), Mahalanobis Distance, ODIN and DUQ.

We study the following methods for OOD detection in image classification:
Maximum Class Probability (MCP) [5]: Any softmax-based model pro-
duces an estimate of confidence in its predictions via its class posteriors. Specif-
ically, the probability maxy p(y|x) of the most likely class is interpreted as an
ID score and, conversely, low probability indicates possible OOD input. Even
though modern NNs have been shown to often produce over-confident softmax
outputs [3], this method is a useful baseline for OOD detection.
Mahalanobis Distance [13]: Lee et al. propose the Mahalanobis distance as
OOD metric in combination with NNs. The method can be integrated to any
pre-trained classifier. It assumes that the class-conditional distributions of acti-
vations z(x; θ) ∈ RZ in the last hidden layer of the pre-trained model follow mul-
tivariate Gaussian distributions. After training model parameters θ, the model
is applied to all training data to compute for each class c, the mean µ̂c ∈ RZ

of activations z over all training samples x of class c, and the covariance matrix
Σ̂ of the class-conditional distributions of z. To perform OOD detection, the
method computes the Mahalanobis distance between a test sample x and the
closest class-conditional distribution as follows:

M(x) = maxc − (z(x; θ)− µ̂c)
T Σ̂−1(z(x; θ)− µ̂c) (1)

The threshold to decide whether an input is OOD or ID is then set as a certain
distance from the closest distribution.
Out-of-Distribution Detector for Neural Networks (ODIN) [14]: This
method is also applicable to pre-trained classifiers which output class-posteriors
using a softmax. Assume f(x; θ) ∈ RC are the logits for C classes. We write
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S(x, τ) = softmax(f(x; θ), τ) ∈ RC for the softmax output calculated for tem-
perature τ (τtr =1 for training), and S(x, τ)c is the value for class c. The method
is based on the assumption that we can find perturbations of the input that in-
crease the model’s confidence more drastically for ID samples than for OOD
samples. The perturbed version of input x is given by:

x̃ = x− εsign(−∇x log maxcS(x; θ, τtr)c) (2)

Here, a gradient is computed that maximizes the softmax probability of the
most likely class. The model is then applied on the perturbed sample x̃ and
outputs softmax probabilities S(x̃; τ ′) ∈ RC . From this, the MCP ID score is
derived as maxc S(x; τ ′)c. Since the perturbation forces over-confident predic-
tions, it negatively affects calibration. To counteract this, ODIN proposes using
a different softmax temperature τ ′ when predicting the perturbed samples, to re-
calibrate its predictions. τ ′ is a hyperparameter that requires tuning. We assess
the effect of the perturbation and τ in an ablation study.

Deep Ensembles [12]: This method trains multiple models from scratch, while
initialisation and order of training data is varied. During inference, predicted
posteriors of all models are averaged to compute the ensemble’s posteriors. This
in turn is used to compute MCP of the ensemble as an ID score. While deep
ensembles have been shown to perform well for OOD detection, they come with
high computational cost as training and inference times scale linearly with num-
ber of ensemble members. In our experiments, we also investigate an ensemble
that uses a consensus Mahalanobis distance as OOD score instead of MCP.

Monte Carlo Dropout (MCDP) [2]: MCDP trains a model with dropout.
At test time, multiple predictions are made per input with varying dropout
masks. The predictions are averaged and MCP is used as ID score. The method
interprets these predictions as samples from the model’s posterior, where their
average is a better predictive uncertainty estimate, improving OOD detection.

Deterministic Uncertainty Quantification (DUQ) [31]: This method trains
a feature extractor without a softmax layer. Instead, it learns a centroid per class
and attracts samples towards the centroids of their class, similar to contrastive
losses [4]. It uses a Radial Basis Function (RBF) kernel to compute the distance
between the input’s embedding and the class centroids. The distance to the clos-
est centroid defines classification, and is also used as the OOD score. Because
RBF networks are prone to feature collapse, DUQ introduces a gradient penalty
to regularize learnt embedding and alleviate the issue. Nonetheless, we still faced
difficulties with DUQ convergence despite considerable attempts.

3 Benchmarking on CIFAR10 vs SVHN

We first show results on a common computer-vision (CV) benchmark to gain in-
sights about methods’ performance, and validate our implementations by repli-
cating results of original works before applying them to a biomedical benchmark.
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Table 1: Out-of-distribution detection performance of WideResNet 28x10 trained
on CIFAR10 with SVHN as OOD set. We report averages over 3 seeds.

Method AUROC AUCPR ID Acc.

MCP (baseline) 0.939 0.919 0.952
MCDP 0.945 0.919 0.956
Deep Ensemble 0.960 0.951 0.954
Mahalanobis 0.984 0.960 0.952
Mahalanobis Ens. 0.987 0.967 0.954
ODIN 0.964 0.939 0.952
ODIN (pert. only) 0.968 0.948 0.952
ODIN (temp. only) 0.951 0.920 0.952

DUQ 0.833 - 0.890

3.1 Experimental Setup

Dataset: We use the training and test splits of CIFAR10 [11] as ID and SVHN [20]
as OOD test set (ntest ID = 10000, ntest OOD = 26032). A random subset of 10%
CIFAR training data is used as validation set, to tune method hyperparameters,
such as temperature τ for ODIN.

Model: We use a WideResNet (WRN) [33] with depth 28 and widen factor 10
(WRN 28x10), trained with SGD using momentum 0.9, weight decay 0.0005,
batch normalization and dropout of 0.3 for 200 epochs with early stopping.

Evaluation Metrics: We use the following metrics to assess the performance of
a method in separating ID from OOD inputs: (1) area under the receiver operat-
ing characteristic (AUROC), (2) area under the precision-recall curve (AUCPR),
(3) accuracy (Acc) on ID test set. We also use (4) Expected Calibration Error
(ECE) as a summary statistic for model calibration [18].

3.2 Results

In Table 1, we compare OOD detection performance for all studied methods.
MCDP marginally improves over the baseline, with higher gains by Deep En-
sembles. Interestingly, ODIN achieves comparable AUROC with Deep Ensembles
and ODIN’s input perturbation is the component responsible for the performance
(see ODIN (pert. only)). The results of only applying temperature scaling and
no input perturbation are listed under ODIN (temp. only). The highest AUROC
over all methods is achieved by Mahalanobis distance both as a single model and
an ensemble. Moreover, none of the OOD detection methods compromised the
accuracy on the classification task. We reproduced the results of original imple-
mentation of DUQ with ResNet50. However, we faced unstable training of DUQ
on our WRN and did not obtain satisfactory performance despite our efforts.
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Table 2: Performance of different methods for separation of out-of-distribution
(OOD) from in-distribution (ID) samples for CheXpert in two settings. Setting
1: Classifier trained to separate Cardiomegaly from Pneumothorax (ID) is given
samples with Fractures (OOD). Setting 2: Classifier trained to separate Lung
Opacity from Pleural Effusion (ID) is given samples with Fracture or Pneumonia
(OOD). We report average over 3 seeds per experiment. Best in bold.

Setting 1 Setting 2

OOD ID OOD ID

Method AUROC AUCPR Acc AUROC AUCPR Acc

MCP (baseline) 0.678 0.695 0.888 0.458 0.586 0.758
MCDP 0.696 0.703 0.880 0.519 0.637 0.756
Deep Ensemble 0.704 0.705 0.895 0.445 0.582 0.769
Mahalanobis 0.580 0.580 0.888 0.526 0.601 0.758
Mahalanobis Ens. 0.596 0.586 0.895 0.537 0.613 0.758
ODIN 0.841 0.819 0.888 0.862 0.856 0.758
ODIN (pert. only) 0.841 0.819 0.888 0.865 0.856 0.757
ODIN (temp. only) 0.678 0.695 0.888 0.444 0.575 0.757

4 Benchmarking on the X-ray Lung Pathology Dataset

4.1 Experimental Setup

Dataset: To simulate a realistic OOD detection task in a clinical setting, we use
subsets of the CheXpert X-ray lung pathology dataset [7] as ID and OOD data,
in two different settings. Since CheXpert images are multi-labeled, we only used
samples where ID and OOD classes were mutually exclusive. Setting 1: We
train a classifier to distinguish Cardiomegaly from Pneumothorax (ID), and use
images with Fracture as OOD (ntest ID = 4300, ntest OOD = 7200). Setting 2:
We train a classifier to separate Lung Opacity and Pleural Effusion (ID), and use
Fracture and Pneumonia as OOD classes (ntest ID = 6000, ntest OOD = 8100).
Model: We use WRN with depth 100 and a widen factor 2 (WRN 100x2). All
other parameters remain the same as for the CIFAR10 vs SVHN benchmark.
Evaluation: We analyse performance based on the same metrics as in Sec. 3.

4.2 Results

Results for the two ID/OOD settings in CheXpert are shown in Table 2. The
baseline performance indicates that the ID and OOD inputs are harder to sep-
arate for Setting 2, and much harder than the CIFAR vs SVHN task. MCDP
improves OOD detection in both Settings. Interestingly, Deep Ensembles, often
considered the most reliable method for OOD detection, do not improve Set-
ting 2, although the Mahalanobis Ensemble does. Moreover, ODIN shows best
performance in both settings with a considerable margin, even when only using
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Fig. 2: T-SNE of embeddings for CIFAR10 vs SVHN and for CheXpert Setting 1.
The OOD cluster is less separated for the latter, challenging benchmark. ODIN
perturbations improve separation, which may explain its performance.

the adversarial-inspired component of the method without softmax tempering
(see ODIN (pert. only) in Figure 2). Mahalanobis distance, which was the best
method on the CIFAR10 vs SVHN task, performs worse than the Baseline on
Setting 1 and only yields modest improvements in Setting 2. Reliability of OOD
methods is crucial. Thus, the next section further analyses ODIN and Maha-
lanobis, to gain insights in the consistent performance of ODIN and the differ-
ence between the CV benchmark and CheXpert Setting 1 that may be causing
the inconsistency of Mahalanobis distance.

4.3 Further Analysis

Mahalanobis: Our first hypothesis to explain the poor performance of Maha-
lanobis on the medical OOD detection task in comparison to the CV task was
that the Mahalanobis distance may be ineffective in higher dimensional spaces.
In the CIFAR10 vs SVHN task, the Mahalanobis distance is calculated in a hid-
den layer with [640,8,8] (40960 total) activations, whereas the WRN 100x2 for
CheXpert has a corresponding layer with shape [128,56,56] (401408 total) acti-
vations. To test this hypothesis, we reduce the number of dimensions on which
we compute the distributions by applying strided max pooling before computing
the Mahalanobis distance and report the results in Table 3a. We find that this
dimensionality reduction is not effective and conclude that this is not the major
cause of Mahalanobis ineffectiveness in CheXpert.

To further investigate, we visualize with T-SNE [15] the last layer activations
when trained models process perturbed samples for the CIFAR10 vs SVHN task
and the CheXpert Setting 1. Figure 2 shows that activations for CIFAR10 classes
are clearly separated and the OOD set is distinguishable from the ID clusters. For
CheXpert, the baseline model achieves less clear separation of the two ID classes
and the OOD class overlaps substantially with the ID classes. This suggests that
fitting a Gaussian distribution to the ID embeddings is challenging, causing the
Mahalanobis distance to not yield significant OOD detection benefits.
ODIN: We investigate how the perturbation that ODIN adds to inputs benefits
OOD detection. For this, we also show T-SNE plots for both CIFAR10 and CheX-
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Pooling Layer shape AUROC

None [128,56,56] 0.6018
4x4, stride=2 [128,56,56] 0.5634
2x2, stride=4 [128,14,14] 0.5608
8x8, stride=1 [128,14,14] 0.5508
1x1, stride=4 [128,14,14] 0.545

(a) Results with dimensionality reduction

! = 1000, 
ECE = 0.35

! = 5, 
ECE=0.04

Baseline, 
ECE = 0.04

! = 1, 
ECE = 0.14

(b) Calibration curves

Table 3a: Results on CheXpert Setting 1 from experiments with dimensional-
ity reduction in last hidden layer. Lower dimensionality did not improve OOD
detection via Mahalanobis distance. Fig. 3b: Calibration of baseline and ODIN
for varying temperature τ and associated ECE, for CheXpert Setting 1. The
baseline (green) is reasonably calibrated. Adding noise to the inputs with ODIN
leads to highly overconfident model (purple, all samples very high confidence).
For CheXpert, τ = 1000 as used for CIFAR10 leads to under-confident model,
whereas τ=5 restores good calibration. Interestingly, all ODIN settings achieve
the same AUROC for OOD irrespective of τ value and calibration.

pert Setting 1 in Figure 2. The added perturbation results in a better separation
of ID classes in both datasets, with the effect more pronounced for CheXpert.
While there is still overlap between the Fracture OOD class and the Pneumoth-
orax ID class, the clusters are more pronounced which ultimately leads to better
OOD detection. Finally, we investigate the effect of temperature variation in
ODIN. Following [14], temperature 1000 was used for CIFAR10 and CheXpert.
By comparing baseline, ODIN (temp. only) and (pert. only) on Tables 1 and 2,
we find that OOD detection is primarily improved by perturbation, not temper-
ature scaling, especially on CheXpert. We note, however, that the perturbations
lead to a completely over-confident model using training temperature 1, with all
predictions having very high confidence (Figure 3b). AUROC and AUCPR are
calculated via ordering the OOD score (i.e. confidence) of predictions, so even
slight differences between ID and OOD samples suffice to separate false and true
detections. If only those metrics were taken into account, temperature scaling
might have been considered redundant. However, to deploy an OOD system,
a threshold on the confidence / OOD score needs to be chosen. Spreading the
confidence estimates via temperature scaling (τ = 5 in Figure 3b) enables more
reliable choice and deployment of a confidence threshold in practical settings.

5 Conclusion

This work presented an analysis of various state-of-the-art methods for confidence-
based OOD detection on a computer vision and a medical imaging task. Our
comprehensive evaluation showed that the performance of methods in a com-
puter vision task does not directly translate to high performance on a medical
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imaging task, emphasized by the analysis of the Mahalanobis method. There-
fore, care must be given when a method is chosen. We also identified ODIN as
a consistently beneficial OOD detection method for both tasks. Our analysis
showed that its effect can be attributed to its input perturbation, which en-
hances separation of ID and OOD samples. This insight could lead to further
advances that exploit this property. Future work should further evaluate OOD
detection methods across other datasets and tasks to better understand which
factors affect their performance and reliability towards real-world deployment.
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