Skip to main content

Abstract

We introduce an uncertainty-aware deep learning deformable image registration solution for magnetic resonance imaging multi-channel data. In our proposed framework, the contributions of structural and microstructural data to the displacement field are weighted with spatially varying certainty maps. We produce certainty maps by employing a conditional variational autoencoder image registration network, which enables us to generate uncertainty maps in the deformation field itself. Our approach is quantitatively evaluated on pairwise registrations of 36 neonates to a standard structural and/or microstructural template, and compared with models trained on either single modality, or both modalities together. Our results show that by incorporating uncertainty while fusing the two modalities, we achieve superior alignment in cortical gray matter and white matter regions, while also achieving a good alignment of the white matter tracts. In addition, for each of our trained models, we show examples of average uncertainty maps calculated for 10 neonates scanned at 40 weeks post-menstrual age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.developingconnectome.org/.

References

  1. Avants, B., Duda, J.T., Zhang, H., Gee, J.C.: Multivariate normalization with symmetric diffeomorphisms for multivariate studies. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 359–366. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_44

    Chapter  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Barnett, M.L., et al.: Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI. NeuroImage: Clin. 17, 596–606 (2018)

    Article  Google Scholar 

  4. Christiaens, D., et al.: Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. NeuroImage 225, 117437 (2021). https://doi.org/10.1016/j.neuroimage.2020.117437

    Article  Google Scholar 

  5. Cordero-Grande, L., Hughes, E.J., Hutter, J., Price, A.N., Hajnal, J.V.: Three-dimensional motion corrected sensitivity encoding reconstruction for multi-shot multi-slice MRI: Application to neonatal brain imaging. Magn. Reson. Med. 79(3), 1365–1376 (2018)

    Article  Google Scholar 

  6. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  7. Forsberg, D., Rathi, Y., Bouix, S., Wassermann, D., Knutsson, H., Westin, C.-F.: Improving registration using multi-channel diffeomorphic demons combined with certainty maps. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 19–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24446-9_3

    Chapter  Google Scholar 

  8. Hughes, E.J., et al.: A dedicated neonatal brain imaging system. Magn. Reson. Med. 78(2), 794–804 (2017)

    Article  Google Scholar 

  9. Hutter, J., et al.: Time-efficient and flexible design of optimized multishell HARDI diffusion. Magn. Reson. Med. 79(3), 1276–1292 (2018)

    Article  Google Scholar 

  10. Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models (2014). https://arxiv.org/abs/1406.5298

  11. Krebs, J., Mansi, T., Mailhé, B., Ayache, N., Delingette, H.: Unsupervised probabilistic deformation modeling for robust diffeomorphic registration. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 101–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_12

    Chapter  Google Scholar 

  12. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16, 1550–1564 (2012)

    Article  Google Scholar 

  13. Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J.V., Edwards, A.D., Counsell, S.J., Rueckert, D.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)

    Article  Google Scholar 

  14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  15. Schuh, A., et al.: Unbiased construction of a temporally consistent morphological atlas of neonatal brain development. bioRxiv (2018)

    Google Scholar 

  16. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019)

    Article  Google Scholar 

  17. Uus, A., et al.: Multi-channel 4D parametrized atlas of macro- and microstructural neonatal brain development. Front. Neurosci. 15, 721 (2021). https://doi.org/10.3389/fnins.2021.661704

    Article  Google Scholar 

  18. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network (2015). https://arxiv.org/abs/1505.00853

Download references

Acknowledgments

This work was supported by the Academy of Medical Sciences Springboard Award [SBF004\(\backslash \)1040], Medical Research Council (Grant no. [MR/K006355/1]), European Research Council under the European Union’s Seventh Framework Programme [FP7/20072013]/ERC grant agreement no. 319456 dHCP project, the EPSRC Research Council as part of the EPSRC DTP (grant Ref: [EP/R513064/1]), the Wellcome/EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z], the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’, and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Grigorescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grigorescu, I. et al. (2021). Uncertainty-Aware Deep Learning Based Deformable Registration. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. UNSURE PIPPI 2021 2021. Lecture Notes in Computer Science(), vol 12959. Springer, Cham. https://doi.org/10.1007/978-3-030-87735-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87735-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87734-7

  • Online ISBN: 978-3-030-87735-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics