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Abstract 

nmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are 

becoming increasingly important in today's societies. The systems that make them up 

present a multitude of challenges, of which error can be considered the common 

denominator. The perception of the environment is measured by sensors that have errors, 

the models that interpret the information and/or define behaviors are approximations of the 

world and therefore also have errors. Explaining error allows extending the limits of 

deterministic models to address real-world problems. The performance of the technologies 

embedded in drones depends on our ability to understand, model, and control the error of 

the systems that integrate them, as well as new technologies that may emerge. 

Flight controllers integrate various subsystems that are generally dependent on other 

systems. One example is the guidance systems. These systems provide the engine's propulsion 

controller with the necessary information to accomplish a desired mission. For this purpose, 

the flight controller is made up of a control law for the guidance system that reacts to the 

information perceived by the perception and navigation systems. The error of any of the 

subsystems propagates through the ecosystem of the controller, so the study of each of them 

is essential. 

On the other hand, among the strategies for error control are state-space estimators, 

where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. 

Kalman filters are at the heart of information fusion systems, minimizing the error covariance 

of the system and allowing the measured states to be filtered and estimated in the absence 

of observations. State Space Models (SSM) are developed based on a set of hypotheses for 

modeling the world. Among the assumptions are that the models of the world must be linear, 

Markovian, and that the error of their models must be Gaussian. In general, systems are not 

linear, so linearization are performed on models that are already approximations of the world. 

In other cases, the noise to be controlled is not Gaussian, but it is approximated to that 

distribution in order to be able to deal with it. On the other hand, many systems are not 

Markovian, i.e., their states do not depend only on the previous state, but there are other 

dependencies that state space models cannot handle. 

This thesis deals a collection of studies in which error is formulated and reduced. First, 

the error in a computer vision-based precision landing system is studied, then estimation and 

filtering problems from the deep learning approach are addressed. Finally, classification 

concepts with deep learning over trajectories are studied. The first case of the collection 

U 



 

-xviii- 

 

studies the consequences of error propagation in a machine vision-based precision landing 

system. This paper proposes a set of strategies to reduce the impact on the guidance system, 

and ultimately reduce the error. The next two studies approach the estimation and filtering 

problem from the deep learning approach, where error is a function to be minimized by 

learning. The last case of the collection deals with a trajectory classification problem with real 

data. This work completes the two main fields in deep learning, regression and classification, 

where the error is considered as a probability function of class membership. 
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Resumen 

os vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos 

como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los 

componen presentan multitud de retos entre los cuales el error se puede considerar como el 

denominador común. La percepción del entorno se mide mediante sensores que tienen error, 

los modelos que interpretan la información y/o definen comportamientos son aproximaciones 

del mundo y por consiguiente también presentan error. Explicar el error permite extender los 

límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento 

de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, 

modelar y controlar el error de los sistemas que los integran, así como de las nuevas 

tecnologías que puedan surgir. 

Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son 

dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos 

sistemas son los encargados de proporcionar al controlador de los motores información 

necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control 

de guiado que reacciona a la información percibida por los sistemas de percepción y 

navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del 

controlador siendo vital su estudio. 

Por otro lado, entre las estrategias para abordar el control del error se encuentran los 

estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 

60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el 

corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error 

del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen 

observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de 

hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo 

han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. 

Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos 

que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar 

no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, 

multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado 

anterior, sino que existen otras dependencias que los modelos de espacio de estados no son 

capaces de abordar. 
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Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. 

En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión 

por computador. Después se plantean problemas de estimación y filtrado desde la 

aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación 

con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las 

consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en 

visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto 

sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios 

abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, 

donde el error es una función que minimizar mediante aprendizaje. El último caso del 

compendio aborda un problema de clasificación de trayectorias con datos reales. Con este 

trabajo se completan los dos campos principales en aprendizaje profundo, regresión y 

clasificación, donde se plantea el error como una función de probabilidad de pertenencia a 

una clase. 
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ℬ𝑖
𝑗
∈ ℝ3 Orthonormal base of {𝑗} frame, expressed in {𝑖} coordinates 
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𝑗
∈ ℝ3×3 Change-of-basis matrix from {𝑖} to {𝑗} reference frame 
𝐴 A matrix 
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1𝑛×𝑚  Matrix of dimension 𝑛 × 𝑚 whose all elements are equal to 1 
𝐴𝑇 Transpose of matrix 𝐴 
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{𝑠} Sensor reference frame 
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𝜑′ Geocentric latitude 
𝑟𝑒  Equatorial radium 
𝑟𝑝 Polar radium 
𝜀, 𝜀′ First and second eccentricity 
𝑓 Flattening factor defined  
𝑟𝜆 Earth curvature 

Attitude, representation, and 
kinematics 

 

Φ Attitude representation. 
𝒗 Rotation of rigid body 
𝒖 Rotation unit axis 
𝜙 Rotation relative to the unit quaternion 
𝑅𝑖
𝑗
 Direction Cosine Matrix  
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𝑅(𝑖, 𝛼) 𝛼-Rotation around “𝑖” axis 
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𝑢 Input system signal/control signal  
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𝑓(𝑥, 𝑢, 𝑤) Dynamic System 
ℎ(𝑥, 𝑣) Stochastic measure function 
𝐴 Linear system matrix (continues system) 
𝐵 Input matrix (continues system) 
𝐻 Observation matrix model  
𝐹 State transition matrix (discreet system) 
Γ Input matrix (discrete system) 
𝑄 The covariance of the process noise. 
𝑄𝑝 Uncertainty in predictions. 
𝑄𝑢 Projects the errors of the inertial sensors to the state vector. 
𝑅 The covariance of the observation measurements  
𝑃 Covariance matrix (measure of the estimate accuracy) 
𝐾 Optimal Kalman gain 

𝑊𝑘~𝒩(0, 𝑄𝑘) Process noise  
𝑉𝑘~𝒩(0, 𝑅𝑘) Observation noise 

Sensor Fusion Variables  
𝑥 ∈ ℝ𝐼𝑀𝑈+𝐺𝑁𝑆𝑆 Fusion INS/GNSS state vector 
𝑥̅𝐼𝑀𝑈 ∈ ℝ

𝐼𝑀𝑈 INS state vector 
𝑥𝐺𝑁𝑆𝑆 ∈ ℝ

𝐺𝑁𝑆𝑆 GNSS state vector 
𝑝̅{𝑖} = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑇  Position in {𝑖} reference frame and 3D-componts 

𝑟̅𝑒 Position vector to local origin 
𝑣̄ ∈ ℝ3 Velocity vector 
𝐸̇, 𝑁̇, 𝑈̇ Ground Velocity in ENU reference frame 
𝒒 Attitude representation in quaternions 

𝑏̅𝑎 = (𝑏𝑎𝑥 , 𝑏𝑎𝑦 , 𝑏𝑎𝑧)
𝑇

  ∈ ℝ3 Accelerometer bias 

𝑏̅𝜔 = (𝑏𝜔𝑥 , 𝑏𝜔𝑦 , 𝑏𝜔𝑧)
𝑇

∈ ℝ3 Gyroscope bias 

𝑏ℎ ∈ ℝ Barometer bias 
𝑧𝑗
{𝑖}
∈ ℝ3 Measurements of “𝑗” sensor expressed in {𝑖} reference frame 

𝜔̅ ∈ ℝ3 Angular rate vector 
𝝎 ∈ ℍ Angular rate vector expanding in Hamilton space 
𝑔 ∈ ℝ3 Gravity vector 
𝑚 ∈ ℝ3 Earth magnetic field vector 
𝑛𝑗 ∈ ℝ

3 Gaussian white noise of “𝑗” sensor 
𝜎𝑗𝑖
2 ∈ ℝ3 Variance in “𝑖” component error of “𝑗” sensor. 

𝐶𝑖
𝑗[𝑘] {𝑖} → {𝑗} frames conversion matrix at k-time 
𝐴[𝑘] Attitude transition matrix INS/GNSS fusion 

𝑈[𝑘] Control input- (correction in velocity) INS/GNSS fusion 
𝑊̅[𝑘] Observation noise process in loosely coupled architecture. 
V̄[𝑘] System process noise in loosely coupled architecture. 
qam
2  Accelerometer noise for covariance prediction 
qωm
2  Rate gyro noise for covariance prediction 
qap
2  Process noise for IMU accel. bias prediction 
qωp
2  Process noise for IMU rate gyro bias prediction 

Camera Reference frames  
{𝑤} Real World reference frame 
{𝑐} Camera reference frame 
{𝑝ℎ} Projective plane  

Pinhole model  
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𝐴 Intrinsic camera matrix (pinhole model). 
𝑘1, … , 𝑘𝑛 ∈ ℝ

𝑛 Set of radials, tangential and prims distortion parameters 
𝛿 ∈ ℝ3+𝑛 Set of intrinsic camera parameters. Pinhole basis model plus distortions. 

𝜃 External camera parameters. 
𝑝̅𝑖 Points-position expressed in {𝑖} reference frame 

𝛹(𝛿, 𝜃, 𝑝̅𝑤) Camera model. Pinhole extension by intrinsic and extrinsic parameters. 
𝑍 Image plane or focal plane 
𝑓𝑖  Focal distance in 𝑖 −axis 
𝑐𝑥 , 𝑐𝑦 Principal points 
ℱ𝑐  Center of the camera 

(𝑢, 𝑣)𝑇 Coordinates in 2D projective plane. 
𝑇.
𝑗
𝑖 = [𝑅|𝑡̅] ∈ ℝ

4×4 Homogeneous transformation {𝑖} to {𝑗} reference frames 
𝑅 ∈ ℝ3×3 Rotation matrix 
𝑡̅ ∈ ℝ3 Translation vector 

Camera calibration  
𝐸̂ Reprojection error 

𝑂(𝑝̅𝑖
𝑤) ∈ ℝ2 Calibration position pattern of element 𝑖 

∁∈ ℝ2×n Corner set of the calibration pattern 
Visual Object Tracking  

𝑆𝑇0 Short-term tracker  
𝑆𝑇1 Short-term tracker with conservative updating  
𝐿𝑇0 Pseudo long-term trackers 
𝐿𝑇1 Re-detecting long-term tracker 

Artificial Neural Network  
𝜑 Activation Function. 
𝜎 Sigmoid function 
tanh Hyperbolic tangent function  

max (0, 𝑧) ReLU activation function 
max (0.01z, z) Leaky ReLU activation function leaky=0.01 

𝑤𝑘𝑗  k-neuron weight in j-th synaptic 
𝑏𝑘  k-neuron bias 
𝐿𝑛 n-layer  
𝑊(𝑙) Weight matrix of l-layer 
𝑏(𝑙) Base matrix of l-layer 
ℎ(𝑡) hidden nodes in RNN 
F̂+ Filtering 
F̂ Prediction  
𝚽 Dataset 
Φ𝑖  𝑖-Data package 
𝑍𝑖  𝑖-Raw data package 
𝑋𝑖  𝑖-Ideal data package 
ℒ Cost function/ learning  
𝑭̂𝜽 Network function  
𝜆 Regularization factor 

Classification validation  
𝑇𝑝, 𝑇𝑛 True positive and true negative  
𝐹𝑝, 𝐹𝑛 False positive and false negative 
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Acronyms and Abbreviations  

Acronyms Description 
AEE Average Euclidean Error  
AESA  European Union Aviation Safety Agency 
AGE Average Geometric Error  
AHRS Attitude and heading reference system 
AI Artificial Intelligence 
AIS Automatic Identification Systems  
ANMS Attention-based non maximum suppression 
ANN Artificial Neural Networks  
API Application Programming Interfaces  
ARMA  Autoregressive Moving Average 
ARMAX  Autoregressive-Moving Average with exogenous terms 
AUC Area under the ROC curve 
BERT Bidirectional encoder representations from transformer  
BI-LSTM Bidirectional-LSTM  
BRIEF Binary Robust Independent Elementary Features 
CNN Convolutional Neural Networks 
CP Checkpoints  
CSEFMLP  Cost-Sensitive Cross-Entropy Error Function for MLP 
CSRT Channel and Spatial Reliability Tracker 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
DCM Direction Cosine Matrix  
DL Deep Learning 
DOF Degrees of freedom 
DPM Dimension-based Partitioning and Merging clustering 
DTW Dynamic Time Warping 
ECEF Earth-Centered Earth-Fixed frame  
EKF Extended Kalman Filter 
EKF1 PX4 extended Kalman filter for position control 
EKF2 Specific PX4 INS/GNSS fusion system  
EKF3 Specific PX4 INS/Vision fusion system  
ENU East-North-Up  
FAO Food and Agriculture Organization  
FAST Features from Accelerated Segment Test 
FLANN Fast Library for Approximate Nearest Neighbors 
Fn False negative 
FOV Field of view 
Fp False positive 
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FPS Frames per second  
FSOD Few-Shot Object Detection 
GAN Generative Adversarial Networks 
GCS  Ground Control Station 
GIAA Applied Artificial Intelligence Group  
GNSS Global Navigation Satellite System 
GOTURN Generic Object Tracking Using Regression Networks 
GPS Global Position System  
GRU Gated Recurrent Units  
GT Ground Truth 
HITL Hardware In The Loop 
HMM Hidden Markov Models  
HMSE Half Means Square Error  
HOG Histograms of Oriented Gradients 
HTOL Horizontal Take-Off Landing  
ICAO International Civil Aviation Organization  
IMM Interacting Multiple Model filter 
IMU Inertial measurement unit  
INS Inertial Navigation System 
IoU Intersection Over Union 
IP Internet Protocol  
IPPE Infinitesimal Plane-Based Pose Estimation 
IUU Illegal, Unreported and Unregaled  
KCF Kernelized Correlation Filter 
KF Kalman Filter 
KNN K-Nearest Neighbors 
LDS Linear Dynamic Systems  
LIDAR Light Detection and Ranging o Laser Imaging Detection and Ranging 
LSTM Long-Short Term-Memory  
LTP Local Tangent Plane  
MAD Mean of Absolute Differences 
MAPE Mean Absolute Percentage Error  
MARG Magnetic, Angular rate, and Gravity  
MAV Micro Air Vehicle  
MAVLink  Micro Air Vehicle Communication protocol 
MHR Mean Hit Ratio 
MIL Multiple Instance Learning 
MIT Mean Inference Time 
ML Machine Learning  
MOSSE Minimum Output Sum of Squared Error 
MOT Multiple Object Tracking 
MSE Means Square Error  
MTT Multi Target Tracking 
MUAV Micro Unmanned Aerial Vehicle  
MVI Motion Vector Integrator 
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NAV Nano Air Vehicle  
NCS Neural Compute Stick 
NED East-North-Down  
NED North-East-Down  
NLP Natural Language Processing  
NMS Non-Maximum Suppression 
NN Neural Network  
ORB Oriented FAST and Rotated BRIEF 
OSPA Optimal Subpattern Assignment Error 
PAV Pico Air Vehicle  
PnP Perspective-n-Point 
PSD Power spectral density  
PSP Post-Synaptic Potential  
PWM Pulse-width modulation 
PX4 Open-source flight control software developed by Dronecode foundation 
QGC  QGroundControl 
RANSAC Random Sample Consensus 
R-CNN Region-based Convolutional Neural Networks 
ReLU Rectified Linear Unit  
RGB Red, Green, Blue 
RKF Robust Kalman filter  
RMS  Root Mean Squared 
RMSE Root Mean Squared Error  
RNN Recurrent Neural Networks 
ROC Receiver Operating Characteristic 
ROI Regions of Interest 
RPAS Remotely Piloted Aircraft Systems 
RPI Raspberry Pi 2 Model B 
RTL  Return to lunch 
RUS Random Undersampling  
SAD Sum of Absolute Differences 
SAM  Segment Anything Model 
SARIMA  Seasonal Autoregressive Integrated Moving Average Model 
SD Standard deviation  
SDt Smart Dust  
SESAR  Single European Sky ATM Research 
SIFT Scale-Invariant Feature Transform 
SITL Software in the loop 
SLAM Simultaneous Location And Mapping 
SMOTE Synthetic Minority Over-sampling Technique  
SOT Single Object Tracking 
SSD Single-Shot Detector/Sum of Squared Differences 
SSM State Space Models  
SURF Speeded-Up Robust Features 
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SVM Support Vector Machin 
TCP  Transmission Control Protocol 
T-FoT Trajectory Functions on Time 
TLD Tracking, Learning, Detection 
Tn True negative 
Tp True Positive 
UAS Unmanned aerial system/ Unmanned Aircraft Systems 
UAV Unmanned Aircraft Vehicle 
UC3M Carlos III University of Madrid 
UDP  User Diagram Protocol 
UKF Unscented Kalman Filter 
URM Uniform Rectilinear Motion  
VMS Vessel Monitoring Systems  
VO Visual Odometry 
VOT Visual Object Tracking 
VPU Vision Processing Unit 
VTOL Vertical Take-Off and Landing 
WCE Weighted Cross-Entropy  
WGS84 World Geodetic System 84 
XML 
 

Extensible Markup Language 
YOLO You Only Look Once 
EP Equilibrium Point  
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Introduction  

he common domain of this thesis is error reduction in drone operations support systems. 

But what is the meaning of error in the context of drone operations support technologies? 

According to the Oxford dictionary8, an error is "a mistake, especially one that causes problems 

or affects the outcome of something". This definition is too general, but it is useful to 

conceptualize in the fields of mathematics, science, and technology. In these fields, two types 

of error are distinguished: systematic error and random or stochastic error. The first, 

systematic error, is defined in statistics as the error that occurs in the same way in all 

measurements. It is also known as bias. On the other hand, random error is the error that 

cannot be precisely predicted and is outside the rules of determinism and requires alternative 

mathematical tools. This type of error is widely studied from different fields such as signal 

theory or control theory, but always under the umbrella of statistical tools. 

This is approached in three different ways. On the one hand, the study of the error of a 

precision landing system based on the integration of information from a vision system over 

the drone navigation system. On the other hand, the estimation problem for trajectory 

tracking. Finally, the error in trajectory classification problems. 

As far as a precision landing system is concerned, it is important to note that landing is 

undoubtedly one of the most common, essential, and critical maneuvers of any aircraft, 

including drones. Machine vision systems play a fundamental role in new landing strategies. 

Although there are a variety of applications that address this problem, we will focus on 

applications that rely on integrated aircraft systems. Undoubtedly, the most direct solution is 

to identify the target and let the aircraft's guidance and control system do the work to get the 

landing area. But what happens if the target (landing area) estimation is noisy? Inevitably, this 

error will propagate through the system and affect landing accuracy, but how? 

From the point of view of estimation theory, the study of Kalman filter (KF) estimators 

allows the identification of the limits of these systems. The limitations of KFs are mainly 

associated with the starting assumptions of these models. This motivates the study of 

alternative approach based on data. Machine learning seeks to extract knowledge from the 

information contained in the data. With the knowledge acquired from the data, models are 

generated to explain its behavior. For this purpose, tracking problems based on state space 

 
8 https://www.oxfordlearnersdictionaries.com/  
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models are addressed from a machine learning approach. The aim is to generate dynamic 

models capable of estimating and filtering measurements.  On this side, Deep Learning (DL) 

has shown in the last decades that it is able to address the modeling of nonlinear, non-

Markovian and non-Gaussian systems. This provides an ideal opportunity to address the 

limitations of traditional Kalman filter-based estimation systems. 

Finally, machine learning data classification problems are strongly supported by 

information theory, where concepts such as cross-entropy play a fundamental role in the 

definition of error for deep learning-based approaches. Furthermore, the evaluation of these 

models requires methods that quantify the error in classification, thus requiring new error 

definitions. 

Motivation and research questions 

The first contribution of this thesis, (Chapter 4), focuses on the study of the error of a 

vision-based precision landing system and its impact on the trajectory. The vision system is 

embedded in a drone with a zenithal field of view and takes information from the navigation 

system to estimate a global position of the landing area. These estimates are sent to the 

guidance system to reach a target. The estimation of the position of the landing platform is 

done with the context information of the platform to land on. A pinhole camera model is used 

to perform this estimation. The pinhole camera model is a projective model that can be 

adapted to the non-linear reality of non-paraxial optics by using aberration models of different 

types. The estimation of the landing zone position represents an error model to be modeled. 

But what is the influence on the landing and the trajectory? Also, knowing the influence of 

this error, is it possible to propose alternative landing strategies? These are the questions 

addressed in this first paper. 

The second contribution of this thesis, Chapter 6, faces the challenge of generating an 

estimation and filtering model that can be compared to a Kalman filter (KF) using Deep 

Learning (DL). It presents a case where theory says that the best possible estimator is the KF. 

This work identifies the challenges of modeling with neural networks with regression 

problems in which it is desired to introduce nonlinear and non-Markovian components. For 

this reason, networks with long and short term memory, known by the acronym LSTM (Long 

Short Term Memory), play a fundamental role in this work. 
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LSTM networks are capable of modeling non-Markovian temporal behaviors, in other 

words, with long-term dependencies. Some particularities of LSTM cells, such as the forgetting 

gate inside each of their units, allow to ignore new measurements against estimations, which 

can be understood as a filtering since the LSTM cell will give more weight to the estimation 

than to the measurement. In a way, we can say that these networks are able to learn which 

measurements are important for the estimation and which are not according to previous 

states. 

Artificial Neural Networks (ANN) operate in a bounded space with the training 

information, so it is essential to study the solution space. This space is bounded by the training 

information. However, real systems may not be bounded. One of the first questions that 

comes up is: What happens outside the boundary, how can we estimate outside the boundary 

space? To understand what happens at the borders of this space is the subject of the first 

article. The first article presents a recursive methodology of solution space transformation 

that allows one to tackle estimation problems of higher complexity from the classical point of 

view. For classical tracking systems based on Kalman filters, it is common to test the systems 

in the absence of measurements, so the question is how will LSTM networks behave in the 

absence of new measurements? These questions are also the subject of this second study. 

The third contribution, Chapter 7, deepens on the formulation of the estimation and 

filtering problem. Specifically, from the deep learning approach. In addition, it delves into the 

understanding and formulation of LSTM cells and deep networks composed of these cells. The 

learning process of the networks is a critical moment, so a good definition of the learning 

process as an optimization process is crucial for a correct behavior. This motivates the study 

of the optimization processes and addresses classical challenges such as overfitting. 

Throughout the third research article, three case studies of state estimation are 

compared in which the last one refers to a highly nonlinear system. The three case studies are 

approached as tracking systems, where dynamic models define the behavior of the 

trajectories of the system states. The goal is to estimate and filter such states even when 

measurement is lost. In the cases of linear systems, it is known that KF is the optimal 

estimator, but can the networks be compared? and in the cases where the trajectories are 
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governed by nonlinear behavior, what happens? These questions will be answered in the 

second article. 

From the classical approach, process noise in fusion systems gives the Kalman filter in 

general and the estimation model in particular some flexibility in the face of uncertainty in the 

behavior of the dynamics of the state vector to be filtered. Regarding estimating vehicle 

kinematics, this means that if a vehicle describes a uniformly accelerating motion and the 

estimation model corresponds to a uniformly linear motion, the process noise can give the 

fusion system (KF), some flexibility to follow it successfully. This raises questions such as: what 

happens if the trajectories change with respect to the estimator model? what is the limit of 

the model change of the trajectories where the Kalman filter continues to work? and for the 

networks, what is its limit? These questions try to evaluate the robustness of the proposed 

neural estimators with respect to classical approaches. 

In the final contribution, Chapter 8, classification systems are studied in the face of highly 

unbalanced real data sets. In the real data domain, it is common to find information bias, i.e. 

more data belonging to one class than to others. This drastically affects classical machine 

learning strategies by biasing the classification models. Although data balancing strategies 

exist, they modify the observations space, so the search for learning-based strategies 

represents a great opportunity. The classification approaches that stand out in the current 

literature focus on deep learning, where the main trends are Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), with LSTMs being the most mentioned. But 

how does this bias influence the main neural architectures? can it be inferred in the learning 

process to address the information bias? is there a difference in classifying kinematic data 

with LSTMs and CNNs? which ones? These are some of the questions that this research aims 

to answer. 

In summary, this thesis proposes as a principal objective: 

1) Define and prototype data fusion-based navigation systems. 

2) Define and prototype video analysis subsystems. 

3) Design and prototype interpretation/reasoning subsystems.  
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4) Design and prototype deep learning methodologies for estimation and filtering. 

To achieve these objectives, a series of secondary objectives are proposed: 

I. Study indoor-outdoor UAV navigation techniques and mission planning. 

II. To review in the literature problems associated with modeling dynamic systems with 

deep learning approaches.  

III. To study estimation and filtering techniques.  

IV. Explore advanced classification techniques with real data. 

V. Explore hyper-realistic Software/Hardware In The Loop (SITL/HITL) simulation 

environments for experimentation with UAVs. 

VI. Define models and systems that allow extracting information from the flight context. 

VII. To study sensor fusion and new deep learning architectures. 

Methodology 

This thesis is the result of two different methodological processes. On the one hand the 

methodology of training the doctoral student to acquire the necessary skills for research and 

on the other hand the research methodologies that have been used to achieve the research 

objectives. 

The research training methodology includes a rigorous scientific training, which is framed 

within the PhD Program in Computer Science and Technology of the University Carlos III de 

Madrid (UC3M). While working on the research project, the training associated with the PhD 

program in Computer Science and Technology of Universidad Carlos III de Madrid, aimed at 

improving research skills and ensuring the scientific quality of the research work, has been 

followed, including several types of training: 

Specific education 

A set of seminars and attendance to research conferences have been taken. On the one 

hand, there are the courses organized by the Computer Science and Engineering Department 

of University Carlos III de Madrid, on relevant research topics within the area of Computer 
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Engineering, given by prestigious visiting professors, especially from international universities. 

In addition, PhD students have participated in the research results presentation conferences, 

in which they present the state of development of their theses to other PhD students and 

researchers of the UC3M Computer Science and Engineering Department. 

Transversal education 

The transversal training complements the previous training through the acquisition of 

common skills for the development of scientific skills and for the improvement of the future 

professional career. This training is composed by different activities (short courses, seminars, 

etc.), which have been recognized by the academic committee. Among the courses and 

transversal trainings carried out are courses in time management and mentoring. 

In addition, as a complementary activity it has participated in teaching activities such as 

teaching support in the subjects of "Data analysis", "Physical principles of computer science". 

Also, it has been involved in the direction of different final degree projects and in the 

development of projects associated with international students' stays. This provides a 

different approach that helps the sintering of knowledge to be explained and therefore a 

powerful tool in the work of scientific dissemination. 

Regarding research, the methodology is framed in the scientific method in which the 

formulation of research problems is motivated by the special interest in DL paradigms under 

the context of the associated main project, using quantitative methods, generally 

experimental, analytical, or descriptive.  

To achieve each of the objectives involved to the aim project "Contribuciones a las 

tecnologías Habilitadores para la gestión de aeronaves no tripuladas y soporte a las 

operaciones" and to elaborate the reference contributions, a methodological structure of 6 

stages was followed: 1) Review of the state of the art to know and understand the work of 

other authors. 2) Problem formulation. 3) Proposal. 4) Experimental design. 5) Result 

evaluation. 6) Conclusions. 
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Thesis structure 

In addition to the introduction and conclusions, a backbone of the thesis is the central 

block that divided into two parts. The first part, "Part I: Drones, Navigation and Vision-based 

precision landing" is composed by four chapters, the first three introduce the reader to 

concepts and tools that culminate with the publication in Chapter 4. The second part, "Part II: 

Deep Learning, forecasting, filtering and classification", is composed by other four chapters, 

in which the first one, Chapter 5, is an introduction to neural networks, the next two, Chapter 

6 and Chapter 7, correspond to two contributions related to filtering and state estimation 

from the deep learning approach and the last one, Chapter 8, address de classification 

problem as the last contribution. 

The aim of this structure is to provide the reader with the concepts and tools necessary 

to understand the referenced contributions. In addition, the Chapters 4, 6, 7 and 8 associated 

with the four reference contributions keep the structure and order of the original publications 

in order to highlight these works to the reader. 

Part I: Drones, Navigation and Vision-based precision landing 

Throughout this first part, general concepts about drones, navigation, computer vision, 

and finally precision landing are introduced. Specifically: 

• Chapter 1: Overview on drones 

Any study or development of technologies first requires knowledge of their history, 

terminology, classification, fundamentals, legislation and finally a starting point for the study 

and/or development. Although there are many commonalities between the different types of 

UAVs, this chapter considers the flight controller as the starting point. The flight controller 

system requires several essential subsystems such as guidance or navigation to function. In 

order to develop new applications based on the above-mentioned subsystems, it is necessary 

to have development and validation strategies that minimize risk, cost, and time. Hyper-

realistic simulation is a powerful tool to minimize previous goals and accelerate the 

development of new applications. 

Throughout this chapter the above topics are presented in 4 sections: Section 1.1. gives 

a general introduction from UAVs to drone terminology including drone definition and 

classification. Section 1.2. introduces the flight controller together with a brief introduction of 

control theory concepts. Section 1.3 can be considered a continuation of the previous sections 

but focused on vehicle guidance. Section 1.4 focuses on hyper-realistic simulation systems and 

different simulation platforms for drones. 

• Chapter 2: UAS INS/GNSS Navigation 
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Inside the flight controllers the navigation system is responsible to estimate the necessary 

states required by the control system, guidance system, or other secondary subsystems. To 

do this, the navigation system uses sensors to sense the environment and algorithms to 

estimate the desired states. Position, velocity, acceleration, and orientation are the most 

common states that need to be estimated by the navigation system. The information fusion 

systems are presented as one of the most widespread technologies thanks to its angular piece, 

the Kalman filter. However, these systems require common reference frames for the 

information to be coherent, it is not always possible to observe the desired states, the 

measurements and models are not deterministic or simply the measurements of the different 

sensors are asynchronous. 

This chapter introduces the fundamentals and mathematical tools necessary to 

understand, develop, and research on the basic INS/GNSS navigation systems embedded in 

drones. The chapter is divided into four sections, Section 2.1: Introduction to navigation, 

Section 2.2: Reference frame systems, Section 2.3: Attitude representation and mathematical 

tools, Section 2.4: Fusion of Inertial Navigation Systems and Global Navigation Satellite 

System, and the fundamentals of estimation and filtering with Kalman filters are introduced. 

• Chapter 3: Machine Vision Systems of UAS 

Although it is difficult to select a set of branches related to computer vision-based UAS 

applications, this chapter provides an overview of fundamentals and strategies that were 

considered outstanding for the development of the reference publications of this thesis, as 

well as for the further development of new vision-based drone applications. The AirSim 

simulation environment has a key role, so information related to the configuration of this 

system is included. 

The chapter is divided into five sections. Section 3.1. introduces machine vision systems 

for UAS. Section 3.2. presents the fundamentals of modeling a camera and calibration. Section 

3.3. explores the image stabilization problem from mechanical and computational 

approaches. Section 3.4. focuses on object detection in images, with a review of the state of 

the art in this branch of computer vision, describing the classical problems faced by 

researchers, the most widely used evaluation metrics, and a brief example of deep learning-

based detection. Finally, Section 3.5. introduces the reader to the visual object tracking 

problem.  

• Chapter 4: Error Reduction in Vision-Based Multirotor Landing System 

This chapter corresponds to the third reference contribution of this thesis. Therefore, the 

chapter keep the original structure of the article. The fundamentals detailed in the previous 

chapters have been used for this chapter. The chapter show a scientific article structure in 
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which it initially shows the authors, an abstract and keywords. It is then organized as follows: 

First, Section 4.1. contains an introduction, Section 4.2. shows the problem formulation of 

helipad position estimation by monocular computer vision system. Section 4.3. describes the 

landing strategy proposal and the global estimation module. The correction module design, 

the analysis of the complete landing system, and a description of the test environment can be 

found in Section 4.4. Finally, the conclusions are presented in Section 4.5. References for this 

work are given in Section 4.6. 

Part II: Deep Learning, forecasting, and filtering. 

This second part is composed of an introductory chapter and two specific chapters 

associated with the first two references of this thesis. 

• Chapter 5: Artificial Neural Networks. 

The study of Artificial Neural Networks (ANN) involves a variety of biological, 

psychological, mathematical, physical, and computational foundations. The purpose of this 

chapter is to provide an overview of neural networks, their foundations, the current trends in 

the literature, and finally to introduce the reader to the terminology used in the following 

chapters. 

This chapter is divided into 3 sections: The first section, Section 5.1, provides a historical 

introduction to contextualize the progress. Section 5.2. presents the bioinspired mathematical 

concept and its formulation. Section 5.3. introduces the network concept, the topology, and 

the potential of the most prominent current networks. Finally, the references are given. 

• Chapter 6: An approach to forecasting and filtering noise in dynamic systems using 

LSTM architectures. 

This chapter corresponds to the first reference contribution of this thesis. The original 

structure of the journal article has been kept except for the authors' biographies, which have 

been deleted. The fundamentals detailed in the previous chapters and Part I, have been used 

here. The chapter presents a scientific article structure in which it initially shows the authors, 

an abstract and keywords. It is then organized as follows: First, Section 6.1. contains an 

introduction, Section 6.2. introduce the mathematical problem formulation. Section 3 shows 

the database, structure, and pre-processing. Section 6.4. shows the LSTM neuro-estimator 

model, general process, and training parameters. The description and results of the numerical 

experiments are summarized in Section 6.5. Finally, the conclusions are presented in Section 

6.6. followed by references. 

• Chapter 7: Forecasting nonlinear systems with LSTM: Analysis and comparison with 

EKF. 
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This chapter corresponds to the second reference contribution of this thesis. The original 

structure of the journal article has been kept. The concepts detailed in the previous Part I, 

chapters and publications have been used for this chapter. The chapter presents a scientific 

article structure in which it initially shows the authors, an abstract and keywords. It is then 

organized as follows: First, Section 7.1. introduction, Section 7.2. defines the problem and 

introduces how to approach the problem from a classical observer point of view, as well as 

reviewing possible solutions to estimation and filtering problems from deep learning 

paradigms. Section 7.3. is a description of the study proposal, the methodology for its 

realization, and a rigorous mathematical definition. Section 7.4. details the three case studies 

based on the proposed approach and the proposed experiments. Finally, Section 7.5. presents 

the conclusions. References for this work are given in Section 7.6. 

• Chapter 8: LSTM vs CNN in real ship trajectory classification 

This chapter corresponds to the fourth reference contribution together with the journal 

article that is currently in production. Therefore, the chapter keep the original structure of the 

articles. The chapter show a scientific article structure in which it initially shows the authors, 

an abstract and keywords. It is then organized as follows: First, Section 8.1. contains an 

introduction, Section 8.2. provides an overview of similar work on ship trajectory 

classification. Section 8.3. describes the methodology, data structures, classical approaches 

deep leaning approaches and learning problem. The experiments and results are presented in 

Section 8.4. Finally, the conclusions are presented in Section 8.5.  
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Chapter 1:  Overview on drones 

1.1. Introduction 

nmanned Aerial Vehicles (UAVs) emerged in the context of World War I (1914-1918), 

where they were used for air defense training by the British Army. These early vehicles 

demonstrated their high military potential, but the lack of sensing, navigation, and 

communications technologies at the time limited their applications. During the interwar 

period (1918-1939), advances in telecommunications made remote control possible. In 

addition, new video technologies enabled the first on-board video systems and infrared 

sensing. All these new technologies were used during World War II (1939-1945), where the 

most widespread concept was the remote control of aircraft behind enemy lines. The new 

control theories allowed the development of the first autopilot systems. In the second half of 

the 20th century, space exploration, the Cold War, and various wars such as Vietnam and Iran-

Iraq motivated the use of these vehicles for espionage, nuclear testing, and precision warfare. 

At the end of the 20th century and especially at the beginning of the 21st century, the 

applications of UAVs ceased to be exclusively military and began to be used in the civilian area. 

Some of the UAV applications are focused on search and rescue, fire control, agriculture, 

geology, archaeology, or recreational use. 

An Unmanned Aerial System (UAS) is a system consisting of the UAV, a ground station, 

communications systems, and the pilot who performs the missions. The inclusion of the pilot 

in the UAS ecosystem allows them to be referred to as Remotely Piloted Aircraft Systems 

(RPAS). Depending on the application, these aircraft can vary widely in size, weight, and shape, 

but as a minimum requirement they must be reusable and capable of flying remotely or 

autonomously; for these two reasons, ballistic missiles, projectiles, and torpedoes cannot be 

considered UAVs [1]. However, loitering munitions [2] or kamikaze drones have the possibility 

of being recovered if they do not find a target, so in a sense they are a hybrid concept between 

a vehicle and a munition. According to the International Civil Aviation Organization (ICAO), 

UAVs weighing less than 25 kg are called "drones". 

UAVs can be classified by wingspan and weight, type of lift, type of wing, and the 

applications for which they are designed (military, civil, commercial, or recreational). Other 

metrics used for classification according to [3] are range, endurance, and altitude. As for 

wingspan and weight in [4], they are UAV, maximum wingspan of 61m and a maximum weight 

of 15.000 kg; Micro Unmanned Aerial Vehicle (MUAV), with a wingspan of 1-2m and a weight 
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of 2-5Kg; Micro Air Vehicle (MAV), 15cm-1m and 50g-2Kg; Nano Air Vehicle (NAV), 2cm-15cm 

and 3g-50g; Pico Air Vehicle (PAV), 0. 25-2.5cm and 0.5-3g; finally, vehicles between 1mm-

0.5cm and a weight of 0.005-0.5g are known as Smart Dust (SDt). 

As for the classification by wing type, there are two main types, fixed-wing, and rotary-

wing drones. The first type of drones have their wings attached to the rest of the aircraft and 

the propulsion system is independent of them. For takeoff and landing, they require 

longitudinal runways where the vehicle can vary its speed and the wings generate lift. They 

are also known as Horizontal Take-Off Landing (HTOL). These vehicles typically have a greater 

range than rotorcraft, but they cannot land vertically, and they cannot perform static flights; 

they must always be in motion for the wings to keep them in the air. This is a limitation to the 

range of operations in complex environments. Rotary wing drones rely on the motion of the 

wings, coupled to the propulsion system, to provide lift. This gives them the ability to take off 

and land vertically, known as Vertical Take-Off and Landing (VTOL). They are characterized by 

having several rotors that counteract the torque produced by each of them. In addition, they 

can be subdivided into a main rotor and a tail rotor, two rotors in a coaxial configuration, or 

multirotor. Multirotor drones usually have three or more rotors. The most common multirotor 

are the quadcopters, hexacopters, and octocopters. Increasing the number of rotors increases 

the payload capacity of the drone, but also increases its weight and power consumption. In 

addition to the number of rotors, there are different geometric configurations in which the 

rotors can be in the same or different planes. These configurations are typically designed to 

increase payload, stability, and reliability in the event of motor failure. Combining the 

advantages of both types of drones is possible through hybrid or convertiplanes models [5]. 

These types of hybrids or convertiplanes generally seek to integrate VTOL with the payload 

capacity and autonomy of fixed-wing drones. 

The continuous emergence of drone applications, motivated by new business 

opportunities in the context of smart cities, is driving the regulation of the vehicles and their 

operation. European countries have opted for a set of regulations, concepts and systems 

called U-Space [6]. This regulation is led by the European program SESAR (Single European Sky 

ATM Research). For example, according to AESA (European Union Aviation Safety Agency) [7], 

the current regulations stipulate that drone flights must always be within the pilot's field of 

vision, must not exceed a height of 120 m, and must not fly over people or vehicles. They also 

establish flight exclusion zones to ensure the safety of infrastructure, other vehicles, and 

people. For example, it is forbidden to fly within 8 km of an airport or airfield. In addition, 

persons and vehicles wishing to operate in European airspace must be registered with the 

EASA.  This legislation exempts NAVs if they are not equipped with cameras. 
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1.2. Flight controller 

In the survey on open-source flight platforms by E. Ebeid et al. [8], the challenges faced 

by civil drone applications based on UAV platforms are mentioned. Among them are the 

difficulties in standardizing flight controller architectures. One of the emerging platforms is 

the Pixhawk series [9]. The integrated software corresponds to PX4 [10]. It is only one part of 

the DroneCode collaborative project [11], which also includes the ground station QGround 

Control [12]. 

Flight controllers, such as PX4, are systems that consist of aircraft control, navigation, and 

guidance. They may also include other systems such as avoidance. Aircraft control is 

responsible for keeping the aircraft stable in the air. It is based on control theory, which 

studies the stability of a dynamic model of the vehicle. The most general description of vehicle 

dynamics is based on state space models. This allows the stability of the system to be 

translated into a desired situation. For this, the flight controller needs a control law for the 

system, a reference input to specify e.g. the desired position, a navigation system to locate 

the aircraft states, and a control output to tell the engines the force to apply. In addition, 

control models typically introduce a disturbance model into their control loop. A disturbance 

model can make the controller more robust to situations such as drag from air currents or 

changes in air density among others. Fig. 1.1 shows a general schematic of a UAS control 

system. 

To accomplish the required mission, the flight controller works continuously during a 

flight. In order for these algorithms to work, an environmental perception system is required. 

Several navigation sensors are used to provide the vehicle's position, velocity, and orientation, 

as well as a dynamic model of the sensors' behavior and estimation. The sensors typically 

operate at different frequencies so that the dynamic model of the navigation system allows 

for estimation when no measurements of the vehicle states are being taken. When new 

measurements are received, the navigation system merges them with the estimates and 

filters out the noise. 

The general concept of control theory is to minimize the error of the system states. To do 

this, the error of the desired reference is calculated relative to the current states. One of the 

classical ways to do this is to study the dynamics of the error. There are a variety of strategies, 

with the study of the eigenvalues (poles of the system) being one of the most widely used 

methods for linear systems. Knowing the error dynamics allows to identify the influence of 

the reference on the stability and therefore to apply gains that move the poles of the system 

to positions of desired stability. An exhaustive development of these control theories can be 

consulted in classic references such as K. Åström and B. Wittenmark [13].  
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Fig. 1.1. Basic UAV control system. 

To facilitate the study of dynamic systems and their differential equations, the Laplace 

transform [14] is generally used to transform a real variable function such as time "𝑡" into a 

complex variable "s". This transform allows the 𝑛-derivative of 𝑡, 
𝑑𝑛𝑦

𝑑𝑡𝑛
, to be represented by 𝑠𝑛 

and thus helps to study the dynamics of linear systems in a phase space. 

To define stability is essential for control systems, therefore the most generalized 

concepts of stability are those associated with the Routh stability [15] and, in a more 

generalized form, the Lyapunov stability theorem [15]. The Routh stability criteria study the 

eigenvalues of the dynamical system belonging to a complex space in which the abscissa axis 

defines the real part and the ordinates the complex part. According to the Routh theorem, a 

system is stable if all its eigenvalues belong to the left half-plane. In addition, the influence on 

the behavior of the system will be different according to the value of the eigenvalues of its 

components. As for the Lyapunov stability theorem, the general idea is to prove that the 

solutions of the difference equation for initial conditions 𝑥0 remain close to 𝑥0 for all 

subsequent times. This requires finding a positive definite function known as the Lyapunov 

function. Although control and stability theory is out the scope of this thesis, it is worth 

mentioning that the Lyapunov stability theorem includes Routh stability for the case of linear 

systems. 

1.3. Guidance 

The guidance system is responsible for providing the control system with the reference 

signal to execute a given trajectory to complete a mission. In the context of drone flight 

controllers, guidance can consist not only of reaching a position, but also of finding a threshold 

distance to that position, a speed equal to that of the target, or even intercepting a target. 

There are three main phases to any drone mission: take-off, flight, and landing. Takeoff and 

landing are essential maneuvers and therefore have their own guidance systems, generally 
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minimalist unless precision landing systems are available. On the other hand, during the flight 

phase, the guidance system is essential as it is responsible for achieving or executing the 

maneuvers previously planned at the ground station. Some of the maneuvers in which the 

guidance system is involved include reaching a specific area, executing a specific trajectory 

such as a search pattern, following a target, and others. In the PX4 flight controller, the 

embedded guidance system is known as 𝐿1 and is governed by a nonlinear control law based 

on virtual targets introduced by Park et al. [16]. 

1.4. Simulation  

UAS are powerful systems that face difficult challenges when operating in highly complex 

environments. For example, operating in an urban environment requires ensuring the 

integrity of the aircraft, other vehicles, infrastructure, and the safety of people. To develop 

new applications such as logistics, surveillance, transportation, and others, higher levels of 

autonomy are needed for long-range flights, with requirements for endurance, reliability, and 

fault tolerance [8]. To ensure a safe transition to the new technologies, simulation systems 

are needed to contextualize the missions and validate the applications. Software In The Loop 

(SITL) and Hardware In The Loop (HITL) simulations are a safe and reliable way forward. The 

basic idea of SITL and HITL is to replace the information provided by the real environment, the 

real vehicle, and the real sensors with simulations to test algorithms or develop new 

applications [17], [18]. Powerful simulation engines like JSBSim [19], JMAVsim[20], FlightGear 

[21], Matlab UAV Toolbox [22], Gazebo [23] or AirSim [24] are used for this purpose. 

If the physics of the environment, vehicle, and sensors are already done on the simulator, 

the flight controller algorithms can be included in the simulation loop. When the algorithms 

are run on the simulation computer, it is called SITL. When the algorithms of the flight 

controller or system under test are embedded in external physical devices, such as Pixhawk, 

the simulation is in HITL.  

Since the environments where the simulation and the algorithms are executed are 

different, communication protocols such as UDP (User Diagram Protocol) and TCP 

(Transmission Control Protocol) or IP (Internet Protocol) are required. 

The main idea of simulation in SITL and HITL is to provide a safe transition of new 

applications to the final physical device. Therefore, the ground station is often included in the 

simulation ecosystem.  

The efforts of the scientific community to standardize communication with UAS in small 

drones have led to the development of the MAVLink protocol (Micro Air Vehicle 

Communication protocol) [25]. This allows the development of multiple platforms under a 

common communication framework. To help develop new applications using these protocols, 
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there are Application Programming Interfaces (API), such as the MAVSDK [26], that make this 

task easier. 
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Chapter 2: UAS INS/GNSS Navigation 

2.1. Introduction 

aul D. Groves [1] defines navigation “as any of several methods of determining or planning 

a ship’s or aircraft’s positions and course by geometry, astronomy, radio signals, etc”. 

Meanwhile,  the Oxford Learner’s Dictionary [2], define tracking as “to find 

somebody/something by following the marks, signs, information, etc., that they have left 

behind them” or “to follow the movements of somebody/something, especially by using special 

electronic equipment”.  In some ways, navigation can be considered as a self-tracking system. 

Regarding navigation systems, P. Groves [1] refer them as “a device that determines position 

and velocity automatically”. The methods to determine these kinematic variables or states of 

some body/something are defined as navigation techniques [1].  

The most common UAS navigation technique is based on sensor information fusion [1], 

[3], which rely on the concept of improving the estimation of a variable/state using 

information from different sources instead of a single one. To use this technique, it is 

necessary to address previous challenges:  

First, the sensors used to make the observations provide data which can be expressed in 

different reference systems (frames), so it is required to have a common reference frame 

where all the information is coherent. An example can be found in the information provided 

by a Global Navigation Satellite System (GNSS) and a distance sensor embedded on the same 

vehicle.  Both systems provide vehicle position measurements, but in the first case, GNSS, 

refers to a global reference frame (the Earth global position) and the second to a local one.  

The second challenge is the representation of the orientation (or attitude) of the vehicle 

with respect to the common reference system. For this, it is necessary to define the attitude, 

how to express it and its temporal evolution. In physics this problem is studied in classical 

mechanics under the name of estimating the pose of a "rigid body" [4], [5]. The third challenge 

for information fusion, focuses on modelling the errors inherent in the measurements of every 

sensor, since the measurement processes present a stochastic behavior (noise) and 

systematic deviations (sensor bias) that requires statistical treatment and modeling.  

The technique to join the information which is detailed in this chapter is based on the 

estimation theory of stochastic processes, specifically on the Kalman filters (KF) and its variant 

for nonlinear systems, the extended Kalman filter (EKF). These techniques are extensions of 
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deterministic methods (estimation theory) based on SSM that model the dynamic behavior of 

a system (in our case the motion of a UAS) and minimize the state error using a feedback loop. 

In the case of KF, the covariance of the system is minimized, so it is an optimal method as 

explained in J.P. Llerena et al. [6]. This information fusion technique aims to obtain a vector 

with the vehicle states, which can be at a higher frequency than the sensor updates. 

As mentioned, a problem that needs to be solved by navigation systems is the estimation 

of sensor bias. The measurements of local sensors on-board such as angular velocity or 

acceleration in the body frame present biases that are projected onto the global reference 

frame by nonlinear transformations. Thus, the state vector initially composed of kinematic 

states such as position and velocity, needs to be extended to estimate the bias of the sensors 

to correct them from the measurements. 

Finally, these techniques of sensor fusion have a multitude of adjustable parameters that 

modify the filter operation and impacts the navigation result. Therefore, it is essential to fine 

tuning the KF parameters (basically the models assumed for the errors appearing both in the 

measurements and predictions) to achieve the best navigation for the used sensors. This 

adjustment is beyond the scope of this chapter but is addressed in recent submitted papers. 

2.2. Reference Frame Systems 

The observations (measurements) of states such as position or velocity are always made 

from the sensor's reference frame.  However, in the navigation problem it is necessary to 

know the states in the vehicle's reference frame, which is usually called body, denoted with 

the letter {𝑏}. In order to be able to transform state measurements between different 

reference frames, mathematical tools are required to relate measurements between 

reference frames. 

It is possible to classify two types of reference systems: local and global. Global reference 

systems are those that allow an object to be unequivocally identified in the whole 

representation of the planet, in our case the Earth.  

Two of the most popular global reference systems are the Earth-Centered Earth-Fixed 

frame (ECEF) {𝑒} and the Geodetic Coordinate system {𝑔}. First one, ECEF, is formed by a set 

of three orthogonal axes located at the center of the Earth (geocentric coordinates) where the 

ze axis is aligned with the geographic north and the 𝑥𝑒,𝑦𝑒 axes define the plane of the equator. 

The second global system is supported by the approximation of the earth's surface to a 

geodetic geometry where the positions are unequivocally characterized by the angles with 

respect to the ECEF axes {𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒}, expressed as longitude, “ 𝜆”, latitude “𝜑” and height “ℎ” 

above the geodetic surface.  
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Fig. 2.1. Relation between, local and global reference frame and relation between geodetic latitude, height and ECEF 

coordinates. 

Local reference frames are those that express measurements in specific regions. 

Generally, Cartesian frames are used to define them on specific regions of the Earth's surface, 

using tangent planes defined on the geodetic surface called Local Tangent Plane coordinate 

system (LTP) {𝑢}. According to the orientation of the axes, the most common reference frames 

systems are East-North-Down (NED) {𝑛} and East-North-Up (ENU) {𝑒𝑛}. As their names 

indicate, the Cartesian axes correspond to each of the geographical directions. The tangent 

point on the geoid is called the reference point 𝑝̅𝑟𝑒𝑓 = (𝜆𝑟𝑒𝑓 , 𝜑𝑟𝑒𝑓, ℎ𝑟𝑒𝑓)
𝑇

and is expressed in 

global coordinates. In navigation systems reference point, it is usually taken as the starting 

point of missions. Fig. 2.1 is included to help the reader. 

Finally, sensors also have their own reference frames called Sensor reference frame {s}. 

There are different type of sensors so specific nomenclature is needed for each one, such as 

{giro, acc, baro, … }. The sensors are usually referred to the vehicle main axes, also named as 

body frame. 

Throughout this section we summarize the mathematical expressions that allow 

switching between local and global reference systems to generate a common reference frame. 

For navigation problems the common reference frame is usually considered the vehicle's 

gravity center {b} which corresponds to a local reference frame. 

2.2.1. Global frames (WGS84 and ECEF) and local frame at tangent point ENU and NED 

The geodetic frame {g} expresses the position with respect to the reference ellipsoid 

WGS84 (World Geodetic System 84) [3], containing the coordinates: geodetic longitude, 

geodetic latitude, and geodetic height (λ, φ, h). 
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WGS84 model is a simple ellipsoidal model, whose parameters are its semi-axes 𝑟𝑒 

(Equatorial radium), 𝑟𝑝 (Polar radium) and eccentricity, defined as 𝜀 = √1 −
𝑟𝑝2

𝑟𝑒
2 , and 𝜀′ second 

eccentricity of the ellipsoid. Alternatively, the flattening factor defined as 𝑓 =
𝑟𝑒−𝑟𝑝

𝑟𝑒
. The 

reference constants for these values are 𝑟𝑒 = 6378137 meters, 𝑓 = 1/298.257223563. 

The ECEF frame {𝑒} has the center in the ellipsoid, Z axis parallel to polar axis and X, Y 

axes included in the equatorial plane, pointing to meridians respectively at longitude of 0 and 

𝜋/2 radians. ECEF is used as intermediate frame from WGS-84 to local Cartesian frame at 

Earth surface.  

It is important to differentiate the geocentric coordinates, referred to the ECEF system, 

from the geodetic coordinates, referred to as the geodetic model (WGS84). This difference is 

provided by the geodetic model (datum) and is represented in the Fig. 2.2, where 𝜑′ refers to 

geocentric latitude and 𝜑 refers to geodetic latitude.  

 

Fig. 2.2. Relationships among geocentric and geodesic coordinates. 

The geodetic latitude and geodetic height are defined with respect to LTP, not with 

respect to the center of ellipsoid, requiring the appropriate conversions from geocentric to 

geodetic magnitudes. 

2.2.2. Geodetic to ECEF transformation 

Consider a position 𝑝𝑔= (𝜑, 𝜆, ℎ)𝑇 in WGS84 geodetic coordinates {𝑔} that we want to 

transform to the reference frame {𝑒𝑛}.  Considering the parameters of the WGS84 model, the 

transformation is defined as follows. In the first place, we compute the Earth curvature 

parameter for transformation: 
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𝑟𝜆 =
𝑟𝑒

√1 − 𝜀2 𝑠𝑖𝑛2 𝜑 
 (2.1) 

and the local vertical vector, 𝒖3
𝑒𝑛, expressed in ECEF coordinates: 

𝒖3
𝑒𝑛  = [

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆
𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆
𝑠𝑖𝑛 𝜑

] (2.2) 

So, the transformed ECEF coordinates are given by: 

𝑝̅𝑒 = [
𝑥𝑒

𝑦𝑒

𝑧𝑒
] = [

𝑟𝜆 cos 𝜆
𝑟𝜆 sin 𝜆

𝑟𝜆(1 − 𝜀
2) 𝑠𝑖𝑛 𝜑

] + h𝒖3
𝑛𝑒 = [

(𝑟𝜆 + ℎ ) 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆
(𝑟𝜆 + ℎ) 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆

((1 − 𝜀2)𝑟𝜆 + ℎ) 𝑠𝑖𝑛𝜑

] (2.3) 

2.2.3. ECEF to geodetic transformation 

Considering a position 𝑝̅𝑒= (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒)𝑇 expressed in the ECEF reference frame {𝑒}, it is 

desired to know this position 𝑝̅𝑔= (𝜑, 𝜆, ℎ)𝑇 expressed in the geodetic global reference frame 

{𝑔}. 

Unfortunately, the conversion from ECEF to geodetic coordinates is not analytic, because 

the geodetic height is defined over the LTP, but at the same time the tangent point (geodetic 

latitude and longitude) depends on the local vertical axis. Here we use an approximation in 

order to avoid an expensive iterative process to compute this transformation. 

First, geodetic latitude is approximated as a correction over geocentric latitude, 𝜑′ which 

has a direct analytical expression: 

𝑅 = √(𝑥𝑒)2 + (𝑦𝑒)2 + (𝑧𝑒)2 

𝐷 = √(𝑥𝑒)2 + (𝑦𝑒)2 

𝜑′ = 𝑎𝑡𝑎𝑛
𝑧𝑒

𝐷
 

(2.4) 

Then, the geodetic latitude, 𝜑, is approximated with the following sequence of terms: 

  



 

-26- 

 

 

𝑓 = 1 − 𝜀2 

𝑥𝑎 =
(1 − 𝑓)𝑟𝑒

√(𝑡𝑎𝑛2(𝜑) + (1 − 𝑓)2)
 

𝑦𝑎 = (1 − 𝑓)(𝑟𝑒
2 − 𝑥𝑎

2)
1
2 

𝜇𝑎 = 𝑎𝑡𝑎𝑛
(𝑟𝑒
2 − 𝑥𝑎

2)
1
2

(1 − 𝑓) 𝑥𝑎
 

𝑟𝑎 =
𝑥𝑎

𝑐𝑜𝑠(𝜑)
 

𝑙 = 𝑅 − 𝑟𝑎 
𝛿𝜆 = 𝜇𝑎 − 𝜑′ 
ℎ = 𝑙 ∙ 𝑐𝑜𝑠( 𝛿𝜆) 

𝜌𝑎 =
(1 − 𝑓)𝑟𝑒

√1 − (2𝑓 − 𝑓2) 𝑠𝑖𝑛2(𝜇𝑎)
 

𝜑 = 𝜇𝑎 − 𝑎𝑡𝑎𝑛
𝑙 ∙ sin(𝛿𝜆)

𝜌𝑎 + ℎ
 

𝑟𝜆(𝜑) =
𝑟𝑒

√1 − 𝜀2 𝑠𝑖𝑛2𝜑 
 

(2.5) 

And, finally, the other coordinates, height, ℎ and longitude, 𝜆, are computed as usual, 

using the local ellipsoid curvature 𝑟𝜆: 

ℎ =
𝐷

𝑐𝑜𝑠( 𝑟𝜆)
− 𝑟𝜆 

𝜆 = 𝑎𝑡𝑎𝑛
𝑦𝑒

𝑥𝑒
 

(2.6) 

2.2.4. ECEF to local Cartesian (ENU and NED) transformation 

In navigation system, its typical consider by local Cartesian reference system the ENU 

{𝑒𝑛} and the NED {𝑛} reference frame system. Each of these reference systems has a different 

global orientation. In this section we consider the conversion of a position expressed in the 

reference frame ECEF {𝑒} coordinates 𝑝̅𝑒= (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒)𝑇 to local Cartesian coordinates 𝑝̅𝑒𝑛/𝑛 =

(𝑥, 𝑦, 𝑧)𝑇  centered at reference origin 𝑝̅𝑟𝑒𝑓
𝑔
= (𝜑𝑟𝑒𝑓, 𝜆𝑟𝑒𝑓, ℎ𝑟𝑒𝑓)

𝑇
. It uses the unitary the 

orthogonal vectors, 𝒖𝑖
𝑒𝑛, that make up the orthonormal base ℬ𝑒

𝑒𝑛 = {𝒖1
𝑒𝑛, 𝒖2

𝑒𝑛, 𝒖3
𝑒𝑛}𝑒  of local 

ENU frame, expressed in ECEF coordinates: 
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𝒖1
𝑒𝑛 = [

-sin(𝜆𝑟𝑒𝑓)

𝑐𝑜𝑠 𝜆𝑟𝑒𝑓
0

]; 𝒖2
𝑒𝑛 = [

− 𝑠𝑖𝑛 𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓
−𝑠𝑖𝑛 𝜑𝑟𝑒𝑓 𝑠𝑖𝑛 𝜆𝑟𝑒𝑓

𝑐𝑜𝑠 𝜑𝑟𝑒𝑓

]; 𝒖3
𝑒𝑛  = [

𝑐𝑜𝑠 𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓
𝑐𝑜𝑠 𝜑𝑟𝑒𝑓 𝑠𝑖𝑛 𝜆𝑟𝑒𝑓

𝑠𝑖𝑛 𝜑𝑟𝑒𝑓

] (2.7) 

The relationship between the local ENU and NED systems is bidirectional and can be 

defined by the following transformation 𝑅𝑒𝑛
𝑛 = 𝑅𝑛

𝑒𝑛 = [
0 1 0
1 0 0
0 0 −1

].  

The orthogonal basis ℬ𝑒
𝑛 ∈ ℝ3 of the local cartesian NED reference frame expressed in 

ECEF {𝑒} is defined as ℬ𝑒
𝑛 = {𝒖1

𝑛, 𝒖2
𝑛, 𝒖3

𝑛}𝑒. Specifically, each one of the vectors that make up 

the base are {𝒖1
𝑛 = 𝒖2

𝑒𝑛;  𝒖2
𝑛 = 𝒖1

𝑒𝑛;  𝒖3
𝑛 = −𝒖3

𝑒𝑛}. 

Then, the position vector with respect to local origin is computed,𝑟̅𝑒, as the vector 

difference between both positions in ECEF frame: 

𝑝̅𝑟𝑒𝑓
𝑒 = [

𝑟𝜆(𝜑𝑟𝑒𝑓) cos 𝜆𝑟𝑒𝑓

𝑟𝜆(𝜑𝑟𝑒𝑓) sin 𝜆𝑟𝑒𝑓

𝑟𝜆(𝜑𝑟𝑒𝑓)(1 − 𝜀
2) 𝑠𝑖𝑛 𝜑𝑟𝑒𝑓

] + ℎ𝑟𝑒𝑓 ⋅ 𝒖3
𝑒𝑛/𝑛

 (2.8) 

𝑟̅𝑒 = 𝑝̅𝑒 − 𝑝̅𝑟𝑒𝑓
𝑒  (2.9) 

Finally, the local coordinates can be obtained with the projections of the position vector 

on each local unitary vector, even though all magnitudes are expressed in ECEF coordinates: 

𝑝̅𝑒𝑛 = [
𝑥
𝑦
𝑧
] = [

𝒓𝑒 ⋅ 𝒖1
𝑛𝑒/𝑛

𝒓𝑒 ⋅ 𝒖2
𝑛𝑒/𝑛

𝒓𝑒 ⋅ 𝒖3
𝑛𝑒/𝑛

] = 𝑅𝑒
𝑒𝑛/𝑛

⋅ 𝑟̅𝑒 (2.10) 

where 𝑅𝑒
𝑒𝑛/𝑛

 are the change-of-basis matrices (𝑅𝑒
𝑒𝑛 and 𝑅𝑒

𝑛) constructed with the 

eigenvectors of the means of the ℬ𝑒
𝑒𝑛/𝑒

orthogonal base of ENU {𝑒𝑛} or NED {𝑛} reference 

frame, expressed in ECEF {𝑒} reference frame. These 𝑅𝑒
𝑒𝑛 and 𝑅𝑒

𝑛 matrices can be considered 

as an ℝ3 → ℝ3 transformation. 

2.2.5. Local Cartesian (ENU or NED) to ECEF transformation 

Given a position in local coordinates 𝑝̅𝑒𝑛/𝑛 = (𝑥, 𝑦, 𝑧)𝑇, in ENU {𝑒𝑛} or NED {𝑛} frame, 

referred to the plane reference origin 𝑝̅𝑟𝑒𝑓
𝑔
= (𝜑𝑟𝑒𝑓, 𝜆𝑟𝑒𝑓, ℎ𝑟𝑒𝑓)

𝑇
 it is desired to know the 

coordinates of the position 𝑝̅𝑒𝑛/𝑛 in global coordinates ECEF, 𝑝̅𝑒. If the reference origin plane 

is not expressed in global coordinates, it is necessary to determine the latitude, longitude, and 

height coordinates, (𝜑, 𝜆, ℎ), by applying the transformations expressed in (section “ECEF to 
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Geodetic”). The first step, is use the unitary orthogonal vectors, 𝒖𝑖
𝑒𝑛, (2.7) that make up the 

base ℬ𝑒
𝑒𝑛{𝒖1

𝑒𝑛, 𝒖2
𝑒𝑛, 𝒖3

𝑒𝑛}𝑒 of local ENU frame, expressed in ECEF coordinates. 

Then, the ellipsoid curvature is computed, at the geodetic latitude of local origin 

𝑟𝜆(𝜑𝑟𝑒𝑓), as show in the end of collection (2.5). 

So, the local origin is expressed in ECEF coordinates as show in (2.8). 

Finally, the ECEF position, 𝑝̅𝑒, is directly obtained with vectorial sum of local coordinates 

to origin, once everything is expressed in the global coordinates: 

𝑝̅𝑒 = 𝑝̅𝑟𝑒𝑓
𝑒 + 𝑥𝒖1

𝑒𝑛 + 𝑦𝒖2
𝑒𝑛 + 𝑧𝒖3

𝑒𝑛 

𝑝̅𝑒 = 𝑅𝑒𝑛/𝑛
𝑒 ⋅ 𝑝̅𝑒𝑛/𝑛 + 𝑝̅𝑟𝑒𝑓

𝑒  
(2.11) 

𝑅𝑒𝑛/𝑛
𝑒 = [𝒖1

𝑒𝑛/𝑛
, 𝒖2
𝑒𝑛/𝑛

, 𝒖3
𝑒𝑛/𝑛

] 

𝑅𝑒𝑛
𝑒 = (

−𝑠𝑖𝑛 𝜆𝑟𝑒𝑓 −𝑠𝑖𝑛 𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓 𝑐𝑜𝑠 𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓
𝑐𝑜𝑠 𝜆𝑟𝑒𝑓 −𝑠𝑖𝑛 𝜑𝑟𝑒𝑓 𝑠𝑖𝑛 𝜆𝑟𝑒𝑓 𝑐𝑜𝑠 𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓
0 𝑐𝑜𝑠 𝜑𝑟𝑒𝑓 𝑠𝑖𝑛 𝜑𝑟𝑒𝑓

) 

𝑅𝑛
𝑒 = (

−𝑠𝑖𝑛𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓 −𝑠𝑖𝑛 𝜆𝑟𝑒𝑓 −𝑐𝑜𝑠𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓
−𝑠𝑖𝑛 𝜑𝑟𝑒𝑓 𝑠𝑖𝑛 𝜆𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓 −𝑐𝑜𝑠𝜑𝑟𝑒𝑓 𝑐𝑜𝑠 𝜆𝑟𝑒𝑓

𝑐𝑜𝑠 𝜑𝑟𝑒𝑓 0 −𝑠𝑖𝑛 𝜑𝑟𝑒𝑓

) 

(2.12) 

where 𝑅𝑒𝑛/𝑛
𝑒 ∈ ℝ3×3, it is the change-of-basis matrix from {𝑒𝑛} or {𝑛} to {𝑒} reference 

frame.  

2.3. Attitude mathematical concepts 

To describe the situation of a rigid body in 3D, classically six degrees of freedom are 

required: three describing the position of the center of masses and another three rotational 

degrees to describe the attitude (orientation of its axes). 

Being able to express the attitude of a body in different reference systems is essential for 

navigation systems to find a common reference frame, since it is possible to have 

measurements that are made from one observer but need to be expressed in another 

reference system. 

The mathematical basis on which the concept of attitude in navigation systems is based 

and developed are both Lie groups and Lie algebras, specifically the group of rotations SO(3) 

[4], [5]. This algebraic structure is framed in differential topology and can be understood as a 

group of transformations on a vehicle that is approximated as a rigid body (commonly 

referenced as differentiable manifold in navigation).  
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Throughout this section different types of attitude representation and its associated 

kinematics are described, emphasizing the representation with quaternions since it is used 

later in the sensor fusion Section 2.4. 

2.3.1. Attitude representation  

The attitude is the orientation of an object described mathematically with respect to a 

reference system. This mathematical representation refers to a set of parameters and 

transformations that associate the orientation of one reference system with another. Naming 

the reference systems A and B as 𝐹𝐴 and 𝐹𝐵 respectively, the attitude 𝛷 expresses the 

orientation of one system relative to another: 

𝛷: 𝐹𝐴 ↔ 𝐹𝐵 (2.13) 

The attitude of B relative to A can be represented as 𝛷1: 𝐹
𝐴 → 𝐹𝐵  while the reverse 

𝛷2: 𝐹
𝐵 → 𝐹𝐴, so 𝛷2 = 𝛷1

−1. 

There are different representations of the attitude, however there are 3 main 

representations that are the most extended in the literature navigation applications: 

• Direction Cosine Matrix (DCM): Represents a transformation between two reference 

frames, so its algebraic sense is the change-of-basis matrix between two reference 

frames. For ℝ3 spaces the dimension of the matrix is 3 × 3. 

• Euler Angles: Describes the orientation of one reference system relative to another 

using a set of three rotations parameterized by three different angles. The typical 

notation used to define these angles in navigation systems is {𝜙, 𝜃, 𝜓} =

 {𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤} [6]. 

• Quaternion: Mathematically are vectors with four components belonging to the 

Hamilton space, ℍ, (extension of the real space ℝ3 like the complex numbers), which 

allows a compact representation of the object's attitude.  

Each of these representations can be deduced under the concepts of Lie groups [4], [5] 

and their algebras. More information can be found in specific texts such as D. Sattinger [4] or 

F. Lachello [5]. 

2.3.1.1. Direction cosine matrix (DCM) 

Consider a vehicle with its own reference frame {𝑏} that it is desired to align with north 

to work in the NED {𝑛} local reference frame. Also, consider that the sensor is placed at the 

gravity center of the vehicle where an angle with respect to north 𝜓 is measured. 
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Fig. 2.3. Rotation of the z-axis. Geometric relation between the reference frame {𝑏} and {𝑛}. 

Let 𝑟̅𝑏 = (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏)𝑇 and 𝑟̅𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)𝑇 the representations of the vector 𝑟̅ 

expressed in {𝑏} or {𝑛}, known 𝜓, the relationship between both reference frames can be 

geometrically deduced from Fig. 3.3 as: 

𝑟̅𝑛 = [
𝑥𝑛

𝑦𝑛

𝑧𝑛
] = [

𝑥𝑏 𝑐𝑜𝑠 𝜓 + 𝑦𝑏 𝑠𝑖𝑛𝜓

−𝑥𝑏 𝑠𝑖𝑛 𝜓 + 𝑦𝑏 𝑐𝑜𝑠 𝜓

𝑧𝑏
] (2.14) 

Matrix can be expressed as: 

𝑟̅𝑛 = [
𝑥𝑛

𝑦𝑛

𝑧𝑛
] = [

𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

]

⏞              

𝑅𝑏
𝑛

[
𝑥𝑏

𝑦𝑏

𝑧𝑏
] 

(2.15) 

where 𝑅𝑏
𝑛 is a rotation matrix and is called "Direct Cosine Matrix" (DCM). This matrix can 

be interpreted algebraically as a change-of-basis matrix, where the columns are the unit 

vectors of the transformation, i.e., the projection of the axes of reference frame {𝑛} on {𝑏}. 

The DCM matrix is composed by sines and cosines that relates the orientations between two 

reference systems. Specifically, (2.15) expresses a rotation of the z-axis and also can be 

expressed as 𝑅(𝑧, 𝜓). Taking three rotations to define the complete orientation of the body 

in ℝ3 space, it can be used using the same geometric approximation as above together with 

the right-hand rule to define the rotation with the remaining x and y axes.  

𝑅𝑏
𝑛(𝑥, 𝜙) = [

1 0 0
0 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙
0 −𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

] ; 𝑅𝑏
𝑛(𝑦, 𝜃) = [

𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃
0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

] (2.16) 

The properties of these matrices can be found in detail in R.M. Rogers [7]. The most 

important are: 
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• The columns of the DCM correspond to a set of vectors that form an orthonormal 

basis. 

• The vector transformed about the rotation axis is invariant (Fig. 2.3 z-axis). 

• The elements of which DCM is composed are sine and cosine functions. 

• The cosines are placed on the principal diagonals of the DCM matrix. 

The important mathematical properties of DCM are: 

𝑑𝑒𝑡(𝑅) = 1; 𝑅𝑇 = 𝑅−1; 𝑅𝑇𝑅 = 𝐼 (2.17) 

2.3.1.2. Euler angles 

The Euler angles {𝜙, 𝜃, 𝜓}, Fig. 2.4, is a parameterization form of the 𝑅 rotations 

previously used in the DCM representation. Each of the angles denote the rotation about each 

{𝑥, 𝑦, 𝑧} axes and generally expressed in radians. In navigation these angles usually take the 

names "roll”, “pitch” and “yaw". 

 

Fig. 2.4. Euler angles in ENU reference frame. 

SO(3) is the group of transformations in which 𝑅 belongs and is non-abelian [4], [5]. This 

means that it has no commutative property so the order of multiplication cannot be varied 

and corresponds to: 

𝑅𝑏
𝑛 = 𝑅(𝑥, 𝜙)𝑅(𝑦, 𝜃)𝑅(𝑧, 𝜓) (2.18) 

In the grouped form the set of rotations is as follow: 

𝑅𝑏
𝑛

= [

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 −𝑠𝑖𝑛 𝜃
−𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜓 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠 𝜓 + 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃

] 
(2.19) 

In navigation, Tai-Bryan angles [6] are generally used under the name of Euler angles. The 

difference is that, from the vehicle reference system, a zero-inclination angle with respect to 
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the horizon is assigned in place of 𝜋/2. The equation is carried out in the following order of 

operation:  

𝑅𝑏
𝑛 = 𝑅(𝑧, 𝜓)𝑅(𝑦, 𝜃)𝑅(𝑥, 𝜙) (2.20) 

Regardless of the convention used, the resulting matrix has the following properties: 

• Rotation matrices are orthogonal. 

• The determinant of the R matrix is unitary. 

• Rotation matrices are not commutative (non-abelian group) 𝑅𝑏
𝑐𝑅𝑎
𝑏  ≠ 𝑅𝑎

𝑏𝑅𝑏
𝑐  

To obtain the Euler angles starting from DCM, the transformation is obtained directly 

from the components of the matrix R as: 

𝜃 = −𝑠𝑖𝑛−1𝑅13 , 𝜙 = 𝑡𝑎𝑛
−1
𝑅23
𝑅33
, 𝜓= 𝑡𝑎𝑛−1

𝑅12
𝑅11

 (2.21) 

where the sub-indices 𝑖, 𝑗 of 𝑅𝑖,𝑗 means the rows and columns of the rotation matrix 𝑅. 

However, if the angle of the intermediate rotation 𝑅(𝑦, 𝜃 = ±𝜋\2) is fixed in (2.18) and 

(2.19): 

𝑅(𝜃 = 𝜋\2)  = [

0 0 −1
𝑠𝑖𝑛(𝜙 −𝜓) 𝑐𝑜𝑠(𝜙 −𝜓) 0
𝑐𝑜𝑠(𝜙 −𝜓) −𝑠𝑖𝑛(𝜙 −𝜓) 0

] (2.22) 

an indetermination called “Gimbal Lock” or “kinematic singularity” appears, in which a 

degree of freedom is lost. The value of 𝜙 − 𝜓 can be known, but not the values of each of 

them independently, that's why it is a singularity and that's why a degree of freedom is lost. 

2.3.1.3. Quaternions 

Let the rotation 𝒗 of a rigid body with an angle 𝜃, such that 𝜃 = ‖𝑣‖ ∈ ℝ expressed in 

radians around a unit axis 𝒖 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]
𝑇

, can be expressed as 𝒗 = 𝒖 ∙ 𝜙, where 𝜙 = 𝜃/2  

denotes the rotation relative to the unit quaternion [3], [8]. In exponential map format the 

series can be expanded according to Euler's formula:  

𝑒𝒗 = 𝑒𝒖𝜙 =∑
1

𝑘!
(𝑢𝜙)𝑘

∞

𝑘=0

= (1 −
𝜙

2!
+
𝜙4

4!
+⋯)

⏟            
𝑐𝑜𝑠𝜙

+ (𝒖𝜙 −
𝒖𝜙3

3!
+
𝒖𝜙5

5!
+ ⋯)

⏟                
𝒖𝑠𝑖𝑛 𝜙

 (2.23) 

Thus, the representation of the rotation 𝒗 can be expressed as a 4-vector 𝒒 ∈ ℍ, 

Hamilton space [9], which is called a quaternion. From the previous expression it can be 

deduced that the 4-vector quaternion, can be expressed as: 
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𝒒𝜃 = [𝑐𝑜𝑠 (
𝜃

2
) , 𝑠𝑖𝑛 (

𝜃

2
)𝒖 ]

𝑇

 (2.24) 

If the expression (2.24) is compared with the Euler’s formula, 𝑒𝑖𝜃 = 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃, it is 

seen the quaternion 𝒒 is a vector extension of Euler’s formula. Thus, quaternions are another 

attitude representation and, as will be seen throughout this section, avoids the problem of 

the "gimbal lock" comment in Euler angle subsection. 

A quaternion 𝒒 = [𝑞0, 𝑞1, 𝑞2, 𝑞3]
𝑇 is composed by four components 𝒒𝑖 , 𝑖 = {0,1,2,3}. 

These four components typically divide in two sides 𝒒 = [𝑞0, 𝑞1:3]
𝑇. First component 𝒒0 ∈ ℝ 

means the scalar side of the quaternion and the other three components 𝒒1:3 ∈ ℝ
3 with the 

vector side.  

Unitary quaternion is a quaternion whose norm ‖𝒒‖ = 1:  

‖𝒒‖ = √𝒒 ∙ 𝒒∗ = √𝑞0
2 + 𝑞1:3 ∙ 𝑞1:3 = √𝑞0

2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2 = 1 ⇔ 

⟺ 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 
(2.25) 

Topologically, the set of unit vectors in ℝ4 denote a sphere 𝕊3, so a unit quaternion 

defines a rotation, 𝑅 = 𝑅𝑜𝑡(𝜃, 𝒖), of the group 𝑆𝑂(3) [8], where 𝒖 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]
𝑇

 is the unit 

vector parallel to the rotation axis: 

𝑅 = 𝑅𝑜𝑡(2 𝑐𝑜𝑠−1 𝑞0 ,
𝑞1:3 
‖𝑞1:3 ‖

) (2.26) 

The unit vector side 
𝑞1:3

‖𝑞1:3‖
= 𝒖 means a vector parallel to the axis of rotation, while the 

scalar side defines the rotation 𝜃 relative to the rotation axis. 

As show in [10] the representation of the DCM matrix from the quaternion 𝒒 is: 

𝑅(𝒒) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞1𝑞3 − 2𝑞0𝑞2
2𝑞1𝑞2 − 2𝑞0𝑞3 𝑞0

2 − 𝑞1
2 + 𝑞2

2 − 𝑞3
2 2𝑞2𝑞3 + 2𝑞0𝑞1

2𝑞1𝑞3 + 2𝑞0𝑞2 2𝑞2𝑞3 − 2𝑞0𝑞1 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (2.27) 

If the quaternion is unitary, the previous expression can be simplified as: 

−𝑞2
2 − 𝑞3

2 = 𝑞0
2 + 𝑞1

2 − 1 
−𝑞1

2 − 𝑞3
2 = 𝑞0

2 + 𝑞2
2 − 1 

−𝑞1
2 − 𝑞2

2 = 𝑞0
2 + 𝑞3

2 − 1 
(2.28) 

In this way, the trace of the rotation matrix 𝑅(𝒒) is reduced: 
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𝑅(𝒒) = 2 [

𝑞0
2 + 𝑞1

2 − 1/2 𝑞1𝑞2 + 𝑞0𝑞3 𝑞1𝑞3 − 𝑞0𝑞2
𝑞1𝑞2 − 𝑞0𝑞3 𝑞0

2 + 𝑞2
2 − 1/2 𝑞2𝑞3 + 𝑞0𝑞1

𝑞1𝑞3 + 𝑞0𝑞2 𝑞2𝑞3 − 𝑞0𝑞1 𝑞0
2 + 𝑞3

2 − 1/2 

] (2.29) 

The inverse transformation, DCM to 𝒒, can be deduce from previous matrix (2.29). Firstly, 

from the trace of the matrix (2.29) the scalar part of the quaternion 𝑞0 can be solved. 

𝑇𝑟𝑎𝑐𝑒(𝑅) =∑𝑅𝑖𝑖

3

𝑖=1

= 𝑅11 + 𝑅22 + 𝑅33 = 4𝑞0
2 − 1 

|𝑞0| =
1

2
√𝑇𝑟𝑎𝑐𝑒(𝑅) + 1 

(2.30) 

From the term 𝑅11 can be solved 𝑞1:  

𝑅11 = 𝑞0
2 + 𝑞1

2 −
1

2
= 2(

1

2
√𝑇𝑟𝑎𝑐𝑒(𝑅) + 1 + 𝑞1

2 −
1

2
) 

|𝑞1| = √
𝑅11
2
+
1 − 𝑇𝑟𝑎𝑐𝑒(𝑅)

4
 

(2.31) 

Using the same logic for the rest of the trace elements of 𝑅(𝒒) the remaining terms of 

𝑞 are solved: 

|𝑞2| = √
𝑅22
2
+
1 − 𝑇𝑟𝑎𝑐𝑒(𝑅)

4
 

|𝑞3| = √
𝑅33
2
+
1 − 𝑇𝑟𝑎𝑐𝑒(𝑅)

4
 

(2.32) 

The relation between the Euler angles and quaternions can be found with the DCM-Euler 

relation (2.21): 

𝜃 = −𝑠𝑖𝑛−1(2𝑞1𝑞3 − 2𝑞0𝑞2) 

𝜙 = 𝑡𝑎𝑛−1 (
2𝑞2𝑞3 + 2𝑞0𝑞1

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) 

𝜓= 𝑡𝑎𝑛−1 (
2𝑞1𝑞2 + 2𝑞0𝑞3

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) 

(2.33) 

Since the Euler angle representation can be expressed as an ordered composition of 3 

rotations about the axes of the reference frame, (2.20), and since a rotation 𝑅(𝒒) can be 

expressed as a quaternion 𝒒, the rotation matrix with Euler angles can be expressed as a 

composition of quaternions: 

𝑅𝑎
𝑏 = 𝑅𝑎

𝑏(𝑧, 𝜓)𝑅𝑎
𝑏(𝑦, 𝜃)𝑅𝑎

𝑏(𝑥, 𝜙) = 𝒒𝜓 ∘ 𝒒𝜃 ∘ 𝒒𝜙  (2.34) 



 

-35- 

 

Were “∘” means the composition operator. This property says that the composition of 

two quaternions, 𝒒𝑎 and 𝒒𝑏 corresponds to a multiplication operation [4], [5]: 

𝒒 = 𝒒𝑎 ∘ 𝒒𝑏 = (𝑞𝑎,1𝑞𝑏,1 − 𝑞𝑎,1:3 ∙ 𝑞𝑏,1:3;   𝑞𝑎,1𝑞𝑏,1:3 + 𝑞𝑏,1𝑞𝑎,1:3 − 𝑞𝑎,1:3 × 𝑞𝑏,1:3) (2.35) 

Each of the quaternions in exponential map: 

𝒒𝑖 = [𝑐𝑜𝑠 (
𝑖

2
) , 𝑠𝑖𝑛 (

𝑖

2
)𝒖𝒊]

𝑇

= [𝑐𝑜𝑠 (
𝑖

2
) 0 0 𝑠𝑖𝑛 (

𝑖

2
)]
𝑇

|𝑖 = {𝜙, 𝜃, 𝜓} (2.36) 

where the vectors 𝑢𝑖  means the canonical Euler rotation basis vectors, i.e: 

𝐵𝑢 = {𝑢𝜙, 𝑢𝜃, 𝑢𝜓} = {
1
0
0

⏞
𝑢𝑥

0
1
0

⏞

𝑢𝑦

0
0
1

⏞
𝑢𝑧

} (2.37) 

Finally, multiplying the three quaternions associated to the Euler rotations using the 

expression (2.35), the values of the 4-vector quaternion 𝒒 are given: 

𝒒 = [

𝑞0
𝑞1
𝑞2
𝑞3

] =

[
 
 
 
 
 
 
 
 𝑐𝑜𝑠 (

𝜓

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜙

2
) + 𝑠𝑖𝑛 (

𝜓

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜙

2
)

𝑐𝑜𝑠 (
𝜓

2
)𝑐𝑜𝑠 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜙

2
) − 𝑠𝑖𝑛 (

𝜓

2
) 𝑠𝑖𝑛 (

𝜙

2
)𝑐𝑜𝑠 (

𝜙

2
)

𝑐𝑜𝑠 (
𝜓

2
)𝑠𝑖𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜙

2
) + 𝑠𝑖𝑛 (

𝜓

2
) 𝑐𝑜𝑠 (

𝜙

2
) 𝑠𝑖𝑛 (

𝜙

2
)

−𝑐𝑜𝑠 (
𝜓

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜙

2
) + 𝑠𝑖𝑛 (

𝜓

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜙

2
)]
 
 
 
 
 
 
 
 

 (2.38) 

 

2.3.2. Attitude Kinematics 

Navigation systems consider the kinematics of the vehicle reference systems, i.e., the 

temporal evolution of the vehicle states including attitude. The aim of this subsection is to 

focus on the temporal study of the different representations of the attitude kinematics, DCM, 

Euler angles and quaternions, as the basis of inertial navigation systems (INS). As a 

consequence of the “gimbal lock” with the Euler angles representation of the attitude, 

throughout the derivation of this representation the problem propagates and manifests itself 

as a mathematical singularity. The quaternion representation of the attitude solves this 

problem and therefore is of great relevance for navigation systems. For this reason, in this 

subsection, we will expand on the kinematics of quaternions as a basis for navigation systems 

in discrete time, as used in the fusion section. 
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2.3.2.1. DCM Kinematics 

Taking the DCM representation of the attitude defined by the rotation matrix 𝑅, where 

𝑅 changes with time (angles vary with time) and considering the property 𝑅 ∙ 𝑅𝑇 = 𝕀 of the 

SO(3) rotation group: 

𝑑𝐼

𝑑𝑡
=
𝑑(𝑅 ∙ 𝑅𝑇)

𝑑𝑡
=

 𝑑𝑅

𝑑𝑡
∙ 𝑅𝑇 + 𝑅 ∙

𝑑(𝑅𝑇)

𝑑𝑡
= 𝑅̇ ∙ 𝑅𝑇⏞  

𝛩

+ (𝑅̇ ∙ 𝑅𝑇)
𝑇
= 0 (2.39) 

From the previous equation it is given 𝛩𝑇 = −𝛩 so 𝛩 is a skew-symmetric matrix. 

𝑅̇ ∙ 𝑅𝑇 = 𝛩 

𝑅̇ ∙ 𝑅𝑇 ∙ 𝑅⏞  
𝕀

= 𝛩 ∙ 𝑅 
𝑅̇ = 𝛩 ∙ 𝑅 

(2.40) 

It can be deduced that 𝛩 is the cross-product operator, ×, between the angular rate 

vector 𝜔̅ = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]
𝑇

 and the orthonormal basis 𝐵𝑖 of the starting reference frame, {𝑖}. 

𝛩(𝜔̅) = 𝜔̅ × 𝐵𝑖 = [

0 𝜔𝑧 −𝜔𝑦
−𝜔𝑧 0 𝜔𝑥
𝜔𝑦 −𝜔𝑥 0

] (2.41) 

So, the time evolution 𝑅̇, can be calculated with the vector of angular rates 𝜔̅ and the 

rotation matrix R. From the navigation system point of view, it implies that to determine the 

time evolution of the attitude with DCM it is necessary to have a sensor to provide the angular 

rates. This information is given from a gyroscope. 

2.3.2.2. Euler Angles 

As for the representation with Euler angles, starting from a fixed reference frame which 

presents relative angular rates expressed as the Euler angles as [𝜓̇, 𝜃̇, 𝜙̇]
𝑇

 and using the 

angular velocity addition theorem [1], [7] it is possible to deduce the angular velocities in 

different reference frames. The angular velocity addition theorem says that, for angular 

velocity vector in a common reference frame, the angular velocity resulting from the rotations 

is a simple sum of the rotations it contributes. 

𝜔𝑍
𝐴 = 𝜔𝐵

𝐴 +𝜔𝐶
𝐵 +⋯𝜔𝑍

𝑌 (2.42) 

From (2.20) where the rotation matrix is the ordered composition of three orientations 

about a common reference frame and considering that each of the Euler angles vary in time, 

it can be calculated the angular velocity vector 𝜔̅ = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]
𝑇

 as if it is measured in the 

rotation frame [3]. 
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[

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = 𝑅𝑎

𝑏(𝑦, 𝜃)𝑅𝑎
𝑏(𝑥, 𝜙) [

0
0
𝜓̇
] + 𝑅𝑎

𝑏(𝑥, 𝜙) [
0
𝜃̇
0
] + [

𝜙̇
0
0

] (2.43) 

Grouping the previous equation: 

[

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = [

1 0 − 𝑠𝑖𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃
0 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃

] [

𝜙̇

𝜃̇
𝜓̇

] (2.44) 

The inverse transformation is: 

[

𝜙̇

𝜃̇
𝜓̇

] =
1

𝑐𝑜𝑠 𝜃
[

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙
0 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃
0 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

] [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] (2.45) 

In the case of 𝜃 = ±
𝜋

2
 the “gimbal-lock” singularity of Euler angles is again manifested, 

so generally for attitude kinematics another type of attitude representation is used in place of 

Euler angles. 

2.3.2.3. Quaternions 

Quaternion propagation refers to the accumulation of attitude over time in quaternion 

form and is found by integrating the 𝒒 differential equation. Since there is no closed solution, 

approximate methods such as discrete numerical methods are used.  

𝛥𝑡 is the time step which defines the discrete time as 𝑡𝑛 = 𝑛𝛥𝑡, where 𝑛 = 1,2, … is a 

discrete set. Furthermore, it is generalized that the angular velocities measured by the 

gyroscope are also in discrete time 𝜔̅(𝑡𝑛) = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]
𝑇

 in rad/s so the numerical 

approximation is generalized. The attitude in the local reference frame with quaternions at 

instant 𝑡 + 𝛥𝑡 is defined as 𝒒(𝑡 + 𝛥𝑡), this means a variation of the quaternion 𝛥𝒒 during the 

time variation 𝛥𝑡. The rotation is around the instantaneous axis 𝒖 =
𝜔̅

‖𝜔̅‖
, where the rotated 

angle is 𝜃 = ‖𝜔̅‖𝛥𝑡. Thus, the variation of the quaternion can be expressed as: 

𝛥𝒒 = 𝑐𝑜𝑠
𝜃

2
+ 𝒖𝑠𝑖𝑛

𝜃

2
= 𝑐𝑜𝑠

‖𝜔̅‖𝛥𝑡

2
+
𝜔̅

‖𝜔̅‖
𝑠𝑖𝑛
‖𝜔‖𝛥𝑡

2
 (2.46) 

‖𝜔̅‖ = √𝜔𝑥
2 +𝜔𝑦

2 +𝜔𝑧
2 

(2.47) 

 

Taking 𝒒(𝑡 + 𝛥𝑡) = 𝛥𝒒𝒒(𝑡): 
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𝒒(𝑡 + 𝛥𝑡) − 𝒒(𝑡) = (𝑐𝑜𝑠
‖𝜔̅‖𝛥𝑡

2
+
𝜔̅

‖𝜔̅‖
𝑠𝑖𝑛
‖𝜔̅‖𝛥𝑡

2
) 𝑞 − 𝑞 

                                 = (−2𝑠𝑖𝑛2
‖𝜔̅‖𝛥𝑡

4
+
𝜔̅

‖𝜔̅‖
𝑠𝑖𝑛
‖𝜔̅‖𝛥𝑡

2
) 𝑞 

(2.48) 

Taking the definition of temporal derivative: 

𝒒̇ = 𝑙𝑖𝑚
𝛥𝑡→0

𝒒(𝑡 + 𝛥𝑡) − 𝒒(𝑡)

𝛥𝑡
              

                                = 𝑙𝑖𝑚
𝛥𝑡→0

1

𝛥𝑡
(−2𝑠𝑖𝑛2

‖𝜔̅‖𝛥𝑡

4
+
𝜔̅

‖𝜔̅‖
𝑠𝑖𝑛
‖𝜔̅‖𝛥𝑡

2
)𝒒 

=
𝜔̅

‖𝜔̅‖
𝑙𝑖𝑚
𝛥𝑡→0

1

𝛥𝑡
(𝑠𝑖𝑛

‖𝜔̅‖𝛥𝑡

2
)𝒒 

             =
𝜔̅

‖𝜔̅‖

𝑑

𝑑𝑡
(𝑠𝑖𝑛

‖𝜔̅‖

2
𝑡)|

𝑡=0

𝒒 

=
1

2
[

−𝜔𝑥𝑞1 −𝜔𝑦𝑞2 −𝜔𝑧𝑞3
𝜔𝑥𝑞0 +𝜔𝑧𝑞2 −𝜔𝑦𝑞3
𝜔𝑦𝑞0 −𝜔𝑧𝑞1 +𝜔𝑥𝑞3
𝜔𝑧𝑞0 +𝜔𝑦𝑞1 −𝜔𝑥𝑞2

] 

=
1

2
𝝎𝒒 

(2.49) 

The product of the angular velocity 𝜔̅ ∈ ℝ3 and quaternion 𝒒 ∈ ℍ can be done expanding 

the angular velocity 𝜔̅ in Hamilton space as a quaternion, 𝝎 = [0,𝜔𝑥 , 𝜔𝑦, 𝜔𝑧]
𝑇
∈ ℍ. 

Operator 𝛺(𝜔̅) is defined as an extension of 𝛩(𝜔̅): 

𝛺(𝜔̅) = [
0 −𝜔̅𝑇

𝜔̅ ⌊𝜔̅⌋×
] = [

0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧
𝜔𝑥 0 𝜔𝑧 −𝜔𝑦
𝜔𝑦
𝜔𝑧

−𝜔𝑧
𝜔𝑦

0 𝜔𝑥
−𝜔𝑥 0

] (2.50) 

where ⌊𝜔̅⌋× = 𝛩(𝜔̅) is an skew-symmetric matrix. Finally, the notation is: 

𝒒̇ =
1

2
𝛺(𝜔̅)𝒒 (2.51) 

Note that the 𝛺(𝜔̅) operator can be interpreted as the offset between the body and 

sensor reference frame [11], [12]. On the other hand, in sensor fusion systems typically 𝛺(𝜔̅) 

terms are expressed with the signs changed so that (2.51) can be expressed as: 

𝒒̇ = −
1

2
𝛺(𝜔̅)𝒒 (2.52) 
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Finally, another generalized matrix form to express the time evolution can be deduced 

from expression (2.9) as follows: 

[

𝑞0̇
𝑞1̇
𝑞2̇
𝑞3̇

] =
1

2
[

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 −𝑞3 𝑞2
𝑞2
𝑞3

𝑞3
−𝑞2

𝑞0 −𝑞1
𝑞1 𝑞0

] [

0
𝜔𝑥
𝜔𝑦
𝜔𝑧

] (2.53) 

2.4. Fusion of the INS and GNSS 

According to Oxford Dictionary [2],  fusion “is the process or result of joining two or more 

things together to form one”. In data sensor context, is the process of integrating information 

from several sensors into a single joint output. Regarding navigation systems, inertial 

navigation systems (INS) and global navigation satellite systems (GNSS) are two of the main 

techniques used in real environments for UAS navigation. Each of these systems aim to 

estimate different states of a vehicle such as position, velocity, attitude among others. INS are 

able to obtain states relative to attitude and positions in local coordinates, while GNSS 

systems such as the Global Position System (GPS), Glonass, or Galileo [13], allow to obtain the 

global position of a receiver by triangulating the signal from different satellites of the same 

GNSS family or even combining several systems [14]. Although INS can estimate local position 

and velocities, they present bias in their estimation that depending on the quality of the 

system propagates and diverges to a lesser or greater extent over time [15]. 

The integration of sensor information or fusion can be done with different strategies. 

Works such as D.L. Hall, [16], J. Llinas [17] or Paul D. Groves [1], show several classifications 

and strategies according to the form of information integration. In navigation systems, 

cascade integration and centralized integration are two of the most widespread strategies. As 

shown by Paul D. Groves [1] in both cases an integration algorithm is used. The main 

difference is that in the cascade architecture, each sensor is accompanied by its own 

estimation process and then all the results are integrated over the fusion algorithm. In the 

case of centralized fusion, the raw information from the sensors is fed into the fusion 

algorithm to generate a complete state vector. 

Typical INS/GNSS fusion solutions [18]–[22] are based on a loosely coupled architecture 

(GNSS is an independent information source that provides a single position measurement), 

which uses GNSS position and velocity measurements to aid the INS. In this way, the IMU 

sensors are used to extrapolate position, velocity, and attitude at high frequency (50 Hz), while 

updates from GNSS measurements at lower frequency (1 Hz) allows the update of kinematic 

estimates and inertial sensor biases. Other INS/GNSS centralized integration is a tightly 

coupled integration, however the main problem of the tightly coupled architecture means 
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that there is no stand-alone GNSS solution, which is the reason why this solution is often 

discarded from real systems. In addition, other alternatives appear when independent 

modules with subsets of sensors are available to estimate attitude and kinematics with 

parallel filters [23], a robust solution but only available when the number of sensors is enough 

to group then in independent modules. 

Regarding fusion algorithms, Kalman filter (KF) is the most widely used because of its 

optimal solution in terms of asymptotic convergence of the covariance to zero for the ideal 

case of linear systems with Gaussian noise. However, nonlinear transformations required by 

local-global transformations require methods to handle the nonlinearities. For this case 

extended Kalman filters (EKF) are one of the principal solutions used. These algorithms are 

based on the linearization of the nonlinear processes to locally simplify the problem and to be 

able to apply the classical KF strategy. 

Other proposals for multisensor navigation besides EKF are unscented Kalman (UKF) and 

Interacting Multiple Model (IMM) filters. Besides, the problem of designing complex sensor 

fusion systems has been addressed from the point of view of machine learning. An approach 

to contextual aspects of GNSS/INS sources is presented in [24] present the use of dynamic 

Neural Networks to build models of INS errors before combination with GPS data to facilitate 

adaptation with time-varying errors. Recently, works such as the one by J.P. Llerena et al. [25] 

focused on the filtering and estimation of highly nonlinear systems using neural networks with 

Long-Short Term-Memory (LSTM) cells have shown very encouraging results for the tracking 

solution of complex systems, opening the possibility to using as centralized information fusion 

systems in navigation problems. 

In any case, independently of the selected sensor fusion algorithm, the estimated state 

vector resulting in the output for the GNSS/INS filter usually contains the attitude 4-vector 𝑞, 

3D positions, 3D velocity and 3D biases corrections for acceleration and angular rate in body 

frame, respectively 𝑏̅𝑎 and 𝑏̅𝜔.  

𝑥 = [ 𝜆, 𝜑, ℎ⏟  
𝐺𝑙𝑜𝑏𝑎𝑙 𝑃𝑜𝑠.

, 𝐸̇, 𝑁̇, 𝑈̇⏟  
𝐺𝑟𝑜𝑢𝑛𝑑 𝑣𝑒𝑙𝑜.

, 𝑞0, 𝑞1, 𝑞2, 𝑞3⏟        
𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒

, 𝑏𝑎𝑥 , 𝑏𝑎𝑦 , 𝑏𝑎𝑧⏟        
𝐴𝑐𝑐𝑒𝑙.  𝑏𝑖𝑎𝑠

, 𝑏𝜔𝑥 , 𝑏𝜔𝑦 , 𝑏𝜔𝑧⏟        
𝐺𝑦𝑟𝑜𝑠.  𝑏𝑖𝑎𝑠

]T 
(2.54) 

The attitude is usually computed with respect to the reference origin point taken at the 

mission arming point when engines are started. The position and velocity are usually 

expressed in the inertial ENU frame, and the sensor biases expressed in the body frame. The 

state vector can be extended, 𝑥
𝐸

, to include bias in barometric height, (2.55), if a barometer 

is available, to integrate also this source of measurements. 
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𝑥
𝐸
= [ 𝑥

𝑇
⏟

𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

, 𝑏ℎ⏟
𝐵𝑎𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑏𝑖𝑎𝑠

]T (2.55) 

In this section the complete INS/GNSS fusion process to obtain the complete state vector 

(2.54) is described. First, the EKF estimation algorithm is presented as the basis of the state 

estimation process. Then, the state vectors provided by INS and GNSS are described to finally 

describe the specific process of centralized fusion based on the loosely coupled architecture. 

2.4.1. State estimation 

In estimation theory in stochastic processes, the Kalman filter is said to be the optimal 

solution since it minimizes the covariance of the system [26]. If we consider a stochastic 

nonlinear dynamic system (2.56), the first approximation derived from the KF, is the Extended 

Kalman Filter (EKF). 

 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤) 
𝑧 = ℎ(𝑥, 𝑣) 

(2.56) 

As in the linear Kalman filter [26]–[28], 𝑤 shows the noise process and 𝑣 the 

measurement noise. Note that the system and measurement model can be nonlinear. The EKF 

idea is built around the linearization system over the estimated states  𝑥̂. This means 𝑓(. ) 

and ℎ(. ) must be derived with respect to the states 𝑥, the model noise 𝑤, measurement 

noises 𝑣 and the input signal 𝑢. To simplify the explanation an autonomous system is 

considered: 

𝐴 = 𝛻𝑓(𝑥, 0,0)|(𝑥̂,𝑢,0) 

𝑊 = 𝛻𝑓(0,0,𝑤)|(𝑥,𝑢,0) 

𝐻 = 𝛻ℎ(𝒙𝑘 , 0)|(𝑥̂,𝑢,0) 

𝑉 = 𝛻ℎ(0, 𝑣)|(𝑥̂,𝑢,0) 

(2.57) 

The first parenthesis in (2.57) denote the terms with respect the functions are derived 

from the system and measurement, while the second parenthesis, (𝑥̂, 𝑢, 0), means the values 

to be substituted in the jacobian matrix. 

When the continuous system has been linearized, the next step is to discretize and apply 

the same process as in the linear KF. 

Kalman filters and EKF is divided into two steps, prediction and update. To identify these 

steps and the temporary state, Kalman notation uses a sub-index in the form 𝑥𝐴|𝐵. The first, 

𝐴, refers to the temporal state (current=𝑘, previous=𝑘 − 1) and the second, 𝐵, refers to the 

filter step (prediction=𝑘 − 1, update=𝑘). 
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The Kalman filter steps formulation is formulated as follows when the system doesn’t 

have noise in estimation process and is autonomous 𝛤 = 0 or when control signal 𝑢𝑘 = 0. 

Prediction step: 

𝑥𝑘|𝑘−1 = 𝐹𝑥𝑘−1|𝑘−1 

𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1|𝑘−1𝐹
𝑇 + 𝑄𝑘 

 

(2.58) 

Update step: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅𝑘)
−1 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘|𝑘−1) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1 

 

(2.59) 

In KF, the forecast is made on the current state 𝑘, so it is usually called prediction in place 

of forecast. Firstly, a state space models (SSM) predict the current time state 𝑥̂𝑘|𝑘−1 and then, 

the prediction is improved 𝑥̂𝑘|𝑘 with the current measure 𝑧𝑘. 

All Kalman notation is summarized under Table 2.1. 

Table 2.1. Main Kalman notation definition. 

Symbol Definition 

𝑥𝑘 Current state vector 

𝑧𝑘 Current measure vector 

𝑥𝑘−1 Previous state vector 

𝑥̂𝑘|𝑘−1 Current state vector in prediction step 

𝑥̂𝑘|𝑘 Current state vector in update step 

𝑢 Input system signal/control signal  

𝑓(𝑥, 𝑢, 𝑤) Dynamic System 

ℎ(𝑥, 𝑣) Stochastic measure function 

𝐴 Linear system matrix (continues system) 

𝐵 Input matrix (continues system) 

𝐻 Observation matrix model  

𝐹 State transition matrix (discreet system) 

𝛤 Input matrix (discrete system) 

𝑄 The covariance of the process noise  

𝑅 The covariance of the observation measurements  

𝑃 Covariance matrix (measure of the estimate accuracy) 

𝐾 Optimal Kalman gain 

𝑊𝑘~𝒩(0, 𝑄𝑘) Process noise  

𝑉𝑘~𝒩(0, 𝑅𝑘) Observation noise 

2.4.2. INS State vector 

An Inertial Navigation System (INS) is composed of a set of sensors, processors and 

mathematical methods that process the information coming from the sensors in order to 

estimate physical states such as position, orientation and velocity without need of an external 
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reference. Thus, the INS aim to estimate a vector of states 𝑥̅, composed of the attitude, 

expressed in quaternions 𝒒𝑏 = [𝑞0, 𝑞1, 𝑞2, 𝑞3]
𝑇, rotation rate expressed in the body reference 

frame {𝑏} 𝜔̅𝑏 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]
𝑇

  the gyroscope bias 𝑏̅𝜔 = [𝑏𝜔𝑥 , 𝑏𝜔𝑦 , 𝑏𝜔𝑧]
𝑇

 and accelerometer 

biases 𝑏̅𝑎 = [𝑏𝑎𝑥, 𝑏𝑎𝑦 , 𝑏𝑎𝑧]
𝑇

. 

𝑥̅𝐼𝑀𝑈 = [𝒒
𝑏𝑇 , 𝜔̅𝑏

𝑇
, 𝑏𝜔
𝑇
, 𝑏𝑎
𝑇
]
𝑇

 (2.60) 

To estimate the above states, the standard INS uses measurements from a 6 or 9-DOF 

inertial measurement unit (IMU) consisting of 3-axis gyro (angular velocity), 3-axis 

accelerometer (accelerations) and several times in addition use 3-axis magnetometer (NED 

orientations) [11]. 

Gyroscope measurements: 

The gyroscope provides information of the angular velocity. Considering that the sensor is 

placed at the center of the vehicle reference frame {𝑏}, this sensor provides measurements 

𝑧𝜔
𝑏

 of the angular velocity states 𝜔̅𝑏, which can be modeled according to (2.61). 

𝑧𝜔
𝑏
= 𝜔

𝑏
+ 𝑏𝜔 + 𝑛𝜔 (2.61) 

where 𝑏𝜔 = [𝑏𝜔𝑥 , 𝑏𝜔𝑦 , 𝑏𝜔𝑧]
𝑇

 is an additive error also called gyro bias vector and 𝑛𝜔 =

[𝜎𝜔𝑥
2 , 𝜎𝜔𝑦

2 , 𝜎𝜔𝑧
2 ]

𝑇

  is a Gaussian white noise with power spectral density (PSD) 𝜎𝑔𝑖
2  associated 

with each of its 𝑖 − 𝑎𝑥𝑖𝑠. 

• Accelerometer measurement  

Acceleration measurements 𝑎̅𝑏 in the body reference frame {𝑏}, can be modeled as 𝑧𝑎̅
𝑏: 

𝑧𝑎
𝑏
= 𝑎

𝑏
− 𝑔

𝑏
+ 𝑏𝑎 + 𝑛𝑎 (2.62) 

where 𝑔
𝑏
= [𝑔𝑥

𝑏 , 𝑔𝑦
𝑏 , 𝑔𝑧

𝑏]
𝑇
= 𝑅𝑝

𝑏 ∙ 𝑔
𝑝
+ 𝑏𝑎𝑔 is the gravity vector expressed in the 

reference frame {𝑏}, 𝑅𝑝
𝑏  is the rotation matrix between the sensor platform reference frame 

{𝑝} and the sensor-vehicle center {𝑏} and 𝑏𝑎𝑔 is the bias in position between both reference 

systems. On the other hand 𝑏𝑎 = [𝑏𝑎𝑥, 𝑏𝑎𝑦, 𝑏𝑎𝑧]
𝑇

 is the systematic error of the sensor and 

𝑛𝑎 = [𝜎𝑎𝑥
2 , 𝜎𝑎𝑦

2 , 𝜎𝑎𝑧
2 ]
𝑇

 corresponds to a Gaussian white noise with PSD 𝜎𝑎𝑖
2  associated to each 

of its 𝑖 − 𝑎𝑥𝑒𝑠. In this case it considers the bias in the accelerometer triad to be insignificant. 

• Magnetometer measurement  
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The Earth magnetic field in the body reference frame is defined as 𝑚
𝑏

 and its 

measurements 𝑧𝑚
𝑏  can be modeled as the sum of the field value 𝑚, a bias  𝑏𝑚 and Gaussian 

white error 𝑛𝑚 with PSD 𝜎𝑚
2 . Although the bias 𝑏𝑚 could be very large its variation is very slow 

so calibration strategies such as the one shown in the work of J.F.Vasconcelos [29] can be 

used. 

𝑧𝑚
𝑏
= 𝑚

𝑏
+ 𝑏𝑚 + 𝑛𝑚 (2.63) 

To obtain the attitude over time it is necessary to integrate the differential equation (60) 

along time. 

It is outside the scope of this subsection the integration in the global reference frame of 

the Attitude. This requires information from the magnetometer. More information on this 

solution can be found in [1], [10], [29], [30]. 

To integrate (60), can be applied a polynomial linearization method of 𝒒(𝑡 + 𝛥𝑡) over 

time 𝑡, namely the Taylor series [31].  

𝒒𝑡+1 = 𝒒𝑡 + 𝒒̇𝑡𝛥𝑡 +
1

2!
𝒒̈𝑡𝛥𝑡

2 +
1

3!
 𝒒⃛𝑡𝛥𝑡

3 + … (2.64) 

Using the definition of 𝒒̇ (2.51), the new orientation 𝒒𝑡+1 can be written [32] as: 

𝒒𝑡+1 = (𝕀4 +
1

2
𝛺(𝜔̅)𝛥𝑡 +

1

2!
(
1

2
𝛺(𝜔̅)𝛥𝑡)

2

+⋯)𝒒𝑡 +
1

2
𝛺̇(𝜔̅)𝛥𝑡2𝒒𝑡

+ (
1

12
𝛺̇(𝜔̅)𝛺(𝜔̅) +

1

24
𝛺(𝜔̅)𝛺̇(𝜔̅) +

1

12
𝛺̈(𝜔̅))𝛥𝑡3𝒒𝑡 +⋯ 

(2.65) 

Considering that the angular velocity is constant in period [𝑡, 𝑡 + 1], the derivative of the 

angular velocity 𝜔̇̅ = 03×1, being able to discard the derivative of the operator 𝛺 by reducing 

the series in: 

𝒒𝑡+1 = (𝕀4 +
1

2
𝛺(𝜔̅)𝛥𝑡 +

1

2!
(
1

2
𝛺(𝜔̅)𝛥𝑡)

2

+⋯)𝒒𝑡 (2.66) 

For high terms of the series, the error of the approximation vanishes quickly, in the same 

way when 𝛥𝑡 → 0, however the higher integration terms, of the series (2.64), improve our 

approximation, especially for high sampling times. 

Looking at (2.66) it can be seen how the series is equivalent to the exponential map 

𝑒
𝛥𝑡

2
𝛺(𝜔), where generally is truncated in the first term. Some of the reasons for applying this 

simple truncation are the simplicity of the architecture that facilitates its implementation in 
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embedded systems or that if the sensor signal is not filtered the estimation will not converge 

to a good result and will even get worse using higher order terms. 

𝒒𝑡+1 = (𝕀4 +
1

2
𝛺(𝜔̅)𝛥𝑡) 𝒒𝑡 = 𝑒

𝛥𝑡
2
𝛺(𝜔̅)𝒒𝑡 (2.67) 

Applying exponential map (30): 

𝒒𝑡+1 = [𝑐𝑜𝑠 (
‖𝜔̅‖𝛥𝑡

2
) 𝕀4 +

1

‖𝜔̅‖
𝑠𝑖𝑛 (

‖𝜔̅‖𝛥𝑡

2
)𝛺(𝜔̅)]

⏟                            
𝐴(𝑡)

𝒒𝑡 (2.68) 

where the term inside the bracket that multiplies 𝑞𝑡 is an orthogonal rotation that 

preserves the normalization of the quaternions, so it is not necessary to normalize 𝑞𝑡+1 if 𝑞𝑡 

is normalized, although in many works it is recommended to do so to avoid rounding errors 

inherent to embedded systems. Generally, this matrix is known as the transition matrix of the 

attitude where its internal terms depend on the time instant "𝑡" and can be expressed as 𝐴(𝑡). 

Since there are different reference systems that are indicated by a subscript, to define 

the temporal state of the attitude, future 𝑡 + 1  and current 𝑡, hereinafter defined as 𝒒[𝑘 + 1 

and 𝒒[𝑘] respectively: 

𝒒[𝑘 + 1] = 𝐴[𝑘]𝒒[𝑘] (2.69) 

2.4.3. GNSS State vector 

Global navigation systems provide absolute global positions and velocities relative to the 

Earth's surface, so the GNSS state vector is: 

𝑥̅𝐺𝑁𝑆𝑆 = [ 𝜆, 𝜑, ℎ⏟  
𝐺𝑙𝑜𝑏𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

, 𝐸̇, 𝑁̇, 𝑈̇⏟  
𝐺𝑟𝑜𝑢𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]

𝑇

 (2.70) 

However, it should be noted that the observations, “𝑧𝐺̅𝑁𝑆𝑆” provided by the global 

navigation system refer exclusively to the position 𝑝̅𝐺𝑁𝑆𝑆 = [𝜆, 𝜑, ℎ]
𝑇, and the velocity relative 

to the Earth's surface 𝑣̄𝑒𝑛 = [𝐸̇, 𝑁̇, 𝑈̇]
𝑇

. In information fusion systems, global coordinates are 

usually transformed to local ENU positions applying the set of geodetic-ECEF (2.3)  and ECEF-

ENU transformations. In this way the observations provided by the GNSS system, 𝑧𝐺̅𝑁𝑆𝑆 = 𝑝̅𝑒𝑛, 

refer to the ENU position, using as a reference point the origin of the mission. Furthermore, 

the measurements 𝑧𝐺̅𝑁𝑆𝑆, are modeled as the state value plus a Gaussian white noise 𝑛̅𝐺𝑁𝑆𝑆 

compose by horizontal and vertical PSD 𝜎ℎ
2, 𝜎𝑣

2 respectively. So, the measurement model can 

be expressed as:  
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𝑧𝐺̅𝑁𝑆𝑆 = 𝑝̅𝑒𝑛 + 𝑛̅𝐺𝑁𝑆𝑆 = [

𝑥𝑒𝑛
𝑦𝑒𝑛
𝑧𝑒𝑛
] + [

𝜎ℎ
2

𝜎ℎ
2

𝜎𝑣
2

] (2.71) 

GNSS are not very accurate in height measurement, so usually GNSS receivers have 

integrated or are combined with a barometer measurement, 𝑧𝑏𝑎𝑟, to improve the deficiencies 

in GNSS height measurement.  The barometric sensor can be modeled as: 

𝑧𝑏𝑎𝑟 = 𝑧 + 𝑏𝑏𝑎𝑟 + 𝑛𝑏𝑎𝑟 (2.72) 

where 𝑧𝑏𝑎𝑟 is the barometric height, 𝑏𝑏𝑎𝑟 is the height bias and 𝑛𝑏𝑎𝑟 means a Gaussian 

noise white noise with PSD 𝜎𝑏𝑎𝑟
2 . To define the current time instant “𝑘” or future “𝑘 + 1” of 

𝑗 = { 𝑝̅𝑛𝑒 , 𝑣̄𝑛𝑒, 𝑧𝐺𝑁𝑆𝑆, 𝑧𝑏𝑎𝑟}, hereafter it is expressed in square brackets as 𝑗[𝑘], and 𝑗[𝑘 + 1] 

respectively. 

2.4.4. Fusion of the INS and GNSS 

Although there are different INS/GNSS fusion strategies, this sub-section focuses on the 

centralized loosely couple integration using an Extended Kalman filter (EKF) as an approach to 

the EKF2 fusion system of PX4 flight controller.  

A representative dynamic model is selected that integrates local sensed inputs 

(acceleration and gyros), absolute positions (GNSS data) and sensor dynamics biases, with 

uncertainty models. The position and velocity coordinate frame selected for this solution is 

the ENU frame with respect to the tangent plane with origin defined by the arming point at 

the start of the mission. 

The EKF fusion algorithm processes all available measurements in a centralized module: 

GPS, barometric height sensors, and the input of IMU readings with local body-frame sensed 

acceleration and angular rates. As mentioned above, the GNSS and barometer inputs 

(𝑧𝐺̅𝑁𝑆𝑆, 𝑧𝑏𝑎𝑟) are considered, within Kalman inference mechanism, as “observations”, while 

IMU inputs (𝑧𝑎̅, 𝑧𝜔̅) (2.61) and (2.62) are considered as “control inputs”, 𝑢̅[𝑘]. The input 

control contains the ideal magnitudes of 3D accelerations and angular rates expressed in the 

body-fixed local frame, respectively 𝑎̅𝑏[𝑘] and 𝜔̅𝑏[𝑘]: 

𝑢̅[𝑘] = [𝑎̅𝑏[𝑘]
𝑇, 𝜔̅𝑏[𝑘]

𝑇]𝑇  (2.73) 

This input control is related to available IMU measurements at k-time (𝑧𝑎̅[𝑘], 𝑧𝜔̅[𝑘]), 

which must be corrected with the respective estimated biases in the state vector.  

𝑎̄𝑏[𝑘] = 𝑧𝑎̅[𝑘] − 𝑏̄𝑎[𝑘] 
𝜔̄𝑏[𝑘] ≡ [𝜔𝑥[𝑘] 𝜔𝑦[𝑘] 𝜔𝑧[𝑘]]𝑇 = 𝑧𝜔̅[𝑘] − 𝐶𝑏

𝑒𝑛[𝑘]𝜔̄𝑒𝑛 − 𝑏̄𝜔[𝑘] 
(2.74) 
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Besides, in the case of body angular rate, also the Coriolis effect, 𝜔̄𝑒𝑛, is subtracted to 

generate the corrected input control, projected through the Body-to-ENU ({𝑏} → {𝑒𝑛}) 

frames conversion matrix, 𝐶𝑏
𝑒𝑛[𝑘] . This projection matrix is direclty obtained from the vehicle 

attitude expressed in quaternion vector as show in (2.29). The EKF requires a system model 

described by the state vector and a dynamic stochastic model to describe its evolution with 

time:  

𝑥̇̅(𝑡) =
𝑥̅(𝑡)

𝑑𝑡
= 𝑦(𝑡, 𝑥̅, 𝑢̅, 𝑉̅(𝑡)) 

(2.75) 

being 𝑢̄(𝑡) the control input (deterministic) and 𝑉̅(𝑡) is the plant noise process 

(unobservable noise). The first term 𝑢̄(𝑡) is related to the observations provided by inertial 

sensors as indicated above, which include a certain noise error, while 𝑉̅(𝑡) is an additional 

noise model to take into account deviations from the predictions. The prediction equations 

resulting from the model are obtained after integration of differential equation, a well-known 

model [37] is obtained for this problem with the following (non-linear) equations: 

𝑥̄𝑒𝑛[𝑘 + 1] = 𝑓(𝑥̄𝑒𝑛[𝑘], ū(𝑡)) = 𝐹(𝑥̄𝑒𝑛[𝑘], ū(𝑡))𝑥̄𝑒𝑛[𝑘] + 𝑢̄(𝑥̄𝑒𝑛[𝑘]) 

[
 
 
 
 
 
𝑝̄𝑛[𝑘 + 1]

𝑣̄𝑛[𝑘 + 1]

𝒒𝑛[𝑘 + 1]

𝑏̄𝑎[𝑘 + 1]

𝑏̄𝜔[𝑘 + 1]]
 
 
 
 
 

𝑒𝑛

=

[
 
 
 
 
𝐼3 𝛥𝑡𝐼3 03𝑥4 03𝑥3 03𝑥3
03𝑥3 𝐼3 03𝑥4 03𝑥3 03𝑥3
04𝑥3 04𝑥3 𝐴[𝑘] 04𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥4 𝐼3 03𝑥3
03𝑥3 03𝑥3 03𝑥4 03𝑥3 𝐼3 ]

 
 
 
 

[
 
 
 
 
 
𝑝̄𝑛[𝑘]

𝑣̄𝑛[𝑘]

𝒒𝑛[𝑘]

𝑏̄𝑎[𝑘]

𝑏̄𝜔[𝑘]]
 
 
 
 
 

+ 𝛥𝑡

[
 
 
 
 
03𝑥1
𝑈[𝑘]
04𝑥1
03𝑥1
03𝑥1]

 
 
 
 

 
(2.76) 

where 𝐴[𝑘] is the attitude transition matrix as show in (2.68) which depends on the 

components of corrected angular velocity in body frame, 𝜔̄𝑏[𝑘] = [𝜔𝑥[𝑘] 𝜔𝑦[𝑘] 𝜔𝑧[𝑘]]𝑇. 

Finally, 𝑈[𝑘] is the correction in the velocity computed from the control input, 

corresponding to acceleration vector, expressed in inertial frame and projected to ENU frame, 

affected by the gravitational effect, 𝑔̅. 

𝑈[𝑘] = 𝐶𝑒𝑛
𝑏 [𝑘] 𝑎̄𝑏[𝑘] + 𝑔̄ (2.77) 

With this dynamic model, the EKF approximates the predictions and their covariance 

matrix with a first-order approximation for the non-linear functions of prediction model, 𝑓(. ), 

and projection to the measurement space, ℎ(. ): 

𝑥̄𝑒𝑛[𝑘|𝑘 − 1] = 𝑓(𝑥̄𝑒𝑛[𝑘], ū[𝑘], V̄[𝑘]) 
𝑧𝑒𝑛[𝑘] = ℎ(𝑥̄𝑒𝑛[𝑘], 𝑊̅[𝑘]) 

(2.78) 

being 𝑊̅[𝑘] the observation noise process, and V̄[𝑘] the system process noise to 

characterize uncertainty in the predictions. The prediction equations of Extended Kalman 

Filter are used to propagate the state vector and covariance matrix: 
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𝑥[𝑘|𝑘 − 1] = 𝑓(𝑥[𝑘 − 1|𝑘 − 1], 𝑢̂[𝑘 − 1]) 

𝑃[𝑘|𝑘 − 1] = 𝐹[𝑘]𝑃[𝑘 − 1|𝑘 − 1]𝐹𝑇[𝑘] + 𝑉[𝑘]𝑄𝑢[𝑘 − 1]𝑉
𝑇[𝑘 − 1] + 𝑄𝑝[𝑘 − 1] 

(2.79) 

The matrices F, V, H are computed with the Jacobean operators applied to the model 

functions 𝑓 and ℎ: 

F[i,j]= 
𝛿𝑓[𝑖]

𝛿𝑥̄[𝑗]
(𝑥̄(𝑡), q(𝑡), ū(𝑡), t) 

(2.80) 

V[i,j]= 
𝛿𝑓[𝑖]

𝛿𝑢̄[𝑗]
(𝑥̄(𝑡), q(𝑡), ū(𝑡), t) 

(2.81) 

H[i,j]= 
𝛿ℎ[𝑖]

𝛿𝑥̄[𝑗]
(𝑥̄(𝑡), w(𝑡)) 

(2.82) 

The covariance matrix for process noise, 𝑄, is separated in two terms: 𝑄𝑝, corresponding 

to uncertainty in predictions and 𝑄𝑢, projecting the errors of inertial sensors to the state 

vector. 

𝑄[𝑘] = 𝑉[𝑘]𝑄𝑢[𝑘 − 1]𝑉
𝑇[𝑘 − 1] + 𝑄𝑝[𝑘 − 1] 

𝑄[𝑘] =  𝑉[𝑘] [

010𝑥10 010𝑥3 010𝑥3
03𝑥10 𝑞𝑎𝑚

2 𝐼3 0

03𝑥10 0 𝑞𝜔𝑚
2 𝐼3

]𝑉𝑇[𝑘] + [

010𝑥10 010𝑥3 010𝑥3
03𝑥10 𝑞𝑎𝑝

2 𝐼3 0

03𝑥10 0 𝑞𝜔𝑝
2 𝐼3

] 
(2.83) 

being 𝑞𝑎𝑚
2 , 𝑞𝜔𝑚

2 , 𝑞𝑎𝑝
2 , 𝑞𝜔𝑝

2  the model parameters used to tune the system response by 

adaptation of the plant-noise process 𝑄[𝑘]. The first two, 𝑞𝑎𝑚
2 , 𝑞𝜔𝑚

2 , are used to model the 

uncertainty of IMU sensors, projected through 𝑉 matrix to state vector, and the last two, 

𝑞𝑎𝑝
2 , 𝑞𝜔𝑝

2 , are direct models of prediction uncertainty for the assumed model of smooth 

variation of inertial sensor biases.  

These parameters can be tuned as shown in [38] and fine-tuned to improve the 

navigation system. 

Finally, given the prediction model detailed above, the “update” phase of EKF is given by 

the classical KF (2.59) detailed for this particular case as: 

𝐾[𝑘] =       𝑃[𝑘|𝑘 − 1]𝐻[𝑘]𝑇(𝐻[𝑘]𝑃[𝑘|𝑘 − 1]𝐻[𝑘]𝑇 + 𝑅[𝑘])−1 

𝑥[𝑘|𝑘] =  𝑥[𝑘|𝑘 − 1] + 𝐾[𝑘](𝑧[𝑘] − ℎ(𝑥[𝑘|𝑘 − 1])) 

𝑃[𝑘|𝑘] = 𝑃[𝑘|𝑘 − 1](𝐼 − 𝐾[𝑘]𝐻[𝑘]) 

(2.84) 

where the 𝑅[𝑘] matrix in EKF update equations consider the noise in measurement 

observations: 
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𝑅𝐺𝑁𝑆𝑆 = [

𝜎ℎ
2 0 0

0 𝜎ℎ
2 0

0 0 𝜎𝑣
2

] ;  𝑅𝐵𝐴𝑅 = 𝜎𝑏𝑎𝑟
2  (2.85) 

Remembering that  𝜎ℎ
2, 𝜎𝑣

2 are the variance in horizontal and vertical errors of GNSS 

positions, respectively, and 𝜎𝑏𝑎𝑟
2  the variance in barometric height. 

Therefore, the EKF filter used for sensor fusion depends on two sets of parameters which 

are sensor noise and plant noise. The terms in (2.83) correspond to the plant noise, used to 

stabilize the filter, and avoid becoming too confident in its own predictions with respect to 

measurements. Both the estimation of cinematic parameters and sensor biases depend on 

choosing appropriate parameters characterizing noise in sensor data and uncertainty in 

prediction (process noise). Especially, process noise parameters affect to the predicted error 

covariance and have critical impact in the weights given to the sensor observations with 

respect to the predicted estimates. A higher value for these parameters implies higher values 

of predicted covariance and so higher gain to observations (since the confidence on prediction 

decreases). Conversely, lower values imply lower gain to observations (higher confidence on 

predictions). For example, if GNSS position noise parameters are set to very small values 

compared to INS prediction errors, it will produce frequent changes of position and attitude 

during vehicle trans state. In the same way, low values for GNSS velocity noise will cause the 

filter roll and pitch angles to be noisy, probably affecting to the vehicle motion up and down. 
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Chapter 3: Machine Vision Systems of 

UAS 

3.1. Introduction 

or several years now, the low cost of vision sensors [1] and the large number of studies 

related to image processing have made vision systems essential systems for any 

unmanned aircraft. Some of the main vision-based applications found in the literature focus 

on navigation systems, obstacle detection and avoidance, visual servoing subsistems, as well 

as autonomous/precision landing, autonomous surveillance missions, infrastructure 

inspection or autonomous refueling, among others. 

As navigation is concerned, there are two main groups, outdoor and indoor navigation. 

As for outdoor navigation, INS/GNSS fusion systems are widespread as described in the 

previous chapter. However, there are applications that improve the accuracy of the navigation 

system by adding to the loosely coupled architecture relative displacement velocity 

information through optical flow identification [2]. Other applications such as presented by G. 

Conte and P. Doherty [3] and complemented by the work of J. R. G Braga et al. [4], focus on 

avoiding GPS signal loss problems by geolocating the position of an aircraft by correlating 

georeferenced satellite images with images taken from the aircraft. With this proposal they 

replace in the INS/GNSS navigation system the information coming from GNSS with a fusion 

system between visual odometry and image correlation that is integrated in a 12-state loosely 

couple fusion architecture. 

For indoor navigation visual odometry (VO) and simultaneous localization and mapping 

(SLAM) [5] are the main trends. With this technology small low-cost drones can be used for 

applications such as shown in S. Krul et al. [6] research, in which this navigation technology is 

used to enable a low-cost commercial drone to orient itself inside greenhouses and farms 

using a low-cost monocular vision system. In addition, this technology can be used with 

swarms of drones as if they are considered as agents as shown in the work of D. Zou et al. [7]. 

Obstacle detection and avoidance is another area of great interest for aircraft safety 

applications and the environment itself. Approaching the sense and avoid problem from a 

computer vision point of view presents serious challenges. Focusing the problem on sensing, 

F 
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a single conventional camera cannot infer the depth of a scene directly. Classically to solve 

this problem, stereo systems with epipolar geometry have shown good results. Since several 

years ago with the rise of deep learning, some deep learning researches such as S. Saleh et al. 

[8]have been able to perceive depth in scenes with monocular images. In this case the authors 

use semi-supervised learning using a subset of the KITTI database containing LIDAR 

information and images in urban environments. With this information the authors manage to 

train a deep neural network that infers depth from a 2D image in real time ranges. Another 

classic strategy in scene sensing is based on motion perception. In the work of Tom van Dijk 

[9] the problem of sonorization and avoidance for UAVs is analyzed. 

There are a multitude of applications with vision and drones, in the review by A. Al-Kaff 

et al. [10] another wide range of them can be found, including visual servoing, border 

surveillance, infrastructure inspection, agriculture, among others. 

All these applications, in one way or another, require aircraft to perform a fundamental 

and critical maneuver, landing. One of the most common strategies in this area is to use vision 

and context information to identify a landing surface and/or improve the accuracy in terms of 

the relative positions between the aircraft and the landing surface. In recent works such as 

J.P. Llerena and his colleagues from the Applied Artificial Intelligence Group at Universidad 

Carlos III de Madrid [11] evaluate the relative position estimation error of a helipad and 

propose a combination of cylindrical space bias correction and a novel descent function. This 

work is discussed in detail in the following chapter. 

Many of the mentioned applications are not only limited to machine vision in the visible 

electromagnetic spectrum, but digital image processing allows exploiting the potential of 

multispectral images. Some examples of success in this field are infrastructure inspection 

using thermographic vision [12] or crop analysis [13]. 

The deployment of the mentioned applications requires physical elements where the 

algorithms and strategies can be executed. There are two main approaches: onboard and 

offboard. Onboard systems are characterized for using companion computers that provide a 

higher degree of independence from ground stations, however, the performance of the 

equipment is reduced since the payload of the aircraft and its autonomy is affected. Offboard 

deployments allow use of large computing resources, including cloud computing, however, 

this requires the aircraft must be in communication with the ground station where the 

technology is deployed, increasing its external dependence. 

3.2. Computer Vision  

As a Cambridge dictionary [14] “vision” is “an idea or mental image of something”, on the 

other hand, “Image” is a “a picture in your mind or an idea of how someone or something is”, 
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and picture “the way that something or someone is thought of by other”. In this way, the 

principal goal of computer vision is to extract information from the real-world using computer-

embedded algorithms. 

Vision systems involve a multidisciplinary set of tasks such as raw information extraction, 

processing and analysis that can be placed under the scope of artificial intelligence fields. 

Having a mathematical model that relates the perception of objects/things from a 

physical world to what is perceived by a sensor is fundamental for an intelligent system to be 

able to interpret the surrounding environment. 

Considering the information acquisition problem decoupled and solved, computer vision 

applications are based on algorithms and strategies for the extraction of relevant information 

from the raw image data. Free software tools such as OpenCV [15] integrate a variety of 

algorithms and applications to solve computer vision problems. These free software tools are 

supported by a large community of developers and scientists that facilitate the use of 

computer vision strategies.  

Testing vision applications on drones is no easy task, but hyper-realistic image simulators 

such as AirSim are a great help in testing applications without the additional risk or cost of an 

undetected design flaw. 

The available images information from AirSim include, RGB images, segmentation 

images, infrared, and deep images [14]. 

The objective of this section is to provide the basic concepts of a camera model and its 

calibration in order to be used in complex vision applications.  

3.2.1. Pinhole camera 

Vision system modeling and calibration is a key issue in a multitude of applications. A 

main mathematical camera model is the pinhole camera model. This model is based on the 

concepts of paraxial geometrical optics and projective geometry. The objective of a pinhole 

camera model is relating the coordinates of the real world in 3D {𝑤} to the coordinates of the 

camera itself {c} and finally to the coordinates of the projective plane, Fig. 3.1, {𝑝ℎ}. 
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(a) 

 

(b) 

Fig. 3.1. Pinhole geometrical reference frames representation. a) general image, b) tringle of 

transformation. 

Let the center of projection be the origin of a Euclidean coordinate system, and the plane 

𝑍 = 𝑓, which is called the image plane or focal plane. The line starting from the center of the 

camera and perpendicular to the image plane is known as the optical axis or principal axis.  

The intersection of the principal axis with the image plane is called the principal point (𝑐𝑥, 𝑐𝑦). 

The plane through the center of the camera and parallel to the image plane is known as the 

principal plane of the camera. ℱ𝑐 is the center of the camera and is where the origin of 

coordinates is located [15].  

In the pinhole model, a point in space 𝑝𝑤expressed in the camera reference frame {c} can 

be expressed as 𝑝𝑐 = (𝑥𝑐 , 𝑦𝑐, 𝑧𝑐)𝑇 and projected onto the image plane using the triangle, Fig. 

3.1. Pinhole geometrical reference frames representation. a) general image, b) tringle of 

transformation. 

 (b), as shown in equation (3.1), where (𝑓𝑥, 𝑓𝑦) are the 𝑥 and 𝑦 focal lengths of the optical 

system. Ignoring the depth coordinate 𝑧, the central projection mapping from the 3D world, 

𝑝𝑐, to the 2D image coordinates, 𝑝𝑝ℎ, is: 

𝑝𝑝ℎ = [
𝑢
𝑣
] = [

𝑓𝑥𝑥
𝑐

𝑧𝑐

 
𝑓𝑦𝑦

𝑐

𝑧𝑐

] (3.1) 

Until now it has been supposed the origin of coordinates in the image plane is the same 

as the principal point, however, in Fig. 3.1 (a), it is observed that this may not be true so that 

equation (3.1) can be corrected as: 

Focal plane 

𝑓𝑦 

𝑍𝑐  

𝑓𝑦𝑦
𝑐

𝑧𝑐
  

𝑌𝑐 

𝑦𝑐  

𝑧𝑐  

Principal plane 
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𝑝 = [
𝑢
𝑣
] = [

𝑓𝑥𝑥
𝑐

𝑧𝑐
+ 𝑐𝑥

 
𝑓𝑦𝑦

𝑐

𝑧𝑐
+ 𝑐𝑦

] (3.2) 

The homogeneous coordinates of a point with Cartesian coordinates (𝑥, 𝑦, 𝑧)𝑇 are 

defined as (𝑘𝑥, 𝑘𝑦, 𝑘𝑧, 𝑘), where 𝑘 ≠ 0 is an arbitrary constant. In the particular case of 𝑘 =

0, the coordinates determine a vector, or in other words a direction. The conversion from 

homogeneous to Cartesian coordinates is performed by dividing the first three components 

of the homogeneous coordinates by the fourth.  

Taking the assumption that the world and image points are represented in homogeneous 

coordinates, then the central projection can be expressed as a linear mapping between their 

homogeneous coordinates in terms of matrix multiplication by (3.3). 

[
𝑢
𝑣
𝑧𝑐
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]
⏟        

𝐴

[
𝑥𝑐

𝑦𝑐

𝑧𝑐
] (3.3) 

Where the arbitrary constant k of Cartesian coordinate transformation is taken 𝑧𝑐 which 

cancels the denominator of the 𝑢 and 𝑣 coordinate terms, equation (3.1) and (3.2). The 𝐴 

matrix is called as intrinsic matrix or calibration matrix [15]. 

If the coordinates of a point 𝑝𝑤 are expressed in other reference frame {𝑤} than the 

camera reference frame {c}, it can be expressed in the camera reference frame, by a 

homogeneous transformation 𝑇.
𝑐
𝑤 = [𝑅|𝑡] composed of a rotation 𝑅 and a translation 𝑡. 

𝑝𝑐 = 𝑇.
𝑐
𝑤𝑝

𝑤;  𝑇.
𝑐
𝑤 = [𝑅|𝑡] = [

𝑅3×3 𝑡3×1

01×3 1
] (3.4) 

The 𝑇.
𝑐
𝑤 = [𝑅|𝑡] ∈ ℝ

4×4 matrix is referred to as the external matrix of the system. Finally, 

the pinhole camera model can be express as: 

𝑝𝑝ℎ = 𝐴[𝑅|𝑡]𝑝𝑤 (3.5) 

3.2.2. Camera calibration  

Camera calibration means the identification of the intrinsic 𝐴-matrix terms of the camera. 

This problem is usually approached from the estimation of the camera pose with a calibration 

pattern. 

For pose estimation, the Perspective-n-Point (PnP) problem [16] is formulated where the 

objective is to minimize the reprojection error (3.7) of 3D points in the image plane {𝑝ℎ}.  
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Given a point 𝑝𝑐 ∈  ℝ3 belonging to the knowing pattern located in real-world 3D space 

and expressed in the camera reference frame {𝑐}, it can be expressed in the image camera 

plane reference frame {𝑝ℎ} as pph ∈ ℝ2. The relationship between the two reference frames 

is provided by the pinhole camera model in (3.5). 

The pinhole model can be improved with radial, tangential, or prism distortion 

corrections, adding 𝑛 set of 𝑘𝑖  parameters to the model [17], [18]. The set of internal 

parameters of the camera model can be expressed by the vector 𝛿 = (𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦, 𝑘1, … , 𝑘𝑛). 

If the point is expressed in coordinates of the pattern reference frame 𝑝𝑤, there exists an 

extrinsic homogenous transformation 𝑇.
𝑐
𝑤 to relate the reference frame of the pattern to the 

camera reference frame Equation (3.4) is used. 

As discussed above, the transformation 𝑇.
𝑐
𝑤 = [ 𝑅.

𝑐
𝑤|𝑡𝑤

𝑐 ] is a rototranslation composed of 

the pattern’s orientation 𝑅.
𝑐
𝑡 = 𝑅𝑥(𝜃1)𝑅𝑦(𝜃2)𝑅𝑧(𝜃3) to the camera and the pattern position 

vector to the camera 𝑡𝑤
𝑐 ∈ ℝ3. Thus, the parameter vector to be identified to obtain the 

camera–pattern relationship is 𝜃 = (𝑅, 𝑡) = (𝜃1, 𝜃2, … , 𝜃6) ∈ ℝ
6. 

Finally, the camera model remains as a function (3.6) that projects points 𝑝𝑤 ∈ ℝ3 to 

𝑝𝑝ℎ ∈ ℝ2 points of the camera image plane. 

𝑝𝑝ℎ = 𝛹(𝛿, 𝜃, 𝑝𝑤) (3.6) 

Calibration problem is the problem of minimizing the reprojection error Equation (3.7) of 

the observed calibration pattern features and detecting feature. One of the classic features to 

identify by computer vision are the corners. If the pattern is known, we know a priori the 3D 

position of these corners in the reference frame of the pattern. 

𝐸̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ [𝛹(𝛿, 𝜃, 𝑝𝑖
𝑤) − 𝑂(𝑝𝑖

𝑤)]2

𝑝𝑖
𝑤∈∁

  (3.7) 

where 𝑝𝑖
𝑤 ∈ ∁ and ∁ is a corner set of the pattern. 𝑂(𝑝𝑖

𝑤) ∈ ℝ2 is the corners obtained 

in the camera plane. Furthermore, since all points 𝑝𝑖
𝑤 belong to a pattern plane, the 𝑧-

component of all corners in the pattern frame will always be 0. This quality allows solving (3.7) 

using specific methods such as the Infinitesimal Plane-Based Pose Estimation (IPPE) [19]. 

The estimation of internal camera parameters requires a learning phase modeled in (7) 

as an optimization problem. In addition, identifying the six parameters to define the 

transformation 𝑇.
𝑐
𝑤 between the pattern calibration and the camera, involves a similar 

process. Although both processes can be clustered as shown in (3.7), the internal camera 

parameters 𝛿 will be constant for a particular vision system; however, the position of the 

pattern may change.  
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3.3. Image stabilization   

In the work of J. Dong and H. Liu [20] the authors define video stabilization as "the process 

of improving video quality by eliminating the effect of fluctuating motions due to wobble". 

This paper focuses on video stabilization for a real-time system in the infrared spectrum 

mounted on an unmanned aerial vehicle. 

The authors classify the systems into three different groups: sensor and lens based, 

mechanical tool based and computational tool based. The first ones focus on the way the 

camera receives the light. The latter aims to eliminate undesirable vibrations during recording. 

Finally, computational tools use mathematical algorithms to improve video quality. The latter 

do not require additional software or knowledge of the capture device. In turn, computational 

methods are divided into delayed and offline. 

These classifications can also be found in works such as those of Adeel Yousaf et al. in 

[21] or M. Ahmed in [22], who also contemplates within the digital methods those that use 

electronic processing to control the stability of the image, defining them only as software 

algorithms. In J.Dong et al. in their work [23] they divide video stabilization into mechanical 

and software based. On the other hand, S. Ertürk et al. in their work [24] differentiates 

between mechanical-optical stabilizing systems that are those that use gyroscopic sensors or 

adjust the angle of refraction, mechanical-digital systems that are those in which the 

movement is corrected with digital processing and mechanical and purely digital actuators 

that are those systems where the estimation and correction of the movement is done digitally. 

Due to the different classifications given by the cited authors, this section focuses on the 

two broadest types of stabilization: mechanical stabilization and digital or computational 

stabilization. In several works such as that of X. Cheng et al. [25] the two types of stabilization 

are employed together to improve the final system. 

In the image stabilization process, a series of steps must be carried out in order to 

calculate the movements acting on the system and correct them. The steps for motion 

stabilization are based on estimating the movement that is occurring, correcting it and, in the 

case of digital stabilization, compensating the stabilized image. There are a multitude of 

techniques to identify motion, in the following lines the main techniques and theoretical 

foundations found for the measurement of motion in video stabilization systems with 

mechanical and computational techniques are discussed. In addition, this section presents 

some of the theoretical foundations that are the basis for understanding the steps necessary 

for stabilization from mechanical and computational perspectives. 
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3.3.1. Mechanical stabilization 

Mechanical stabilization focused on the camera aims to reduce camera body movements 

caused by unintentional actions. This type of stabilization can be carried out by purely 

mechanical devices, or by more complex systems based on mechanical sensors and actuators. 

Some of the simplest systems used to stabilize a camera body are tripods and monopods. Both 

consist of external devices that are attached to the camera to prevent camera movement. In 

the case of UAVs, the goal of the vision systems is the same, however, these vehicles can make 

very fast movements. This versatility in movement poses a problem in terms of image capture. 

In real life, the mechanical stabilization solution for this is the so-called gimbal which is a 

support system that allows the camera to maintain the desired angle so no matter what the 

motion is, the direction of shooting remains the same Fig. 3.2. Some other more advanced 

gimbals also include anti vibration features. 

 

Fig. 3.2. Drone with gimbal stabilizer. Artificial image generated with Stable Diffusion AI [26]. 

In mechanical stabilization systems used in robotic applications such as drones, there are 

two phases: One for motion estimation and one for motion correction or smoothing. 

As an example of mechanical stabilization in robotics using electromechanical actuators, 

WS. Rone et al. in [27] propose a system for mechanical stabilization of a robot by adding a 

robotic tail. To stabilize the robot body at each movement, motions and weight distributions 

are measured with digital sensors. Then, a response is computed and angles are sent to the 

electromechanical actuators of each tail segment. 

An example of stabilization for a control system is shown by X. Cheng et al. [25] where 

they use a hybrid stabilization system for a vision robotic platform. It uses the acceleration 

information in the XYZ axes and transforms them into rotation angles, as well as giving 

information to the image stabilization unit. 



 

-61- 

 

The measurement of motion in mechanical systems is usually performed with sensors 

that determine certain kinematic states of the vision system such as positions, velocities or 

accelerations in different representations and coordinate spaces. These sensors, in general, 

are electromechanical or optoelectronic devices capable of transforming the measurements 

of the desired states into analog or digital electronic signals. An example of these devices are 

the inertial measurement units or IMU which integrate a set of sensors that allow the 

measurement of different states such as accelerations, velocities and attitudes. 

To correct the motion in a mechanical system, it must be cancelled by performing the 

opposite motion. Knowing the direction, sense and modulus of the movement, it is possible 

to correct this movement by applying a movement with the same direction and modulus, but 

in the opposite direction. One way to compensate these movements is the use of 

servomotors. These actuators consist of an electric motor, an encoder that transforms the 

rotational position into electrical signals, a control system to position the motor by means of 

electrical pulses and a regulation system to modify the speed and torque of the motor. The 

positioning control is performed by means of a PWM (pulse-width modulation) signal, which 

consists of a control signal by means of a periodic pulse train. By modifying the width of the 

pulse sent to the servomotor, its final position is varied. By sending a position to the 

servomotor, it works as a closed-loop control system through a feedback based on the 

encoder information and giving great precision to the final positioning. In this way, by means 

of sensors that measure the movements and servomotors that compensate them, a system 

can be mechanically stabilized. 

3.3.1.1. Example of mechanical stabilization in AirSim 

Assume a drone with a camera placed at the bottom to capture images in the zenith 

plane. If the vehicle is hovering at a certain altitude and stable, the attitude of its yaw axis is 

perpendicular to the ground plane or image plane Fig. 3.3 (a). However, if the vehicle moves 

horizontally while keeping the altitude, the field of view no longer corresponds to its 

perpendicular projection on the surface Fig. 3.3 (b), but a slightly deviated plane. 

To correct this effect and/or simulate the behavior of a gimbal in AirSim, it can be defined 

in the settings of the settings.json file [28]. 

To keep stable zenithal plane, it is necessary to orient the gimbal to the ground, in other 

words to rotate -90º the x-direction axis, corresponding to the Euler pitch angle. 

Fig. 3.3 shows the case of the movement of a drone in the AirSim environment when the 

gimbal is without stabilization and when we introduce stabilization. Fig. 3.4 (a) shows from an 

external observer the position of a drone when it moves horizontally, to do so it acquires a 



 

-62- 

 

certain inclination in the pitch and roll axes. Fig. 3.4 (a) and (b) show the image captured using 

the gimbal without stabilization and with stabilization. 

 

(a) 

 

(b) 

Fig. 3.3. Deformation of the zenithal field of view by clearance of a rotary wing drone. A) Ideal zenithal 

plane. B) Effect on the field of view. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3.4. Gimbal simulation in AirSim. a) Image using a gimbal without stabilization, b) Image using a 

stabilized gimbal. 



 

-63- 

 

3.3.2. Computational stabilization 

Computational image stabilization systems work on sequences of frames previously 

captured by the vision system, inferring on the data matrix associated with these images 

through the use of different algorithms. 

Works such as A. Hamza et al. In [29] or WC. Hu, CH. Chen, et al. [30], address the problem 

of real-time stabilization for fast vehicles using a feature tracker. The method employed is 

divided into four steps: estimation of the frame motion, classification of the feature points 

belonging to the background or foreground, calculation of the global motion using the optical 

flow of the background points, and a filtering using a Kalman filter. Finally, the frame motion 

is compensated by applying an inverse and smoothed version of the global motion vector. C. 

Chen et al. in [31] approach the problem in the same way, but a DBSCAN (Density-Based 

Spatial Clustering) algorithm is used for background point separation. 

On the other hand, S. Liu et al. in [32] propose a variation of the optical flow method 

called “SteadyFlow”. This method enforces spatial coherence by replacing feature trajectories 

with pixel profiles. Pixel profiles are motion vectors collected from the same pixel over time. 

In addition, this method can treat spatially variant motion making it suitable for processing 

scenes with depth. For its initialization, the optical flow technique is used, and discontinuous 

motions are discarded by spatiotemporal analysis. It ends by recreating the final image with 

the "as-similar-as-possible" technique. This method achieves high performances, but in offline 

applications because it is an iterative process.  

In the work of SK. Kim et al. [33], authors use only background features points. The 

perspective projection model is used to describe the motion and using the RANSAC (Random 

Sample Consensus) algorithm, the fundamental transformation matrix is calculated. Then, the 

feature points are transformed sing this matrix. The distance between points is calculated with 

𝐿2 norm. Finally, a set of correspondences of points exceeding a specific threshold is 

determined. The process is repeated K-steps and the fundamental matrix that provides the 

largest number of feature correspondences is selected. A Kalman filter is used for intentional 

motion estimation. 

In this way, computational systems are generally decoupled from the physical hardware 

elements, providing a robust alternative to changing hardware elements, being invariant to 

the physical system and easily scalable, which can translate into cost reduction. 

By applying digital image processing algorithms, the aim is to reduce vibrations and 

unintentional movements of the video. The computational stabilization process consists of 

the following steps: First, motion estimation, followed by motion correction and finally, frame 

compensation. While the concept of motion estimation and correction are similar to 
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mechanical stabilization, frame compensation is a new action introduced in this type of 

stabilization. Specifically, frame compensation refers to the fill that must be introduced into 

the image once the motion has been corrected so that the image maintains its original 

dimensionality. It can be said to be a padding action. 

In the following sub-sections, the computational stabilization is focused on the three 

stages mentioned above, which are described in more detail in the following sections. 

3.3.2.1. Digital image motion 

A video is a sequence of images at different time moments called frames. To measure 

motion in a video we rely on the premise that the points of light that define an area in an 

image undergo minimal alterations, either in shape, color, brightness, etc... between adjacent 

frames. Thus, motion is defined as a correlation of successive images defined by a trajectory 

or displacement. In the work of F. Xiao et al. [34] the effect of motion in a digital image is 

shown by capturing a single point of light with long exposure time, thus motion can be 

observed in digital images. 

3.3.2.1.1. Movement models 

Based on the way the motion space is represented in the image, a model can be used to 

represent it in 2D, 3D.  Also, the motion transformations can be described by 2D methods, 3D 

methods or something in between called 2.5D. The 2D motion models define the image space 

as a two-dimensional environment with two coordinates. The types of affine transformations 

that can occur in these models include rotations, translations, scaling or the combination of 

all of them such as projective (Homographic) transformations. The affine transform preserves 

parallelism and midpoints and satisfies transformations such as rotations, scaling, shearing or 

reflections. The projective transform is more general than the affine transform. 

The advantage of projective models is that they are more robust and computationally 

less expensive, so they are suitable for real-time applications. The main disadvantage is that 

they are valid only for flat scenes and do not work well in scenes with a lot of depth. 3D motion 

models define the image space as a three-dimensional environment with three coordinates. 

They require defining a structure for the motion that contains many characteristic points. 3D 

model transformations have the advantage of good performance with deep scenes. As a 

disadvantage is that they do not work well on frames without depth variation, and it is 

computationally very expensive, so they are not usually applied for real time solutions [35]–

[37].  

Some of the methods optimized for 2D motion models perform as well as methods used 

for 3D models while maintaining the robustness of 2D methods. These intermediate methods 
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are called 2.5D and reduce the distance between 2D and 3D methods by relaxing the 

requirements for 3D reconstruction [38], [39]. 

3.3.2.1.2. Types of approximation for motion estimation in videos 

Pixel-based algorithms or feature-based algorithms can be used for motion estimation. 

Pixel-based algorithms, also called direct methods, check the pixel-by-pixel brightness 

changes between two adjacent frames. These algorithms can perform image-to-image 

matching with high accuracy. The main drawbacks are the large computational load on the 

correspondences and that, if in some scenario it is not executed correctly, the information can 

drop below a certain level and smear the area (brightness modifications) [40].  

Feature-based algorithms compare points of interest or descriptors. Descriptors are 

points that are considered characteristic and invariant under certain conditions. Typically, 

these methods are based on identifying and tracking descriptors associated with characteristic 

points or regions such as corners, edges or textures. In this way, the computational load is 

focused on regions of the image that contain a large amount of information rather than on 

the entire image [41]. In the work of S. Battiato et al. [42] the authors use a feature-based 

approach by employing the SIFT (Scale Invariant Feature Tracker) technique. The trajectories 

of the points are evaluated between frames to estimate the motion computed by Euclidean 

distance. A modified version of the iterative least squares method is used to avoid estimation 

errors. An adaptive motion vector integration filter MVI (Motion Vector Integrator) is used to 

separate the intentional motion. 

3.3.2.1.3. Frame matching 

The goal is to compare two consecutive frames and find the matching matrix between 

them. The correspondence matrix, or transformation matrix between the H-frames, indicates 

the spatial transformation that the observer has undergone. Finding this transformation 

matrix is widely known as Perspective-n-Point (PnP) [16]. Depending on the type of approach 

selected (direct or descriptor methods), different algorithms are used to relate the points 

between adjacent frames. Traditional correlation methods such as least squares or 

optimization use all the information contained to calculate the matrix parameters. Algorithms 

for motion estimation are generally based on techniques of four types: gradient techniques, 

pixel recursion techniques, block matching techniques, and frequency-based techniques; 

more details in [22].   

The sensitivity of PnP methods to the descriptors or features of one frame being well 

related to that of the next frame requires an association strategy. Algorithms such as RANSAC 

(Random Sample Consensusson) [43], are able to compute the parameters of the 

correspondence matrix from a data set with errors by an iterative process that removes 

outliers which allows to improve the correspondence between frames and finally the 
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estimation of the transformation matrix. Different metrics such as SSD (Sum of Squared 

Differences), SAD (Sum of Absolute Differences), MAD (Mean of Absolute Differences), or 

correlation are used to calculate the error. 

Finally, from any of the above methods, a correspondence/transformation matrix H is 

obtained, which can be expressed as (3.8). 

𝐹(𝑢, 𝑣, 𝑧′)𝑇 = 𝐻 ∙ 𝐼(𝑢, 𝑣, 1)𝑇;  𝐻 = [
𝑅2×2 𝑡2×1

𝑝1×2 ℎ33
] |𝑡 = [𝑡𝑥, 𝑡𝑦] (3.8) 

where the original image is 𝐼(𝑢, 𝑣)𝑇 and its homogeneous coordinates are 𝐼(𝑢, 𝑣, 1)𝑇. The 

resulting image in homogeneous coordinates is 𝐹(𝑢, 𝑣, 𝑧′)𝑇. If the type of transformation 𝐻 is 

not projective 𝑧′ = 1, ℎ33 = 1 y 𝑝1×2 = 01×2. The combination of the terms of 𝐻, allow us to 

perform translations, rotations, scalings and perspective transformations. Considering ℎ33 =

1 and 𝑝1×2 = 01×2, the matrix 𝐻 corresponds to the set of affine transformations known as 

homographic matrix. Thus, the terms of 𝑡 correspond to pixel translations. 

The 𝑅2×2 matrix allows scaling, shearing, rotations, etc. For scaling 𝑅 = [
𝑠𝑥 0
0 𝑠𝑦

], where 

the terms 𝑠𝑥 and 𝑠𝑦 means the scale factor in x and y axis respectively. If 𝑠𝑖 < 1 the images 

are reduced, while if 𝑠𝑖 > 1, the result is that of zooming in on each of their 𝑖 =

{𝑥, 𝑦} coordinates. Shearing on the image 𝐼 is produced by applying an 𝑅 = [
1 −𝑗𝑥
−𝑗𝑦 1 ], 

where the terms 𝑗{𝑥,𝑦} of the matrix indicate the tilt on each of the coordinates. A rotation 

𝜃with the rotation axis perpendicular to the image coordinate origin, upper left corner of the 

image, can be expressed by 𝑅 = [
cos 𝜃 sin 𝜃
− sin 𝜃 cos θ

]. To change the center of rotation to the 

coordinates (𝑐𝑥, 𝑐𝑦)
𝑇

, the matrix 𝐻 is the combination of two transformations, a rotation 𝜃 

and a translation 𝑡 that keeps the central coordinate (𝑐𝑥, 𝑐𝑦)
𝑇

invariant. This is achieved by 

𝑡𝑥 = 𝑐𝑥(1 − cos 𝜃) − 𝑐𝑦 sin 𝜃 , 𝑡𝑦 = 𝑐𝑦(1 − cos 𝜃) + 𝑐𝑥 sin 𝜃. 

Finally, applying the inverse homographic matrix 𝐻 on the last frame allows to reduce the 

variation it has undergone with respect to the previous frame, stabilizing the image. More 

details on computational stabilization can be found at [44]–[47]. 

3.3.2.2. Example of computational correction 

The objective of this subsection is to illustrate an example of computational correction in 

which it is intended to computationally determine the transformation undergone by an image 

and compare it with reality in order to estimate the degree of accuracy of the basic 

computational correction system. Given two images taken by the same vision system. The 
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second image is the result of rotating 90º degrees the first one and capture by the vision 

system. 

A feature-based approach is used for motion estimation. To extract the descriptors of the 

two images to be compared, the ORB (Oriented FAST and Rotated BRIEF) method is used, then 

a point matching is performed between the two frames and the best correspondences are 

filtered. Finally, the homographic transformation matrix is calculated from the calculated 

point correspondences. 

The ORB feature extractor is a point detector that combines the FAST method with the 

performance enhancement offered by BRIEF (Binary Robust Independent Elementary 

Features). The FAST (Features from Accelerated Segment Test) algorithm consists of 

discriminating corner points as an invariant element to create a descriptor. To discriminate 

the feature points, a central pixel P and sixteen pixels in a circle around it are taken. If the 

intensity of at least twelve consecutive pixels of the sixteen pixels has an intensity equal to 

the intensity of P plus a threshold or minus that threshold, the point is chosen as the 

descriptor. The BRIEF (Binary Robust Independent Elementary Features) algorithm trains 

decision trees to recognize intensity patterns and correlate them between two images. This 

method is effective correlating images with different perspective but is less sensitive to 

correlate elements that undergo rotations.  

A FLANN (Fast Library for Approximate Nearest Neighbors) matcher is used for the 

correlation of the minutiae of two images, which contains algorithms that match in a fast and 

efficient way using a clustering and search in a multidimensional space. Using the KNN (k-

nearest neighbors) method, the matched points are filtered. These points are used in the PnP 

problem to compute the homographic transformation matrix. Fig. 3.5 shows the ORB features 

extracted over the same scene at two different times Fig. 3.6 shows the correlation of the 

points by applying the FLANN matching algorithm. 

 

Fig. 3.5. Features identified by the ORB algorithm for two images belonging to the same scene but rotated 

90º. 
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Fig. 3.6. Relationship of feature points using the FLANN matcher for images rotated 90°. 

To check the accuracy of the system, four rotation tests are performed.  

Fig. 3.7 shows two frames in which the main transformation is a -90º rotation. The inverse 

homographic matrix is applied and finally the initial frame and the corrected one are 

compared on the last image.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.7. Results of the computational stabilization process for a -90º rotation. (a) Reference image, (b) 

Image to be corrected, (c) Image corrected, (d) Image (c) overlapped on (a). 



 

-69- 

 

To quantitatively compare the results, the homographic transformation is considered to 

correspond to an affine transformation without scaling. Considering (3.8), 𝜃 = tan−1
sin 𝜃̂

cos 𝜃̂
=

tan−1
ℎ12

ℎ22
. Under these considerations the results of Table 3.1 are obtained. It is observed that 

the error in estimation is less than 8% so that for minor perturbations of the vibration style 

can be a good video correction strategy. 

Table 3.1: Summary of rotation results. 

Rotated angle 𝜽 [º] Estimated angle 𝜽̂ [º] Error [º] 

-90,00 -88,95 -1,05 

90,00 96,87 -6,87 

-90,00 -88,78 -1,22 

90,00 94,88 -4,88 

3.4. Object detection 

Object detection is a big challenge for vision systems. According to Youzi Xiao in [48] “The 

essence of object detection is to locate and classify objects, which uses rectangular bounding 

boxes to locate the detected objects and classify the categories of the objects”. This area of 

computer vision is closely related to classification, semantic segmentation and instance 

segmentation. While object detection classifies at the bounding boxes level, semantic 

segmentation and instance segmentation detects and classifies at the pixel-level. In addition, 

instance segmentation can differentiate between different objects of the same class. For 

example, in an image with two persons, semantic segmentation identifies them as person and 

instance segmentation identifies person 1 and person 2 [48]. Classical approaches in object 

detection invest efforts in defining what is to be detected to identify regions of interest (ROI), 

feature extraction and finally classification. Classical examples can be the identification of 

moving objects in an image sequence, some practical cases are related to security or vehicle 

identification. Incorporating a classifier at the output of the regions of interest allows the 

identification of expected objects such as different types of vehicles. Some of the techniques 

widely used in conventional image classification are Support Vector Machines (SVM) and 

Boosting. 

However, challenges that are simple for a human, such as differentiating between a chair 

and an elephant, can be very complicated for a machine because classifiers need "good" 

features to differentiate them. In this context, "good" features are understood as the set of 

characteristics that are able to differentiate the spaces of the set to be classified. Some of the 

classical feature extraction strategies are the identification of corners with Harris or Shi-

Tomasi algorithms, the extraction of main features such as Scale-invariant Feature Transform 
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(SIFT), Speeded-Up Robust Features (SURF), Features from Accelerated Segment Test (FAST), 

Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and Rotated BRIEF 

(ORB) or Histograms of Oriented Gradients (HOG). 

Although descriptors have been and continue to be widely used for a multitude of 

applications, when it comes to object detection, current trends are driven by deep learning. 

Advances over the last 10 years in deep learning, challenges such as the "ImageNet Large 

Sacale Visual Recognition Challenge" and computational capacity have catapulted image 

classification strategies based on convolutional neural networks (CNN). These networks are 

essentially composed of two blocks, the first one in charge of feature extraction and capable 

of learning the features that best classify a set of classes, and another classification block. 

Undoubtedly the main leap in object identification concerns the feature extraction phase. 

Work such as that of Youzi Xiao et al. [48], classifies object detection algorithms in a first 

level by "handcrafted features" and "Learned features". Inside the first group are pioneering 

algorithms such as Viola-Jones [49] widely used in face detection systems, oriented gradient 

detectors (HOG) [50], dimension-based partitioning and merging clustering (DPM) [51], 

Oxford-MKL [52], NLPR-HOGLBP among others. Regarding the level of "Learned features", it 

is also generalized in the literature the classification of detectors between two-stage object 

detection and one-stage object detection. While the two-stage object detection group 

separates the object localization task from the classification task, the one-stage object 

detection strategies perform the identification and classification tasks in the same phase 

thanks to the combination of an output function that is a regressor and a classifier. One of the 

main advantages of two-stage detection is the accuracy of detection, however, they are very 

slow. In contrast, single-stage detection is very fast, but the detection accuracy is generally 

lower than two-stage detectors. One of the most prominent architectures for two-stage 

object detection are the Region-based Convolutional Neural Networks (R-CNN) [53], [54] and 

for one-stage object detection the You Only Look Once (YOLO) networks [55] is undoubtedly 

one of the most recognized. In both cases, one/two-stage detectors, the output is composed 

of a ROIs vector and an associated class. 

The learning problem of each of these branches focuses roughly on the cost function of 

the optimization problem associated with learning. In review papers such as the one by Youzi 

Xiao et al. [48], a section of loos function for object detection in deep learning approach is 

included that classifies cost functions associated with classification, regression and 

multitasking that allow the reader to go down to the level of optimization required by 

supervised classification methods. 

On the other hand, the growing demand for CNN-based computer vision technologies on 

lightweight devices such as cell phones has boosted the study of lightweight approximations 
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of networks from the previous groups, these groups are referred to as "Lightweight networks" 

[56]. 

Object detection with the above strategies corresponds to supervised learning methods 

and is limited to the identification of categories found within the training database. Identifying 

new objects involves a new image labeling process on a large volume of data and retraining. 

However, this may not be possible when the number of images available for the new class to 

be identified is very low with respect to other classes. Novel approaches in detection such as 

Few-Shot Object Detection (FSOD) [57], [58] seek to recognize new (unseen) classes of objects 

using few examples. According to the work of G. Huang et al. [59] "the standard approach in 

few-shot object detection was to pretrain a backbone for ImageNet classification, then train 

an object detector on top of this backbone on the base classes, and finally finetune on the 

novel classes". Breakthroughs in self-supervised learning have made it possible to initialize the 

backbone of FSOD methods from representations with pretext tasks, opening up new 

opportunities for study. 

Throughout this section it is shown the main challenges faced by object detectors, the 

main evaluation metrics, and an example of object detection using cutting edge strategies 

embedded in UAV computer companion systems. 

3.4.1. Problems of object detection  

Object detection systems present a multitude of challenges in real-world scenes. Each 

new environment brings new challenges, but in general, detection problems can be classified 

into four main groups: 

• Occlusions: Real-world scenes show situations in which the objects to be identified are 

not fully observed. These situations are considered occlusions. Occlusions generally 

result in a loss of object information that can lead to a loss of detection or false 

detection. The situations can be very different. Classic examples of occlusions can be 

shadows on objects or overlapping in the field of view of different objects. Detection 

of objects of the same class or not in crowded scenarios such as pedestrian detection 

[60] or vehicle traffic detection [61] is essential for certain applications. Classical 

solutions to these problems use additional object or context information such as 

object gray information, local feature information or object boundary information. 

More recent work such as Kai Chen et al. [62] combines GANs (Generative Adversial 

Nets) to generate images with occlusions. This new data set with occlusions is used to 

train a Faster R-CNN detector. This allows the detector to be more robust to occlusions. 

• Multi-scale object detection: Detecting objects at different scales is a continuous 

challenge for detectors. Both a scaled-down object and a scaled-up object with respect 

to the detector's learning data set can be considered to lose defining information. For 
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this reason, multi-scale object detection presents a major challenge for object 

detection systems. From a Deep Learning point of view, detection approaches based 

on two-stage object detection have proven to be more robust in multi-scale detection 

than one-stage object detection systems. While conventional CNN approaches such as 

Faster R-CNN and YOLO use features of the last convolutional layer for the regression 

cost function, recent approaches [63], [64] use features of different convolutional 

stages. These strategies are referred to as multi-layer feature fusion and multi-layer 

detection. 

• Class imbalance: A typical problem in any classification problem is bias data [65]. In 

object detection problems, a classification phase or stage is required. Systematic 

reviews such as [48] mention how one-stage detectors are vulnerable to data bias, 

being more robust systems that propose candidate regions such as two-stage object 

detectors.  From the point of view of object detection, works such as those of TY. Lin 

et al. [66] have been proposed, which act on the cross-entropy function using weights, 

making it easier for the network to pay more attention to the smaller classes. 

• Redundant bounding boxes: The redundancy of the bounding-boxes means to 

deduplicate the repeated boxes on the same object and to select only the most 

accurate bounding-boxes. The deduplication operation of the bounding-boxes can be 

used for the intermediate process of object detection and processing of the final 

results. This essential element in the object detector pipeline is called Non-Maximum 

Suppression (NMS). To explain the classical operation of an NMS, let us consider a 

detector that proposes several ROIs (ℬ = {𝑏1, 𝑏2, … 𝑏𝑖}) with a different score (𝑠𝑖) on 

the different classes (𝑐𝑗
𝑖) 𝒮 = {𝑠1, 𝑠2, … 𝑠𝑖}|𝑠𝑖 = {𝑐1

𝑖 , 𝑐2
𝑖 , … , 𝑐𝑗

𝑖} . The main idea of 

traditional NMS is to discard the worst scoring bounding boxes and keep the highest 

scoring one with a threshold value of intersection over junction (IoU) (3.10). Within 

Faster R-CNN architectures, NMS can adjust the number of candidate ROIs to speed 

up the detection process, for one-stage detectors such as YOLO and SSD use the NMS 

to generate the ultimate detector region. Current work such as that of C. Guo et al. 

[67] proposes an attention model-based NMS algorithm called Attention-based 

nonmaximum suppression (ANMS) that shows promising results when implemented 

on a Faster R-CNN architecture based on the VGG16 network and tested with 4 

classical databases. 

• Detection speed: Detection speed is a fundamental and sometimes critical indicator 

for many applications. In this sense, one-stage networks and especially ligthweight 

networks are good candidates. Especially ligthweight networks minimize 

computational operations by reducing their architecture, thus reducing inference 

time. Moreover, one-stage networks are showing amazing results in terms of 

performance as reflected in the work of the latest model YOLOv7 and its reduced 

version YOLOv7-tiny [68], where the authors claim that YOLOv7 outperforms all known 

detectors in speed and accuracy in the range of 5 frames per second (FPS) to 160 FPS. 
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3.4.2. How to evaluate object detection?  

There are a multitude of proposals for the evaluation of object detection systems 

depending on the final goal. However, the decoupled evaluation of object detection, the 

classification of regions of interest, is widespread in the literature. On the other hand, in the 

comparison of embedded systems, metrics can be used to evaluate inference time, energy 

consumption or computational performance, among others. 

In terms of detection, the mean hit ratio (MHR) per image and the intersection over union 

(IoU) can be used. The first metric compares the number of correctly identified ROIs (3.9) per 

image and the second, IoU evaluates the quality of the fit of the bounding boxes getting from 

the detection. In (3.9) the number of ROIs identified in each i-image is divided by the ground 

truth ROIs image. When all ROIs contained in the ground truth image (class ROI (i)) are 

identified, 1 is obtained, false positives are identified in case of values >1 and in case of <1, 

detections are lost. The results for all i-test images are summed and divided by the total 

number of images. Thus, the best MHR=1. IoU is defined as the ratio of the area of the 

overlapping region between two given ROIs to the area of their union, equation (3.10). These 

ROIs can be those of detection and ground truth. The coordinates considered in each case are 

normalized to the image size, thus ensuring that the IoU provides a bounded measure 

between 0 and 1 of the goodness of fit between the detection frame obtained during 

inference and the test. 

𝑀𝐻𝑅 =  
∑

𝑅𝑂𝐼𝑠(𝑖)
𝑐𝑙𝑎𝑠𝑠 𝑅𝑂𝐼(𝑖)

𝑁.𝐼𝑚𝑎𝑔𝑒𝑠
𝑖

𝑁. 𝐼𝑚𝑎𝑔𝑒𝑠
 

(3.9) 

𝐼𝑜𝑈 =  
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 (3.10) 

The classification performance can be evaluated by the combination using a two-

dimensional space with the accuracy (3.11) and the F-Score (3.13) as shown in [65]. 

The first metric, accuracy, indicates an overall accuracy of the positives, however in an 

unbalanced sample a classifier can show a very high accuracy without detecting some classes, 

so the classifier’s will also be unbalanced. For this reason, its typical use the harmonic mean 

between precision and recall (3.12) called 𝐹𝛽-Score or 𝐹1. Where 𝛽 is a weight indicating the 

importance of the precision. If precision and recall have same relevant, 𝛽 = 1. The union of 

these two metrics create a ℝ2-space of accuracy in which the ideal classifier would be at 

coordinates (1,1). 

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 (3.11) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
;  𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (3.12) 

𝐹𝛽 − 𝑆𝑐𝑜𝑟𝑒 = (1 + 𝛽
2) ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.13) 

where 𝑇𝑝, 𝑇𝑛, 𝐹𝑝 and 𝐹𝑛 mean the set of combinations between true-false and positive 

or negative cases in the confusion matrix. In addition, accuracy-𝐹1plane show an interesting 

indicator of the classifier performance. Another widely used metric is the Receiver Operating 

Characteristic (ROC) curve corresponding to the precision-recall curve. The closer the ROC 

curve is to the upper left corner, the better the performance of the detector is. The area under 

the ROC curve (AUC) is another indicator of classifier quality, the closer it is to 1 the better the 

performance of the classifier. 

The evaluation of computational efficiency can be measured by the mean inference time 

(MIT) as shown in equation (3.14). This ratio is the result of the quotient of the sum of the 

inference time for detection on each of the images by the number of total images. 

𝑀𝐼𝑇 = 
∑ 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒(𝑖)
𝑁𝑢𝑚.𝐼𝑚𝑎𝑔𝑒𝑠
𝑖

𝑁𝑢𝑚. 𝐼𝑚𝑎𝑔𝑒𝑠
 (3.14) 

It is important to note that the general detection systems discussed in this section are 

systems that are decoupled from aircraft, so the metrics presented above are also aircraft 

independent. This means that the evaluation of a vision detector integrated in a UAV can be 

the same as for any other detection application that is not integrated in a UAV. 

3.4.3. Object detection example 

The aim of this example is to test the performance of object detection technologies from 

a drone using a lightweight and low-cost companion computer from different approaches: 

Classical Haar Detector, Single-Soth Detection (SSD) deep detector and a semantic 

segmentation system. Although the problem of semantic segmentation is a different problem 

than object detection, its close relationship to identifying regions of interest and classifying 

them can be related to pixel-level detection. In addition, these systems can be used in 

applications that require object detection. One of the main advantages of these strategies is 

to be able to identify whole regions that cannot necessarily be delimited by a bounding box 

such as roads, the horizon, etc. 

The detectors proposed for this example are pre-trained in different conditions where 

inference is desired. The tests proposed in this example aim to test the robustness of these 

systems to a change of perspective conditions. 
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As for the detection with the Haar-cascade algorithm, it is used to identify the face using 

as support our companion computer. The model used is the one that appears in the OpenCV 

library [69]. The system uses a trained classifier to detect faces, but within the OpenCV library 

there are a multitude of classifiers trained for use with the Haar detector. The format of these 

classifiers is an XML file.  

Haar algorithm has two phases, identifying regions of interest and classifying. As for 

classification, a classifier can be used, and supervised learning of a particular training set is 

used. A difficulty of the classifer is to localize exactly where in an image an object resides. To 

localize the ROI, the algorithm uses a brute force solution named sliding window. Haar 

features are extracted on the image and the classification is performed in different phases 

that increase its computational complexity. If any of the classifiers rejects the window, the 

process does not continue, and the region is rejected. This allows to reduce the number of 

sliding windows and to speed up the detection process. Detailed information can be found in 

the classic paper by Paul Viola and Michaels Jones “Rapid Object Detection Using a Boosted 

Cascade of Simple Features” [70]. 

SSD has two components: a backbone model and SSD head. Backbone model usually is a 

pre-trained image classification network as a feature extractor. The SSD network selected is 

MobilNet (developped by Google) because it is optimized for having a small model size and 

faster inference time. This is ideal to run on mobile phones and resource-constrained devices 

like a Raspberry Pi. For this architecture, the backbone results in a 300x300x3 feature maps 

for an input image. The input layer defines the dimension of the image to inference, in this 

case (300x300 pixels resolution). This architecture can be placed in the one-stage detection 

and Lightweight networks group of detectors. The architecture is downloaded from the 

repository [71] and is trained with 20 classes from the COCO-2017 dataset [72]. The categories 

for which it is trained are: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining 

table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, TV monitor. 

The semantic segmentation architecture used for this example is ENet [73]. The reasons 

are the ENet is about the authors said in their paper “the ENet is up to 18×faster, requires 

75×less FLOPs, has 79×less parameters, and provides similar or better accuracy to existing 

models like the SegNet [74]”. 

The architecture is trained with the Cytiscape database [75] with a set of 20 classes 

categorized into unlabelled, road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, 

vegetation, terrain, sky, person, rider, car, truck, bus, train, motorcycle, and bicycle. 

Generally, supervised learning detection models are trained on external high-powered 

equipment and then the architectures trained are exported on the companion computers to 
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be used in the inference phase.  Some devices such as the Neural Compute Stick 2 (NCS2) [76] 

are intended to improve computational performance in inference processes, so they can be 

used in devices such as the raspberry pi to improve the performance of applications. NCS 

integrates an Intel Movidius Myriad X vision processing unit (VPU) [77] and a set of tools with 

OpenVINO API support [78]. A vision processing unit is a class of microprocessor; it is a specific 

type of AI accelerator, designed to accelerate machine vision tasks. This software 

development kit enables rapid prototyping, validation, and deployment of deep neural 

networks. 

In the example detailed below, a Raspberry Pi 2 Model B (RPI), a Pi camera and an NCS2 

have been used as a companion computer. The camera resolution is set to 640x480 with a 

framerate of 32 fps. The inference of the different architectures requires an adjustment in size 

of the images to the dimensions of the input layer of the networks and the total inference 

time on each image changes. The pickup system is installed on the underside of a DJI family 

of exactocopters.   

Fig. 3.8 shows the device located under the vehicle. This system allows the field of view 

to be changed at different inclinations. Specifically for the tests, an inclination above the 

horizon of 0.10, 45 and 90 degrees is used, the latter being a zenithal image. 

 

Fig. 3.8. Computer vision devise. a) Raspberry Pi computer companion, b) Vibration Stabilizer, c) Pi 

Camera, d) Tilt angle. 

Fig. 3.9 shows examples of applying the SSD and ENet semantic segmentation detectors 

described above to different flight conditions. The first case, Fig. 3.9 (a-b) refers to the use of 

images in an urban environment from a standard perspective of a person or a vehicle. The SSD 

is able to identify a person and a car. The processing speed directly with the accompanying 

computer is 0.5 FPS, however, by adding the NCS-2 the speed increases to 6 FPS. For the ENet 

case it is able to identify the person, vehicle, sidewalk and other feature classes from the 

Cityscape dataset. The inference time is high even with NCS-2, being 0.7 FPS. 
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Fig. 3.9. Example of detection-segmentation by different vision angles. a-b) Detection and semantic 

segmentation in urban environment; c-d) Detection and semantic segmentation in a forest environment 

with a 10º camera tilt from a drone at lower altitude. e-f) Forest environment with a 45º camera tilt from 

a drone at lower altitude. g-h) Forest environment with a 90º camera tilt (zenithal) from a drone at lower 

altitude. 
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The second case Fig. 3.9 (c-d) shows a low altitude flight in a rural environment with urban 

elements (vehicles). SSD is able to identify a vehicle in the foreground, but not vehicles in the 

background or with shadow occlusions. In the case of ENet for these conditions the system 

correctly identifies the region of the main vehicle and a small region of those in the 

background. It also identifies the forest area behind the vehicle but has the problem of 

inference time. 

In the third case, with a low altitude flight and a camera inclination of 45º. Both the SSD 

and ENet systems identify the person in the scene but include in the identification the shadow 

produced by the person. In addition, the semantic segmentation identifies the forest area over 

which the person is walking. 

Finally, in the last of the tests, a zenithal plane is used to capture images with a low 

altitude flight in the same environment as the previous two cases. On this occasion SSD does 

not correctly identify the person and presents a false positive on the shadow that it produces 

on the ground, in the case of Fig. 3.9 (h) the system becomes unstable and does not correctly 

identify the classes. 

Table 3.2 shows a summary of the information taken from the tests described above. It 

can be seen how the inference time of an SSD is much longer than that of a semantic 

segmentation architecture. Although the times are slow compared to real-time video 

(>24FPS), one must consider the low-cost devices that have been used. 

Table 3.2. Deep Learning Object Detection Test Summary. 

 SSD Semantic segmentation 
Time process (RPI & NCS2) 6 FPS 1.5 FPS 

Model architecture MobilNet ENet 
Accuracy 70% 59,5% 

Several classes Yes Yes 
Bounding box Yes Pixel-wise 

Compatible RPi Yes Yes but not adviced 

The tests show evidence of lack of invariance with respect to the point of view of the 

captured images, so that for an embedded system it will be necessary to apply retraining 

strategies, or few-shot detection to improve the accuracy of detection from embedded 

systems. In addition, for real-time applications with accompanying computers, it will be 

necessary to study more powerful embedded systems to lower the inference time on each 

frame of the captured images. 

3.5. Visual object tracking 

Visual object tracking (VOT) can be considered a subfield in computer vision given the 

many opportunities and challenges it presents itself. Some of these challenges are occlusion, 
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background clutter, illumination changes, scale variation, low resolution, fast motion, out of 

view, motion blur, deformation, in and out planer rotation [79]. 

VOT is the process of identifying a region of interest in a sequence and consists of four 

consecutive elements, including target initialization, appearance modeling, motion 

prediction, and target positioning. It is important to describe each of the phases so as not to 

confuse VOT with detection. Target initialization is the process of initially annotating the 

position of the object, or region of interest, using representations such as object bounding 

boxes, ellipse, centroid, object skeleton, object outline, or object silhouette. Appearance 

modeling consists of identifying visual features of the object for better representation of a 

region of interest and effectively building mathematical models to detect objects using 

learning techniques. In motion prediction, the target location or ROI is estimated in 

subsequent frames. The estimation approximates the position of the ROI in the next frame, in 

positioning this information is used together with that of the visual model to fix the most 

accurate location of the target (ROI) using search algorithms such as the voracious algorithm 

used in works such as K. Shafique and M. Shah [80].  

In VOT two scenario levels can be considered, Single Object Tracking (SOT) and Multiple 

Object Tracking (MOT). In SOT the goal is to track a single target among a set of objects over 

a sequence of frames. MOT aims at tracking multiple targets along a given sequence of frames. 

In addition, annual challenges such as the Visual Object Tracking Challenge [81] group VOT 

tracker challenges into four different groups [82], [83]: Short-term tracker (𝑆𝑇0), Short-term 

tracker with conservative updating (𝑆𝑇1), Pseudo long-term trackers (𝐿𝑇0) and Re-detecting 

long-term tracker (𝐿𝑇1). The first two, 𝑆𝑇0 and 𝑆𝑇1, the target position is reported at each 

frame. Although ST0 and ST1 do not implement target redetection and are very sensitive to 

occlusions, ST1 increases robustness by selectively updating the visual model based on a 

tracking confidence estimation mechanism. In the cases of LT0 and LT1, the target position is 

not reported in frames when the target is not visible. The difference between LT0 and LT1 lies 

in the fact that in LT0 The tracker does not implement explicit target re-detection but uses an 

internal mechanism to identify and report tracking failure. On the other hand, the LT1 trackers 

detects tracking failure and implements explicit target re-detection.  

Although MOT, also known as Multi Target Tracking (MTT), systems are outside the scope 

of this section (more information in [84], [85]), it is important to note that they present the 

additional problem to SOT systems in that they require a phase of associating ROIs between 

frames [86]. Among the most popular tools that implement VOT algorithms are OpenCV [86] 

(chosen for this section), DeepSORT [87], [88], Object Tracking MATLAB [89] or MDNet [90], 

[91]. 
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This section focuses on SOT systems implemented in the OpenCV open-source software 

tool. To conclude the section, an example of object tracking system is presented from a drone 

based on a visual object tracking system. 

3.5.1. Visual object tracking: classical approach  

Regarding object tracking, the research of A. Brdjanin, et al. [92] or that of NS Raghava 

and his colleagues K. Gupta, I. Kedia and A. Goyal [93] provide great information of single 

object tracking algorithms as well as a benchmark for each of them from the data obtained 

when used in different scenarios like illumination or scale variation, occlusions, deformation, 

etc. The trackers present in their work are Boosting, Multiple Instance Learning (MIL), 

MedianFlow, Minimum Output Sum of Squared Error (MOSSE), Kernelized Correlation Filter 

(KCF), Generic Object Tracking Using Regression Networs (GOTURN) and Channel and Spatial 

Reliability Tracker (CSRT). Finally, the metrics that were used are the average success rate and 

computational speed in frames per second (FPS). 

Works like that of Jin-Hyeok Park et al. [94] show how an object tracking algorithm can 

be used with AirSim simulator. In this case, an advanced Deep Reinforcement Learning-Based 

DQN Agent Algorithm was used. In a similar way, the work of E. Bondi et al. [95] depicts a very 

specific use of AirSim simulations with object detection and tracking, using it for detection of 

poachers in a custom-built African savanna environment. 

Some of the most popular object tracking algorithms in mentioned literature, 

implemented in OpenCV tracking API [96] are the following: 

• Boosting [97]: A more than a decade old algorithm. Based on an online version of 

AdaBoost, which is the algorithm inside HAAR cascade face detector. Given that the 

objective has already been detected in the first frame, the algorithm assumes that that is 

the objective of the tracking and everything else is background. Then, the classifier runs 

over every pixel close to those of the previous location and a score is stored. The updated 

location will be that where the score is maximum. When more and more frames have 

been checked, the classifier is updated. 

• MIL (Multiple Instance Learning) [98]. The underlying idea for this tracker is somewhat 

similar to that of the Boosting tracker. The most important difference is that it divides the 

original selection and its surroundings into multiple smaller ones. These sections are 

identified and separated into positives and negatives “bags” for its later use. The whole 

positive bag does not equal all positive examples, but at least one of them will be. Giving 

a high chance that in the bag there is at least one image with the target nicely centred. 

• KCF (Kernelized Correlation Filters) [99]. Building upon the ideas of the previous two, the 

KCF tracker makes use of the fact that om the positives bag of the MIL tracker, 

overlapping regions exist which leads to some mathematical properties that can be used 
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for making the tracker more accurate and also faster. Basically, the tracker uses filtration 

over a frame to find the target. 

• CSRT (Discriminative Correlation Filter with Channel and Spatial Reliability (DCF- 

CSR))[100]. The filter works by using a correlation filter trained with HoG (Histograms of 

Gradients.) and Colour Names. With the initial frame input, specific weights are added in 

each frame by the filter, therefore, training it for its repetition in the following frames. 

The spatial reliability map adjusts the filter support to the selected region on the frame. 

• MedianFlow [101]: This tracker uses multiple frames (Both forward and backwards in 

time.) to evaluate where the object will be in the next frame of analysis. By minimizing 

this “ForwardBackward” error, tracking failures can be detected and reliable trajectories 

selected. This set of characteristics allows it to work well in video sequences with 

predictable trajectories of the target and no occlusion of it. 

• TLD (Tracking, Learning, Detection) [102]. Designed with long term tracking in mind, the 

three pillars of the functioning of this tracker are three. Short term tracking, learning and 

detection. The tracking component is based on the MedianFlow algorithm with some 

modifications to improve failure detection. Learning component is based on P-N learning 

and detection component uses a scanning-window grid. 

• MOSSE (Minimum Output Sum of Squared Error) [103]. This tracker works by using an 

adaptive correlation filter in the tracking of the object. The complete video footage is pre-

processed, and stable correlation filters are produced when initialized using a single 

frame. As the video progresses the filter is updated on the pre-processed domain. 

• GOTURN (Generic Object Tracking Using Regression Networs) [104]. This deep learning 

algorithm learns a generic relationship between the motion and the appearance of the 

object using a regression-based approach to object tracking. Essentially, they do a 

straightforward regression to locate target objects with a single pass feed through the 

network. The network takes two inputs: a search region from the current frame and a 

target from the previous frame. The network then compares these images to find the 

target object in the current image. 
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Abstract: New applications are continuously appearing with drones as protagonists, but all of them 

share an essential critical maneuver—landing. New application requirements have led the study of 

novel landing strategies, in which vision systems have played and continue to play a key role. 

Generally, the new applications use the control and navigation systems embedded in the aircraft. 

However, the internal dynamics of these systems, initially focused on other tasks such as the 

smoothing trajectories between different waypoints, can trigger undesired behaviors. In this paper, 

we propose a landing system based on monocular vision and navigation information to estimate the 

helipad global position. In addition, the global estimation system includes a position error correction 

module by cylinder space transformation and a filtering system with a sliding window. To conclude, 

the landing system is evaluated with three quality metrics, showing how the proposed correction 

system together with stationary filtering improves the raw landing system. 

Keywords: UAV; autonomous landing; filtering; computer vision; helipad context; global 

position; navigation system; SITL 

Nomenclature 

Reference frames (RF) 𝑝𝑖
𝑗 Position of element 𝑖 in 𝑗 RF 

{𝒕} Helipad (target)  𝑇.
𝑗
𝑖 Linear translation 𝑖 to 𝑗 RF 

{𝒑𝒉} Pinhole model image plane  [ 𝑅.
𝑗
𝑖|𝑣𝑖

𝑗
] 

Rotation and translation between 𝑖 and 𝑗 

RF 

{𝒄} Camera  𝑅.
𝑗
𝑖 Rotation between 𝑖 and 𝑗 RF. 

{𝒛} Camera socket  𝑣𝑖
𝑗  Translation between 𝑖 and 𝑗 RF. 

{𝒈} Gimbal  𝐹.
𝑗
𝑖 

Nonlinear RF transformation between 𝑖 

and 𝑗  

{𝒃} Body gravity center  𝑓𝑥 
Focal length 

{𝒏} North-East-Down (NED) 𝑓𝑦 

{𝒆} Earth-Centerd Earth-Fixed (ECEF) 𝑐𝑥 
Principal point 

{𝒈} Global WGS84 datum  𝑐𝑦 

𝜽,𝝓,𝝍 Euler angles  𝑘𝑖 Distortion coefficients 

𝝀,𝝋, 𝒉 Longitude, Latitude, altitude 𝐴 Intrinsic camera matrix 

ℝ Real number space 𝛿 Intrinsic camera parameters 

𝓑 Boolean number Ψ General camera model 

𝓟𝟐 Planar projective space  𝐸̂ Reprojection error 

𝒙, 𝒙 State and estimated state  𝑂 Image feature function 

‖𝒙‖ Euclidian norm of x 𝒩 Normal distribution 

𝑳 Sliding window size 𝜇 Mean 

𝜷𝒊 Constant bias of coordinate 𝑖. 𝜎 Standard deviation 
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4.1. Introduction 

he growing demand for drone applications motivates the study of the support 

technologies for this type of small and powerful unmanned aerial vehicle (UAV). However, 

all new applications share an essential and critical maneuver—landing. 

Generally, work in the literature about landing maneuvers, both for fixed and rotary wing 

UAVs, focuses on control strategies [1–3]. All of them require access to the internal vehicle 

states, the actuators or specific modes of the control or navigation system. 

Under the precision landing concept is included all the solutions that approach this 

maneuver in an autonomous or supervised way, independent of the techniques and sensors 

used to estimate the vehicle states such as position or orientation, as well as its corresponding 

velocities and accelerations. The landing maneuver can be included within the navigation 

system where two main groups can be distinguished, outdoor and indoor navigation. 

Generally, outdoor navigation is based on the Global Navigation Satellite System (GNSS), but 

practically all current systems use fusion techniques that allow the integration of different 

strategies for estimating one or more vehicles’ states, which is necessary for the control 

and/or navigation system. Some of the most common cases in navigation systems are the use 

of barometers and/or sonars to improve the accuracy of the altitude provided by GNSS, or the 

use of small zenith cameras to determine small horizontal displacements [4]. Other specific 

navigation techniques such as visual odometry or visual Simultaneous Location And Mapping 

(SLAM) [5] are beginning to be used in indoor navigation. 

Thus, other landing works focus on improving the accuracy of instrument systems such 

as [6–8] or even context information such as safe landing zones, as in work by Shah Alam, Md 

et al. shown in work [9]. Some commercial solutions focus on the use of beacons that indicate 

the landing region, as can be seen in the work of J. Janousek and P. Marcon [7] using a 

commercial infrared light beacon. This type of system includes an external controller to 

minimize the pixel error between the region of interest (ROI), defined by the centroid of the 

infrared area and the reference in the image plane, generally located at the center of the 

image plane. These strategies need to access internal vehicle states such as velocity or 

acceleration to correct the error. 

In terms of context information, vision systems proved to be efficient to identify ROIs. In 

addition, knowing the landing context, specifically where or how the helipad is where the UAV 

must land, can help to improve the landing maneuver. 

Developing strategies to identify and understand the context information of the aircraft 

allows providing the systems with greater autonomy. In the survey of autonomous landing 

techniques for UAVs by Alvika Gautam et al. [1], the authors describe the relationship between 

T 
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sensors/navigation systems and aircraft control modules, paying particular attention to vision 

landing techniques, generally responsible for recognizing and estimate the helipad position. 

Some civil and commercial UAVs, such as certain DJI models [10], are beginning to 

integrate vision-based precision landing systems. In the work of Yoakum and Carreta [11], the 

authors conduct a study of the precision landing system of a DJI Mavic Pro, proving the aircraft 

and the integrated landing system meet specific accuracy requirements to use a specific 

wireless charging station. 

Generally, vision systems for landings focus on identifying the landing area, either by 

means of context information of the helipad pattern or by the terrain conditions. The work of 

Mittal et al. [12] is an example of the identification of landing area conditions, where terrain 

slope is estimated to verify the feasibility of a UAV to land in urban search and rescue. 

Regarding pattern recognition landing systems, works such as [13][14], among others 

[15–18], focus on finding the position using known patterns by Perspective-n-Point (PnP) 

algorithms [19]. Patterns such as Aruco [20], charuco, or new fractal patterns such as [21] or 

the deep learning trend You Only Look Once (YOLO) [22] try to improve the pattern pose 

estimation and prove to be widespread systems in the literature. In the literature and 

throughout this paper, an object “pose” means a set of position and heading of a specific 

reference system. 

On the other hand, the emergence of open-source flight controllers such as Pixhawk [23], 

together with specific communication protocols such as Micro Air Vehicle Link (MAVLink) [24] 

and multiplatform APIs such as MavSDK [25], help to develop new applications and research 

new landing strategies. 

PX4 [26] autopilot set up as a rotary wing vehicle has a planification system that allows 

dynamically smoothing the trajectories between different positions [27]. Specifically, it 

smooths the trajectories between consecutive waypoints by rounding the turns with radii over 

the waypoints and increasing or decreasing the drone speed when approaching or moving 

away from a waypoint [28–30]. The guidance algorithm integrated in PX4 is the 𝐿1 algorithm 

introduced by Park et al. [31] under the linear approach. When forcing a new target position 

while the vehicle is navigating between two positions, the system changes target and tends 

to reach the newly added location by smoothing its current trajectory, as shown in works such 

as Stateczny et al. [32]. This behavior, when repeated with a certain frequency to include new 

waypoints referring to the same position, but with a certain noise, produces a spin effect on 

the aircraft that we call “inter-waypoint noise spin effect”. 
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In this work, we propose using the aircraft guidance system without downing the 

controller level for a widespread implementation of the precision landing system, contributing 

to UAV air safety and helping the emergence of new applications. 

We propose a new contribution with respect to classical geolocation landing strategies 

based on global positioning by decoupling the landing in two phases, first reaching the target 

coordinates and then activating the landing mode, descending vertically with a constant 

descent speed α. 

Our proposed landing strategy seeks to descend quickly when the target is found and to 

smooth its descent as the aircraft approaches, without having to adjust the controller 

parameters. This idea attempts to improve the image resolution quickly to improve the 

position estimation. The difference with respect to other works is that simultaneously 

descending and adjusting the positioning relies on the variable waypoint altitude adjustment 

without accessing the controller, so that without changing the internal descent controller of 

the PX4 [26] or adding new external control laws, the strategy allows smoothing the descent 

when approaching the target. This strategy allows taking further steps in the final phase of the 

approximation, improving the final estimate, and ensuring the stability of the system provided 

by the manufacturer. For this, we propose a function to modulate the default behavior of the 

PX4 controller which seeks a stationary descent at a constant speed. 

In addition, this paper models the error of a precision landing system using a monocular 

vision system, context information from the helipad pattern, and the internal navigation 

system of the PX4 flight controller. 

The vision system error modeling allows a fine calibration of helipad localization. This 

correction, together with a stationary filtering of the estimates by sliding time window and 

variable adjustment of the descent height, allow to reduce the spin effect produced by the 

estimation error of a vision system when integrated with the 𝐿1 navigation algorithm, without 

access to the internal controller parameters or relative states of the aircraft that may require 

re-programming of the on-board computer. 

To sum up, this paper presents two main contributions in precision landing by vision-

based global position: the continuous adjustment of the approach to descent trajectory, and 

the improvement of the position by vision through systematic error adjustment and filtering. 

The proposal strategy is evaluated after including an error model correction as well as 

different sliding time window filters. The work is developed on a hyper-realistic software in 

the loop (SITL) [33] simulation system with the PX4 flight controller and the AirSim [34] 

simulator. 
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Finally, the results of the study show the estimation error analysis and filtering of the 

estimates with sliding time window filters, minimizing the inter-waypoint noise spin effect 

generated by noisy waypoint transitions and improving three quality metrics of landing time, 

trajectory landing length, and landing accuracy without additional control law, enabling the 

use of the aircraft’s guidance system as an alternative for the deployment of precision landing 

technology. 

4.2. Problem Formulation 

We consider the problem of a UAV landing on a certain landing pad using its internal 

autopilot waypoint guidance system and a monocular vision system with gimbal integrated in 

the UAV. 

 

 

Fig. 4.1. General reference frame systems. Reference frames bottom-left to up: helipad 

(target), pinhole camera model (image plane), camera, gimbal socket, body, NED. Reference 

frames right up to down: NED, ECEF, Global. 

Fig. 4.1. shows the set of reference frames, where the superscripts 

{𝑡, 𝑝ℎ, 𝑐, 𝑧, 𝑔, 𝑏, 𝑛, 𝑒 𝑎𝑛𝑑 𝑔} correspond to the reference frames of the helipad (target), 
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pinhole camera model, camera, gimbal socket for the camera, gimbal, body, North-East-Down 

(NED), Earth-Centered Earth-Fixed (ECEF), and global. 

In this way, any given point 𝑝𝑡
𝑡 expressed in a flat pattern reference frame {𝑡} and the 

homogeneous transformation 𝑇.
𝑛
𝑡 between the landing pad reference frame to the NED 

referent frame {𝑛} can be expressed in the global reference frame {𝑔} system 𝑝𝑡
𝑔

 applying a 

set of transformations shown in (4.1) and (4.2). 

𝑝𝑡
𝑛 = 𝑇.

𝑛
𝑏 ⋅ 𝑇.

𝑏
𝑔 ⋅  𝑇.

𝑔
𝑧 ⋅ 𝑇.
𝑧
𝑐 ⋅ 𝑇.
𝑐
𝑡

⏞                
𝑇.
𝑛
𝑡

⋅ 𝑝𝑡
𝑡 

(4.1) 

𝑝𝑡
𝑔
= 𝐹.
𝑔
𝑒{ 𝐹.
𝑒
𝑛[𝑝𝑡

𝑛 , 𝐹.
𝑒
𝑔(𝑝𝑅𝑒𝑓

𝑔
)]} (4.2) 

where superscript {𝑗} over point 𝑝𝑖
𝑗
 means the reference frame system, and the subscript 

𝑖 = {𝑡, 𝑅𝑒𝑓} denotes the name of the point (target and reference). 𝑇.
𝑗
𝑖 means the 

homogeneous transformation between reference frame 𝑖 and 𝑗. On the other hand, 𝐹.
𝑗
𝑖 refers 

to nonlinear transformations between reference frame 𝑖 and 𝑗. 𝑝𝑅𝑒𝑓
𝑔
 indicates the global 

position of the body (UAV) as a global reference point. 

The set of reference frame systems involved in the transformations are shown in Fig. 4.1 

and denoted as: helipad (target) {𝑡}, pinhole camera model {𝑝ℎ}, camera {𝑐}, gimbal socket 

for the camera {𝑧}, gimbal {𝑔}, body {𝑏}, North-East-Down (NED) {𝑛}, Earth-Centered Earth-

Fixed (ECEF) {𝑒}, and global {𝑔}. 

4.2.1. Pattern (Helipad) Detection 

We consider as the helipad a reference pattern defined by an Aruco pattern [35] with a 

certain number of bits, as part of a library 𝐵. As shown in the paper [20], the system identifies 

candidate square regions as Aruco markers, then encodes these regions and compares them 

to the pattern dictionary as desired. 

The full process can be divided into the following steps: 

• Image conversion: Obtain an RGB image and transform it to grayscale. 

• Edge extraction: We understand as edge an intensity change boundary, some classical 

algorithms are Canny [36] and Sobel [37]. 

• Contour extraction: We understand a contour as a curve of points without gaps or 

jumps. Therefore, the objective is to identify if the edges found represent contours. An 

example of simple contour extraction can be given by a binarized image of an object 

whose outer contour can be extracted by subtracting the original binarized-dilated 

image from the original binarized image. To check if closed regions appear, a 
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segmentation by connected components would provide us candidate regions of 

interest (ROI) as a result. 

• Contour filtering: Only show rectangular regions. 

• Removing ROI perspective distortion: For this it is necessary to find the general plane 

𝒫2 projective transformation ℎ:𝒫2 → 𝒫2| ℎ(𝑚) = 𝑚′ = 𝑚𝐻, where 𝑚 is a point in a 

plane. 𝐻3×3 is a non-singular matrix where 𝑚′ is the linear transformation 𝐻 of 𝑚. The 

transformation 𝐻 is biunivocal and homogeneous, in other words, a point over a plane 

is a unique point over another plane and 𝑘𝐻| 𝑘 ∈ ℝ and 𝑘 ≠ 0 is also the solution. This 

condition allows dividing the matrix 𝐻 by the element ℎ33, decreasing the dimension 

of terms to identify from 9 to 8. The correspondence between points (𝑥𝑖, 𝑦𝑖) ↔

(𝑥′𝑖, 𝑦𝑖
′) can be expressed in matrix form as 𝑏𝑖 = 𝐴𝑖ℎ, and their relationship is 

expressed as (4.3) (more details in [38]). Knowing 𝑛 pairs of points, the system of 2𝑛 

equations and 8 unknowns is established as 𝑏 = 𝐴ℎ, where 𝐴 = [𝐴1, 𝐴2, … , 𝐴𝑛]
𝑇 , 𝑏 =

[𝑏1, 𝑏2, … , 𝑏𝑛]
𝑇 , and ℎ3×3 matrix as ℎ33 = 1. For 𝑛 = 4, the direct solution ℎ = 𝐴−1𝑏; 

if 𝑛 > 4 the system is overdetermined and least squares can be applied, ℎ =

[𝐴𝑇𝐴]−1𝐴𝑇𝑏. For cases where ℎ33 = 0 refer to [38]. 

𝑥′ =
ℎ11𝑥 + ℎ12𝑦 + ℎ13
ℎ31𝑥 + ℎ32𝑦 + ℎ33

 

𝑦′ =
ℎ21𝑥 + ℎ22𝑦 + ℎ23
ℎ31𝑥 + ℎ32𝑦 + ℎ33

 

𝐴 = [
𝑥 𝑦 1 0 0 0 −𝑥′𝑥 −𝑥′𝑦

0 0 0 𝑥 𝑦 1 −𝑦′𝑥 −𝑦′𝑦
]; 𝑏 = [

𝑥′
𝑦′
]; ℎ =

[ℎ11, ℎ12, ℎ13, ℎ21, … ℎ32]
𝑇 

(4.3) 

• Pattern library matching check: The binary code of the ROI is extracted, 

superimposing on the binarized and perspective-corrected image a grid of the same 

cell size as the searched one. Each grid cell receives a binary value according to if the 

corresponding color is black (zero) or white (one). The Hamming coding algorithm is 

applied to the extracted code to eliminate false negatives. This resulting code is 

compared with the selected pattern dictionary, filtering the regions identified as 

markers and belonging to the pattern dictionary from other regions. In addition, this 

step provides information about the marker id if the ROI belongs to the library. 

4.2.2. Helipad Pose Estimation 

For pose estimation, the Perspective-n-Point (PnP) problem [35] is formulated where the 

objective is to minimize the reprojection error (4.7) of 3D points in the image plane {𝑝ℎ}. This 

problem is closely linked to a calibrated system, since it requires a camera model, pinhole, and 

a pattern that allows to relate identified features of an image with features of the pattern. 
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Given a point 𝑝𝑡
𝑐 ∈  ℝ3 belonging to the knowing pattern located in real-world 3D space 

and expressed in the camera reference frame {𝑐}, it can be expressed in the image camera 

plane reference frame {𝑝ℎ} as 𝑝𝑡
𝑝ℎ ∈ ℝ2. The relationship between the two reference frames 

is provided by the pinhole camera model in (4.4). 

𝑠𝑝𝑡
𝑝ℎ
= 𝐴𝑝𝑡

𝑐 (4.4) 

where 𝑠 is a scale factor and 𝐴 intrinsic camera matrix [17]. The internal matrix 𝐴 is 

composed of the focal distances (𝑓𝑥, 𝑓𝑦) and the principal points (𝑐𝑥, 𝑐𝑦). The pinhole model 

can be improved with radial, tangential, or prism distortion corrections, adding 𝑛 set of 𝑘𝑖  

parameters to the model [39–41]. The set of internal parameters of the camera model can be 

expressed by the vector 𝛿 = (𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦, 𝑘1, … , 𝑘𝑛). 

If the point is expressed in coordinates of the pattern reference frame 𝑝𝑡
𝑡, there exists an 

extrinsic homogenous transformation 𝑇.
𝑐
𝑡 to relate the reference frame of the pattern to the 

camera reference frame (4.5) is used. 

𝑝𝑡
𝑐 = 𝑇.

𝑐
𝑡𝑝𝑡
𝑡 (4.5) 

where the transformation 𝑇.
𝑐
𝑡 = [ 𝑅.

𝑐
𝑡|𝑣𝑡

𝑐] is a rototranslation composed of the pattern’s 

orientation 𝑅.
𝑐
𝑡 = 𝑅𝑥(𝜃1)𝑅𝑦(𝜃2)𝑅𝑧(𝜃3) to the camera and the pattern position vector to the 

camera 𝑣𝑡
𝑐 ∈ ℝ3. Thus, the parameter vector to be identified to obtain the camera–pattern 

relationship is 𝜃 = (𝑅, 𝑣) = (𝜃1, 𝜃2, … , 𝜃6) ∈ ℝ
6. 

Joining (4.4) and (4.5) and adding distortion models, the camera model remains as a 

Function (4.6) that projects points 𝑝𝑡
𝑡 ∈ ℝ3 to 𝑝𝑡

𝑝ℎ ∈ ℝ2 points of the camera image plane. 

𝑝𝑡
𝑝ℎ
= 𝛹(𝛿, 𝜃, 𝑝𝑡

𝑡) (4.6) 

Then, helipad pose estimation is the problem of minimizing the reprojection error (4.7) 

of the observed helipad pattern features. One of the classic features to identify by computer 

vision are the corners. If the pattern is known, we know a priori the 3D position of these 

corners in the reference frame of the pattern. 

𝐸̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑[𝛹(𝛿, 𝜃, 𝑝𝑖
𝑡) − 𝑂(𝑝𝑖

𝑡)]
2

𝑝𝑖
𝑡∈∁

  
(4.7) 

where 𝑝𝑖
𝑡 ∈ ∁ and ∁ is a corner set of the pattern. 𝑂(𝑝𝑖

𝑡) ∈ ℝ2 is the corners obtained in the 

camera plane by a specific computer vision algorithm such as the Harris or Susan algorithm 

[22,42]. 
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Furthermore, since all points 𝑝𝑖
𝑡 belong to a pattern plane, the 𝑧-component of all corners 

in the pattern frame will always be 0. This quality allows solving (4.7) using specific methods 

such as the Infinitesimal Plane-Based Pose Estimation (IPPE) [43]. 

The estimation of internal camera parameters requires a learning phase modeled in (4.7) 

as an optimization problem. In addition, identifying the six parameters to define the 

transformation 𝑇.
𝑐
𝑡 between the pattern calibration and the camera involves a similar process. 

Although both processes can be clustered as shown in (4.7), the internal camera parameters 

𝛿 will be constant for a particular vision system; however, the position of the pattern may 

change. For this reason, it is decoupled in two phases: on the one hand, a camera parameter 

learning (calibration) process, using a set of images of a known pattern to estimate internal 

camera parameters, and, on the other hand, the estimation of the helipad position for a 

certain image during flight. 

4.2.3. Camera-Gimbal Frame 

The camera is placed in a camera-gimbal socket, so it is necessary to include this referent 

frame {𝑧}. As the camera-gimbal socket axis is equivalent with the general gimbal axes, but 

static, the 𝑇.
𝑧
𝑐 transformation is shown in (4.8). 

𝑇.
𝑧
𝑐 = [𝑅𝑐

𝑧|03×1] ≡ (
𝑅𝑐
𝑧 03×1

01×3 1
) ; 

𝑅𝑐
𝑧 = 𝑅 (𝑥,

𝜋

2
)𝑅 (𝑧,

𝜋

2
) 

(4.8) 

where 𝑅(𝑥, 𝜃) and 𝑅(𝑧, 𝜓) represent 𝜃 and 𝜓 rotations about the 𝑥 and 𝑧 axes of the camera 

reference system. As the axes of the gimbal and camera-gimbal socket are equivalent, the 

relationship between camera-gimbal socket and gimbal corresponds to the identity matrix 

𝑇.
𝑔
𝑧 = 𝐼

4×4. 

4.2.4. Gimbal Body Frame 

The gimbal’s reference frame {𝑔} to the UAV’s body gravity center frame is defined as 

the composition of a roto-translation in (4.9). 

𝑇.
𝑏
𝑔 = [𝑅𝑔

𝑏|𝑝𝑔
𝑏] 

𝑅𝑔
𝑏 = 𝑅𝑔(𝜃, 𝜙, 𝜓); 𝑝𝑔

𝑏 = (𝑥𝑔, 𝑦𝑔, 𝑧𝑔)
𝑇

 
(4.9) 

For this work, we consider the gimbal is static but located at the 𝑝𝑔
𝑏 position with 

𝑅𝑔(𝜃, 𝜙, 𝜓) rotation to the body axes. 

In this paper we consider 𝑇.
𝑏
𝑧 = [𝑅𝑏 (0, −

𝜋

2
, 0) |(0,0,0.1)𝑇], as shown in the Test 

environment section. 
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4.2.5. Body-NED Frame 

The North-East-Down (NED) frame coordinates {𝑛} to the UAV body gravity center {𝑏}, 

𝑇.
𝑛
𝑏 is equivalent to the body rotation at the angle defined by the yaw angle 𝜓 to geographic 

north or azimuth, pitch attitude to horizon plane 𝜙, and roll angle defined to gravity direction 

𝜃. These angles refer to the attitude and heading reference system (AHRS) frame of reference 

that groups magnetic, angular rate, and gravity (MARG) information. Generally, these systems 

usually include air data to provide altitude or wind speed information. 

𝑇.
𝑛
𝑏 = [𝑅𝑏

𝑛|03×1]; 

𝑅𝑏
𝑛 = (

cos 𝜃 cos𝜓 sin𝜓 sin 𝜃 sin𝜙 − sin𝜓 cos𝜙 sin𝜓 sin𝜃 cos𝜙 + cos𝜓 sin𝜙
cos𝜃 sin𝜓 cos𝜓 cos 𝜃 + sin𝜓 sin 𝜃 sin𝜙 sin𝜓 sin𝜃 cos𝜙 − cos𝜓 sin𝜙
− sin𝜃 cos 𝜃 sin𝜙 cos𝜃 cos𝜙 

) 
(4.10) 

4.2.6. NED-ECEF-Global 

The coordinate transformation between NED to the global reference frame {𝑔} requires 

the use of the Earth-Centered Earth-Fixed (ECEF) reference system {𝑒}, which allows us to 

apply the corresponding geodetic transformations to the terrestrial model and finally obtain 

the coordinates in global terms. In our case, we use a WGS84 (World Geodetic System 84) [44] 

datum. 

 

Fig. 4.2. LTP, ECEF, and WGS84 reference systems and geometric relationships. 

The constant parameters of the WGS84 datum in Fig. 4.2 refer to: 𝑟𝑒 semimajor axis 

(equatorial radius), 𝑟𝑝 semiminor axis (polar axis radius), 𝜀 first eccentricity and 𝜀′ second 

eccentricity of the ellipsoid. It is important to differentiate the geocentric coordinates, 

referred to as the ECEF system, from the geodetic coordinates, referred to as the geodetic 
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model (WGS84). This difference is provided by the geodetic model (datum) and is represented 

in the diagram on the right of Fig. 4.2, where 𝜑′ refers to geocentric latitude and 𝜑 refers to 

geodetic latitude. 

Given a point 𝑝𝑡
𝑛 expressed in NED reference frame {𝑛} of a local tangent plane (LTP) to 

a geodesic surface at a known point 𝑝𝑅𝑒𝑓
𝑔
= (𝜆, 𝜑, ℎ)𝑇

𝑅𝑒𝑓
, it can be expressed in ECEF 

coordinates {𝑒} applying Equation (12). This equation corresponds to a translation in ECEF 

reference frame. However, to obtain 𝑝𝑅𝑒𝑓
𝑒 coordinates of our reference point in ECEF frame it 

is necessary to transform the global coordinates to ECEF applying Equation (4.14). The 

transformation between local coordinates and ECEF is given by the transformation (4.13). In 

this work, we consider 𝑝𝑅𝑒𝑓
𝑔
= 𝑝𝑈𝐴𝑉

𝑔
. 

On the other hand, a given point 𝑝𝑡
𝑒 expressed in ECEF can be expressed in global 

coordinates 𝑝𝑡
𝑔

 applying the transformation (4.11). 

𝑝𝑡
𝑔
= (

𝜆
𝜑
ℎ

)

𝑡

= 𝐹.
𝑔
𝑒(𝑝𝑡

𝑒) =

(

 
 
 
 
 

tan−1 (
𝑦𝑡
𝑒

𝑥𝑡
𝑒)

tan−1 (
𝑧𝑡
𝑒 + 𝑒′2𝑍0
𝑟

)

𝑈 (1 −
𝑟𝑝
2

𝑟𝑒𝑉
)

)

 
 
 
 
 

 (4.11) 

where (𝜆, 𝜑, ℎ)𝑇means longitude, latitude, and altitude in WGS84 datum. (𝑥𝑡
𝑒 , 𝑦𝑡

𝑒 , 𝑧𝑡
𝑒)𝑇 

are the coordinates in the ECEF reference frame. The transformation (4.11) corresponds to 

Jijie Zhu’s algorithm [45] analyzed and compared in [46]. 

𝑝𝑡
𝑒 = (

𝑥𝑡
𝑒

𝑦𝑡
𝑒

𝑧𝑡
𝑒
) = 𝐹.

𝑒
𝑛(𝑝𝑡

𝑛, 𝑝𝑅𝑒𝑓
𝑒 ) = 𝑅𝑛

𝑒 ⋅ 𝑝𝑡
𝑛 + 𝑝𝑅𝑒𝑓

𝑒  (4.12) 

𝑅𝑛
𝑒 = (

−𝑠𝑖𝑛 𝜑𝑅𝑒𝑓 𝑐𝑜𝑠 𝜆𝑅𝑒𝑓 −𝑠𝑖𝑛 𝜆𝑅𝑒𝑓 −𝑐𝑜𝑠 𝜑𝑅𝑒𝑓 𝑐𝑜𝑠 𝜆𝑅𝑒𝑓
−𝑠𝑖𝑛 𝜑𝑅𝑒𝑓 𝑠𝑖𝑛 𝜆𝑅𝑒𝑓 𝑐𝑜𝑠 𝜆𝑅𝑒𝑓 −𝑐𝑜𝑠 𝜑𝑅𝑒𝑓 𝑐𝑜𝑠 𝜆𝑅𝑒𝑓

𝑐𝑜𝑠 𝜑𝑅𝑒𝑓 0 −𝑠𝑖𝑛 𝜑𝑅𝑒𝑓

) (4.13) 

𝑝𝑅𝑒𝑓
𝑒 = (

𝑥𝑅𝑒𝑓
𝑒

𝑦𝑅𝑒𝑓
𝑒

𝑧𝑅𝑒𝑓
𝑒

) =

(

 

(𝑟𝜆 + ℎ𝑅𝑒𝑓 ) 𝑐𝑜𝑠 𝜑𝑅𝑒𝑓 𝑐𝑜𝑠 𝜆𝑅𝑒𝑓

(𝑟𝜆 + ℎ𝑅𝑒𝑓) 𝑐𝑜𝑠 𝜑𝑅𝑒𝑓 𝑠𝑖𝑛 𝜆𝑅𝑒𝑓

((1 − 𝜀2)𝑟𝜆 + ℎ𝑅𝑒𝑓) 𝑠𝑖𝑛 𝜑𝑅𝑒𝑓 )

   (4.14) 

𝑟𝜆 =
𝑟𝑒

√1 − 𝜀2 sin2𝜑 
 (4.15) 
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4.3. Proposal 

In this section, first the landing strategy is described, then the method to determine the 

helipad’s global position is detailed, and finally the error analysis of the helipad’s position 

estimation is given. 

4.3.1. Landing Strategy 

The landing strategy is responsible for telling the UAV navigation system the position to 

which it must go and the attitude it must have to align with the target (Algorithm 4.1). The 

position of the target is static, but the attitude and altitude to helipad vary overtime when the 

UAV attempts to land. 

Algorithm 4.1 Landing Strategy 

1: 
[𝑝𝑡
𝑔
, (𝜃, 𝜙, 𝜓)𝑡

𝑔
, 𝑎] = helipad identification 

ℎ𝑈𝐴𝑣 , 𝜓𝑈𝐴𝑉 = UAV navigation sistem  

2: 𝐢𝐟 𝑎 = True  

3: Buffer ← [𝑝, (𝜃, 𝜙, 𝜓)]𝑡
𝑔 

4: 𝐢𝐟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1𝐻𝑧 & 𝐵𝑢𝑓𝑓𝑒𝑟 ≥ 10  

5: 𝑝′𝑡
𝑔
, 𝜓′𝑡

𝑔
= 𝐹𝑖𝑙𝑡𝑒𝑟 (𝐵𝑢𝑓𝑓𝑒𝑟) 

6: Buffer reset  

7: Buffer (1) ← [𝑝′, 𝜓′]𝑡
𝑔 

8: 𝜓𝑠𝑒𝑡 = 𝜓𝑈𝐴𝑉
𝑛 + 𝜓𝑡

𝑏  

9: [𝜆, 𝜑]𝑠𝑒𝑡 ← 𝑝′𝑡
𝑔 

10: ℎ𝑠𝑒𝑡 = ℎ𝑈𝐴𝑉(1 − 0.1𝑒

−1

ℎ𝑡
𝑏−0.5ℎ0) 

11: UAV navigation planer ←[ 𝜆𝑠𝑒𝑡 , 𝜑𝑠𝑒𝑡 , ℎ𝑠𝑒𝑡 , 𝜓𝑠𝑒𝑡] 

12: 𝐢𝐟 ℎ𝑈𝐴𝑉 ≤ ℎ0 

13: PX4 landing mode 

14: break 

15: end if 

16: else 

17: 𝑔𝑜𝑡𝑜 →1  

18: end if 

19: else 

20: 𝑔𝑜𝑡𝑜 → 1 

21: end if  

 

4.3.1.1. Helipad Azimuth 

To align the drone to the marker, it is necessary to determine the azimuth of the marker 

𝜓𝑡
𝑛. For this, we use the azimuth of the drone 𝜓𝑈𝐴𝑉

𝑛  and the orientation of the marker to the 

drone 𝜓𝑡
𝑏. 

Fig. 4.3 shows how the helipad azimuth can be obtained graphically by adding to the 

drone azimuth the orientation of the aircraft to the landing pad in (4.16). When both systems 

are aligned, the marker azimuth will be equal to the drone azimuth. 
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𝜓𝑡
𝑛 = 𝜓𝑈𝐴𝑉

𝑛 + 𝜓𝑡
𝑏 (4.16) 

 

Fig. 4.3. Helipad azimuth set formulation. 

4.3.1.2. Altitude Setpoint Strategy 

In order to change the default controller descent behavior, it is possible to use the 

behavior of the system in the transient state, i.e., before reaching the maximum velocity of 

stationary descent. Thus, if the new desired height is reached without having to reach the 

maximum descent speed, the behavior will be smooth, and if the destination point is far 

enough away, the controller saturates and descends with maximum constant speed behavior, 

without exceeding the internal controller parameters. 

To define step points that allow a linear descent at constant speed α in an iterative loop, 

the new step point will correspond to the current height minus a certain parameter α. 

ℎ𝑠𝑒𝑡 = ℎ𝑈𝐴𝑉 − 𝛼 (4.17) 

Considering this process is iterative (discrete) with a sample time of ∆𝑡, the previous 

equation can be expressed as follows: 

ℎ𝑡+1 = ℎ𝑡 − 𝛼∆𝑡 (4.18) 

where 𝑡 subscript means instant time. Solving the 𝛼 term, it is verified that alpha 

corresponds to a speed term. 

(ℎ𝑘+1 − ℎ𝑘)

∆𝑡
 = 𝛼 =

∆ℎ

∆𝑡
= 𝑐𝑡𝑒.  (4.19) 

In our case, the aim is to design the ℎ𝑠𝑒𝑡(ℎ𝑈𝐴𝑉) function such that the aircraft approaches 

with a smooth behavior to ℎ0 and at that point lands automatically with internal autopilot. 

To perform this, we propose (4.20). 

ℎ𝑠𝑒𝑡 = ℎ𝑈𝐴𝑉(1 − 𝛽1𝑒

−1

ℎ𝑡
𝑏−𝛽0ℎ0) 

(4.20) 
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where 𝛽1 is the weight of the exponential function and 𝛽0 < 1, which allows slightly 

shifting the value of ℎ0 and to be able to switch to automatic landing mode. The 𝛽1 = 0.1 

value is set heuristically, while 𝛽0 = 0.5 is set to shift 50% less than the switching height ℎ0. 

The system must consider the relative flight altitude ℎ𝑈𝐴𝑉 and the height of the UAV relative 

to the landing pad ℎ𝑡
𝑏. 

Fig. 4.4 shows an approximate representation of the altitude-set function behavior (4.20) 

vs. constant decreasing (4.17). 

 

Fig. 4.4. Approximate altitude setpoint evolution. 

Fig. 4.4 shows the approximate descent behavior of our proposal versus a constant speed 

descent. In the final phase of the approximation, the descent becomes smoother than in the 

linear behavior. The Fig. 4.4 behavior should be taken as an illustrative example of the desired 

behavior, not as a realistic simulation. The final behavior can be seen in experimentation. 

4.3.1.3. Filter 

The states to be filtered are the global position of the helipad 𝑝𝑡
𝑔
= (𝜆𝑡, 𝜑𝑡) and its 

orientation to north or azimuth 𝜓𝑡
𝑛. All these variables are static, since the landing pad is 

static; therefore, the filter model does not need to provide information for each new 

measurement, rather we need to know their stationary statistical values. For this we propose 

to generate a data buffer with memory. The size of the buffer defines the size of the filtering 

window 𝐿. The initialization saves 𝐿 new measurements and then finds the mean or median 

of the buffered data. Finally, the buffer is reset. 



 

-103- 

 

To propagate the information over time, the sliding window does not overlap with 

previous values, but the value filtered at the previous instant is included as the first 

measurement in the clean buffer. 

As for the filter memory, if the new values change substantially it will vanish in the long 

term, since the weight given to the past values is 
1

𝐿
 versus 

𝐿−1

𝐿
 for each new data, so the window 

size can be critical for cases where the target is moving. Finally, the size of the buffer/window 

𝐿 is linked to time thanks to the 1 Hz system sampling time to provide new measurements. 

4.3.2. Helipad Global Position Estimation 

The helipad global position estimation system is responsible for integrating the vision 

system, the heliport context information, the gimbal, and the UAV navigation states, to 

provide the landing strategy with the helipad global position. In addition, this includes a spatial 

correction system for the NED frame, which is the objective of study of this work. 

Figure 5 shows the diagram of the estimation system which is formulated in (2). The 

system works as follows: 

• Aircraft global position 𝑝𝑈𝐴𝑉
𝑔

 and attitude (𝜃, 𝜙, 𝜓)𝑈𝐴𝑉
𝑏  is requested by the PX4 flight 

controller via MAVLink protocol [24] supported by the MAVSDK API [25]. 

• The gimbal position 𝑝𝑔
𝑏(𝑥, 𝑦, 𝑧) and attitude (𝜃, 𝜙, 𝜓)𝑔

𝑏  is requested by the AirSim 

simulation environment via UDP protocol described in the “4.4.1. Test Environment” 

section. This information composes the 𝑇.
𝑏
𝑧  transform. 

• The vision system receives 𝐼 image of 𝑊 ×𝐻 size and 3 RGB channels. The image is 

received via UDP protocol from the simulation system. In addition, the vision system has 

as input the context information from the helipad, the library (𝐿𝑖𝑏) of the marker, the 

marker’s identification number (𝐼𝑑 ∈ 𝐿𝑖𝑏), and the real marker’s size (𝑀𝑆) in meters. The 

library is characterized by the number of horizontal and vertical bits (squares) that form 

the geometry of the marker and the number of elements that make up the library. The 

vision system output provides a Boolean variable 𝑎 ∈ ℬ, that indicates if the landing pad 

has been detected or not. In addition, it provides the position of the landing pad to the 

camera 𝑝𝑡
𝑐 and the attitude (𝜃, 𝜙, 𝜓)𝑡

𝑐. 

• The camera pose estimation (𝑝𝑐
𝑡 and 𝑇.

𝑡
𝑐) is gated by the PnP method integrated in the 

OpenCV Aruco library [47] from a previously pre-calibrated camera (4.4.1. Test 

Environment). 

• The aircraft, gimbal, and landing pad position are combined in the set of 𝑇.
𝑛
𝑏 , 𝑇.
𝑏
𝑧 , and 𝑇.

𝑧
𝑐 

transformations to obtain the positioning 𝑝 𝑡
𝑛 and attitude (𝜃, 𝜙, 𝜓)𝑡

𝑛 of the landing pad in 

NED frame. 
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• The correction module provides the 𝑝′ 𝑡
𝑛 positioning and attitude (𝜃, 𝜙, 𝜓)′𝑡

 𝑛, tuned in NED 

coordinates. 

• Finally, the target position in NED frame 𝑝′ 𝑡
 𝑛, together with the drone global position 𝑝𝑈𝐴𝑉

𝑔
 

and ellipsoid WGS84 approximation, are used to obtain the helipad global position in (11). 

 

Fig. 4.5. Helipad global position estimation system. 

4.4. Landing System Analysis 

The aim of this section is to evaluate the proposed estimation system and to identify the 

necessary corrections to be incorporated in the “correction” module of Figure 4.5. To achieve 

this, first the test environment and the necessary parameters are detailed in the subsection 

Test environment. Next, the system estimation error is modeled to provide the landing system 

a correction module. The quality of the correction is evaluated using the root mean square 

error (RMSE) together with the variation in the data distribution in terms of data distribution 

structure, mean, and standard deviation. 

Finally, a full landing system and classical linear decreasing descent are compared and 

evaluated with four quality metrics, which quantify the trajectory length, the time to land, and 

the accuracy of landing on the helipad. 
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4.4.1. Test Environment 

In this work, we use a hyper-realistic test environment based on Software in The Loop 

(SITL). SITL systems are simulation architectures where virtual world environments interact to 

simulate object, vehicle, and sensor together with external systems such as a flight controller 

or ground station, among others. These environments are powerful testing tools for earlier 

phases of system integration, as they allow realistic results to be obtained without potentially 

dangerous and expensive risks. 

In our case, AirSim [48] is used as world environment and PX4 flight controller configured 

as a quadcopter. The simulated physical model corresponds to the Iris quadcopter and the set 

of sensors, and their specifications are detailed in Table 4.1. The models of the simulated 

sensors can be found detailed in [34]. 

Table 4.1. Sensor parameters simulated in AirSim. 

Sensor  Parameters 

Barometer 

IMU 

GPS 

Magnetometer 

Distance 

Default AirSim settings [49] 

Gimbal-Camera 

Resolution 𝑊 ×𝐻: 640 × 480 

Field of view (FOV): 95 

Depth of field focal distance: 100 

Depth of field focal region: 100 

Depth of field F-Stops: 2.8 

Target gamma: 1.5  

𝑝𝑐
𝑏 ≡ 𝑝𝑔

𝑏 = [0,0,0.1] 

(𝜃, 𝜙, 𝜓)𝑔
𝑏 = (0,−

𝜋

2
, 0) 

Fig. 4.6 shows an SITL communication diagram between the main system modules in SITL. 

The GCS module refers to the ground control station, in our case QGround control [50]. GCS 

is used to help to download the .log files generated in the test missions. 

The vision-based estimation system requires knowledge of the internal camera 

parameters {𝐴, 𝑘𝑖}. These parameters are obtained by standard calibration [39] using a chess 

pattern with nine rows, six columns and 20 cm sides of the squares. This pattern is integrated 

into the AirSim environment as a texture over a rectangular prism with 1.8 × 1.2 × 1.8 [𝑚] 

sides. 
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Fig. 4.6. SITL Communication and protocol diagram. 

To capture images, we implemented a system that automatically captures images while 

performing a spiral upward flight over the reference pattern. This allows obtaining a large set 

of images with the pattern from different positions. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.7. Simulation environment in the calibration process: (a) Image of the calibration pattern in the 

AirSim reference frame; (b) Random image of the image registration process; (c) Example of reprojection 

error. 

Fig. 4.7shows the image of the calibration pattern in the AirSim reference frame, random 

image of the image registration process used for calibration, and a sample of the reprojection 

error. Finally, the internal camera parameters are shown in Table 4.2. The context information 

used for the experimentation is: 𝐿𝑖𝑏 = 5 × 5 × 1000, 𝐼𝑑 = 68, and 𝑀𝑆 = 1 [𝑚]. 

The landing system was developed in Python 3.6 with the AirSim [34] and MAVSDK [25] 

APIs. The experiments and the SITL environment were developed on a Windows Server 2019, 
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64 bits, hosted in AMD Ryzen 9 3900X 12-Core Processor CPU, 3.79 GHz with 64 GB RAM and 

2x1TB SSD + 2xHDD 1.5TB of internal memory, graphic card Nvidia GeForce RTX 2060. 

Table 4.2. Internal camera parameters. 

Parameter Value 

𝑓𝑥 293.35 [mm] 

𝑓𝑦 293.31 [mm] 

𝑐𝑥 319.64 [px] 

𝑐𝑦 239.64 [px] 

Distortion coefficients 𝑘𝑖 {16.44, 35.89, 6.35, −6.35, 100.7} × 10−4 

4.4.2. NED Error Modeling 

To evaluate the estimation error, we propose to analyze the estimation data provided by 

the vision system over twenty static flights located at seventeen different positions at the 

same relative altitude above the ground, 10 meters. 

The selected positions correspond to five different headings centered, 45° {northeast, 

southeast, southwest, and northwest} and four different distances {2,3,4,5}√2 to the takeoff 

origin where the helipad is located. In each position is recorded a total of 1000 𝑝𝑈𝐴𝑉
𝑡  samples. 

 

Fig. 4.8. Data registration in twenty different flights. Yellow, UAV positions with vision 

system. Blue, UAV positions with navigation system. Blue and red line, linear approaches 

                                                                 R        z       [−      ] 

NED position. 

We consider the aircraft control system is asymptotically stable so that in steady state its 

position converges to the reference one. Thus, we consider as ground truth the reference 

positions for the steady flight. 

The error position for each of the components is given by (4.21). 
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𝑒(𝑥)𝑖
𝑓
= 𝑥𝑖

𝑓
− 𝑥𝐺𝑇𝑖

𝑓
 (4.21) 

where 𝑒(𝑥)𝑖
𝑓

 means the position error of the component 𝑥 of the system 𝑖 in 𝑓 referent frame. 

GT subscript means the ground truth in 𝑓 reference frame. 

Looking at Fig. 4.8, while the blue line maintains the desired directions of 45° (NE, SE, SO, 

NO), the centers of the positions recorded by the vision system, the red line, are decoupled, 

showing a constant angular deviation of the positions. Looking at the errors (Fig. 4.9), the error 

distribution increases with increasing distance from the north-east plane origin (0,0). This 

means the error position depends on the position in the NE plane. 

 

Fig. 4.9. Vision system error in north-east plane coordinate. Left, scatter distribution; Right, north-east 

boxplot with 1.5 whiskers. 

Regarding altitude error, Fig. 4.10 (a) and (b) show for each twenty register positions a 

distribution with four “modes”. In Fig. 4.10 (a) these modes show as four scatter clusters and 

in Fig. 4.10 (b) as four peaks in each twenty distributions. In addition, the mean and median 

of the total error distribution, Fig. 4.10, are displaced from the origin, showing a bias in 

altitude. 

The different colors in Fig. 4.10 (b) show each of the twenty records, all of them showing 

four modes and centered on the same error terms. In this work, we focus on bias correction 

of mean and median; however, modeling the error in altitude is outside the scope of this 

paper. 
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(a) 

 

(b) 

Fig. 4.10. Altitude error: (a) Scatter and boxplot. Green triangle: mean, orange line: median; (b) Altitude 

error distribution for twenty different register positions. 

The altitude error distribution may be a consequence of the internal discretizing of the 

simulator in the image render, so that the vision system, when segmenting the ROI of the 

helipad, extracts its contour with a size variation. This would be explainable according to the 

pinhole model of (4.4) and PnP Formulation (4.7), since its scale factor is constant, but the size 

of the ROI and corner positions would change. 

4.4.2.1. Polar Space Error Analysis 

The visual results in Fig. 4.8 and Fig. 4.9 show an apparent angular and radial bias of the 

helipad global position estimation system. We change the cartesian space to the cylindrical 

space defined by (4.22), where the terms 𝐸,𝑁, 𝐷 are the coordinates in the NED referent 

frame. 

𝑟0 = √𝐸
2 +𝑁2 

𝜃0 = 𝑎𝑡𝑎𝑛 (
𝑁

𝐸
) 

𝐷0 = 𝐷 

(4.22) 

When plotting data in the new space in Fig. 4.11, it can be seen how the data set is 

apparently clustered around a constant bias in the angle and radial error. 
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Fig. 4.11. Vision system error in polar space. Left, scatter distribution; Right, 2D boxplot with 1.5 whis. 

However, when showing the distance error (radial) behavior versus distance, Fig. 4.12 

shows a high linear correlation between distance and radial error. The angular error is also 

tested for linear dependence on distance, but the correlation does not exceed 35% of 

variance score 𝑟2 in (4.23), so it has been discarded. 

 

Fig. 4.12. Relationship between distance and radial error. Red + symbol, centroid of each position. Blue 

line, linear model fitted by least squares. 

𝑟2 = 1 −
𝑉𝑎𝑟(𝑥 − 𝑥)

𝑉𝑎𝑟(𝑥)
 (4.23) 

Where 𝑉𝑎𝑟(𝑥 − 𝑥̂) indicates the variance of the error between 𝑥̂ model estimation and 

𝑥 data. Fig. 4.12 shows with “+” the radial error centers of each of the measurement positions 

and the linear model fitted (blue line) by least squares to these points. This model has a slope 

𝛼𝑟 = 2.4923 ∗ 10
−2 and independent term 𝛽𝑟 = 2.778497 ⋅ 10

−2 [𝑚]. The linear model 

obtains around 94% of the variance score in (4.23). 
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Given the results in Table 4.3 and Fig. 4.12, the error bias in polar space can be tuned by 

the model of (4.27), where the apostrophe over coordinates means corrected coordinate, 

subscript zero start value, and 𝛽𝑖 the bias of coordinate 𝑖. 

𝑟′ = 𝑟0(1 − 𝛼𝑟) − 𝛽𝑟 

𝜃′ = 𝜃0 − 𝛽𝜃 

𝐷′ = 𝐷0 − 𝛽𝐷 

(4.24) 

Table 4.3. Stationary error. 

 𝜷𝜽 [°] Distances [m] Altitude 𝜷𝑫 [m] 

Mean −       8 0.153636 0.488412 

Median −     8   0.145540 0.545400 

Var 0.512071 0.005182 0.014129 

4.4.2.2. Error Correction in NED Space 

Given 𝑁, 𝐸, and 𝐷 coordinates of a point 𝑝𝑖
𝑛 in the NED frame and knowing the correction 

in a cylindrical space in (4.27), the objective is to return to the NED space. For this purpose, 

we apply the transformation (4.28).  

𝑁̂ = 𝑟̂. 𝑐𝑜𝑠(𝜃) 

𝐸̂ = 𝑟̂. 𝑠𝑖𝑛(𝜃) 

𝐷̂ = 𝐷0 − 𝛽𝐷 

(4.25) 

where its terms 𝑟̂, 𝜃 are taken as shown in (4.26): 

𝑟̂ = |𝑣𝛽𝜃| − 𝑟
′ 

𝑟′ = 𝛼𝑟𝑟0 + 𝛽𝑟 

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑣𝑁
𝑣𝐸
) 

𝑣(𝛽𝜃) = {
𝑣𝐸 = 𝐸 ⋅ cos(𝛽𝜃) − 𝑁 ⋅ sin(𝛽𝜃)

𝑣𝑁 = 𝐸 ⋅ sin(𝛽𝜃) + 𝑁 ⋅ cos(𝛽𝜃)
 

(4.26) 

where the hat over 𝑁, 𝐸, and 𝐷 in (4.29) means the NED coordinate with cylindrical 

corrections. 𝛽{𝜃,𝑟,𝐷} are the biases of the radial, angular, and altitude terms, respectively. 𝑣𝛽𝜃  

components and 𝜃 mean new position and new angular position after 𝛽𝜃 rotation correction. 

Fig. 4.13 shows the error distributions of the raw position estimation and error 

distribution after applying the correction (4.26) with the parameters of Table 4.1. 

For each drawing in Fig. 4.13, the distributions of the real data are shown in blue and with 

a  blue line their error distribution function [51]. The orange line shows a Gaussian distribution 
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equivalent to the real data in (4.27). For the NED coordinate, three different figures are 

represented: raw data Fig. 4.13 (a–c), data after cylindrical correction using the mean of the 

raw data Fig. 4.13 (d–f), and data after cylindrical correction according to the median of the 

raw data Fig. 4.13 (g–i). In addition, the mean value and the standard deviation of each case 

represented by 𝜇 and 𝜎, respectively, are indicated on each graph in their legend. 

𝒩(𝜇, 𝜎, 𝑥) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  (4.27) 

Fig. 4.13. shows how correction (4.25) modifies the structure of the error distribution for 

the cases of 𝑁 and 𝐸 coordinates, when comparing the blue with the orange lines.   

The effect on the Gaussian approximations in mean and standard deviation represented 

in Fig. 4.13 is quantified in Table 4.4. 

North East Down 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Fig. 4.13. NED coordinates density error distribution. North-East-Down data without correction (a, b, 

and g). Data with mean cylindrical correction (c, d, and h). Data with median cylindrical correction (e, f, 

and i). 
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Table 4.4 shows the effect of mean and standard deviation on the data when applying 

the correction (4.25) using the mean and median bias value indicated in Table 4.3. 

Table 4.4. Gaussian density distribution approximation. 

 𝓝(𝝁𝒊, 𝝈𝒊) Raw Mean Median 

North 
𝜇𝑁 [× 10

−4] 7.930 20.200 17.120 

𝜎𝑁 [× 10
−2] 25.334 5.293 5.454 

East 
𝜇𝐸  [× 10

−2] 1.087 0.851 0.882 

𝜎𝐸  [× 10
−1] 2.407 0.595 0.594 

Altitude 
𝜇𝐷 [× 10

−1] −      0.110 0.680 

𝜎𝐷 [× 10
−1] 1.191 0.119 0.119 

The standard deviation rows of Table 4.4 decrease one order of magnitude in all 

coordinates when applying the correction (4.25). The same effect can be seen in Table 4.5 

when the RMSE (4.28) of each NED coordinate is calculated. This metric can be considered as 

an indicator of accuracy. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑖

𝑛 − 𝑥𝐺𝑇𝑖
𝑛  )

2𝑁

𝑖=1
 (4.28) 

Table 4.5. RMSE value. 

Coor./RMSE Raw Mean Median 

North [× 𝟏𝟎−𝟐] 6.418 0.280 0.298 

East [× 𝟏𝟎−𝟐] 5.804 0.361 0.361 

Altitude [× 𝟏𝟎−𝟐] 2.421 0.143 0.188 

4.4.3. Landing Evaluation 

To evaluate the landing system, we propose to test twenty landing missions from the 

same position at (10, 10, −20) NED meters to the helipad. The twenty flights are divided into 

four groups corresponding to using the raw landing system without correction (𝑤𝑖𝑡ℎ𝑜𝑢𝑡) 

(4.2), applying the bias correction (4.25)(𝐵𝑖𝑎𝑠), with bias correction and a mean filter (Section 

4.3.1.3) with a sliding time window (𝑀𝑒𝑎𝑛&𝐵𝑖𝑎𝑠) and a median filter together with the bias 

correction (𝑀𝑒𝑑𝑖𝑎𝑛&𝐵𝑖𝑎𝑠). For each mission, we use as quality metrics the landing trajectory 

distance (4.29), time to land (4.30), and landing accuracy. In addition, the results are 

compared with classical linear descent setpoints with 𝛼 = 0.7 [𝑚/𝑠]. 

𝐷𝑖𝑠𝑡 =∑ ‖𝑝𝑘+1
𝑛 − 𝑝𝑘

𝑛‖
𝐾

𝑘=1
 (4.29) 

𝑇𝑖𝑚𝑒 = 𝑡𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑙𝑎𝑛𝑑 (4.30) 

where the 𝑘 term means temporal step starting in 𝑡𝑠𝑡𝑎𝑟𝑡 instant and ending in 𝑡𝑙𝑎𝑛𝑑 

moment. 𝑝𝑘
𝑛 represents the global position at 𝑘 instant in the NED reference frame. 
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For the flights’ analysis, we use the information obtained from the logs recorded by the 

flight controller in each flight and unloaded with the ground control station (GCS). In 

particular, we focus on the global positioning of the UAV. This positioning is given by the EKF2 

fusion system [52] integrated in PX4 and with the specific sensor parameters indicated in the 

SITL [33] section “Test environment”. To ensure that we evaluate exclusively the landing phase 

of the UAV, we study the trajectories from the instant 𝑡𝑠𝑡𝑎𝑟𝑡 where the height gradient is 

detected to be negative, and the altitude is less than 99.8% of the altitude desired. The final 

instant 𝑡𝑙𝑎𝑛𝑑 is obtained when the helipad is reached by the same method as 𝑡𝑠𝑡𝑎𝑟𝑡. 

Finally, third quality metric, landing accuracy, is obtained with the RMSE of the last ten 

position samples of the NED coordinates (without altitude). In this way, we ensure that we 

are on the ground with the same value plus a precision error. For this, we take as ground truth 

the control position of the marker. 

Fig. 4.14 shows the behavior of the aircraft when activating the landing system with the 

four modes corresponding to the landing system without correction Fig. 4.14 (a), landing with 

bias correction Fig. 4.14 (b), landing with bias correction and mean filter Fig. 4.14 (c,d), and 

landing with bias correction and median filter. The five trajectories in each of the figures show 

a different flight, using the corresponding landing mode in each case. The total number of 

flights is five for each landing mode, i.e., twenty flights. 

Fig. 4.15 illustrates the temporal behavior of each analysis group, showing the three 

global position components: latitude, longitude, and relative altitude. In addition, our 

proposal is comparing with linear descent, paying special attention to altitude evolution Fig. 

4.15 (e and f). In this case, estimated altitude and setpoints are shown for the exponential 

proposal and linear descending. 

It can be seen in all cases in Fig. 4.15 how the position of the landing pad, defined by a 

blue dashed horizontal line, is obtained in the stationary state. The effect of the error in 

precision is shown with an oscillating behavior (blue dotted line). However, when bias (4.26) 

and filtering (Section 4.3.1.3) corrections are applied, the effect is damped. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

Fig. 4.14. Five-flight 3D graphics for each of the four groups: (a) without correction; (b) bias correction; 

(c) bias and mean filter; (d) bias correction and median filter. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 

Fig. 4.15. Time evolution of the latitude, longitude, and altitude of four flights with different correction 

modes in the landing phase: (a, b) latitude, (c, d) longitude, and (e, f) altitude. First column (a, c, e) 

exponential decrease, second column (b, d, f) linear decrease. 

The linear decrease approach converges in latitude and longitude Fig. 4.15 (b,d), but the 

system finds it difficult to dampen the spin effect. In the case of an exponential decrease, the 

inter-waypoint spin effect is considerably less than linear Fig. 4.15 (a–d). In both cases, the 

linear and exponential altitude decreasing approaches (Fig. 4.15) show when error correction 

is applied, and filtering estimation inter-waypoint noise spin effect is smoothed. 
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Fig. 4.15 (e) and (f) show a small break at the end of the trajectory that exceeds the 

reference and picks it up again. To identify the instant to obtain the landing surface, we keep 

the first term that satisfies the gradient and proximity conditions explained above. 

This effect may be a consequence of a decoupling of the fusion system in the estimation 

of the height, for example for giving more weight to the estimation than to the measurements 

in the EKF2 filter. Therefore, when identifying the instant of reaching the pad, we are left with 

the first term that meets the conditions of gradient and proximity explained above. 

The total of twenty flights with exponential decreasing approach and the other twenty 

flights with linear decreasing approaches are summarized in Table 4.6 and Table 4.7. These 

tables are built with the mean and median values of all flights, so the quality metrics means 

the mean and median values of all flights. 

Table 4.6. Mean value of quality metrics. 

Exp.|Linear Distance [m] Time [s] RMSE landing × 𝟏𝟎−𝟕 

Without 131.25|205.88 143.77|136.37 1.650|1.74 

Bias 57.07|192.15 44.30|131.62 1.011|2.38 

Mean&Bias 37.44|54.73 44.64|116.09 0.875|1.17 

Median&Bias 37.91|67.25 43.62|131.07 1.119|2.68 

Table 4.7. Median value of quality metrics. 

Exp.|Linear Distance [m] Time [s] RMSE landing × 𝟏𝟎−𝟕 

Without 130.14|205.95 144.93|136.37 2.885|2.12 

Bias 57.25|195.46 44.54|131.81 1.193|2.43 

Mean&Bias 34.89|60.68 44.95|116.09 1.037|1.18 

Median&Bias 36.21|85.58 44.34|132.73 1.042|2.70 

Table 4.6 and Table 4.7 show the results of the exponential and linear decreasing 

approaches grouped for easy comparison. The previous tables show for all cases that the 

exponential descent proposal improves the results of the linear descent, emphasizing that in 

the best-case scenario of the linear approach (𝑀𝑒𝑛𝑎&𝐵𝑖𝑎𝑠), the trajectory distance is reduced 

by 32%, the time to land by 61%, and the RMSE of the precision landing by 12%. 

In both tables, the mode that provides the minimum mean landing trajectory distance is 

the bias correction together with the median filter. The minimum mean time to land is 

provided by the bias correction together with the median filter and the minimum mean RMSE 

is again provided by the bias correction together with the mean filter. Finally, the similarity 

between the mean and median values in Table 4.6 and Table 4.7 are a good indicator of 

normal distribution. 
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4.5. Conclusions 

Through the study of the global position estimation system error of Section 4.4, an 

angular and radial bias was identified. In addition, it was shown how the error distribution 

increases its degree of dispersion with the distance to the origin. This position error was 

initially modeled in a cylindrical space in (4.24) and transferred to the NED reference space 

under the transformation (4.25) and (4.26). The corrections over cylindrical space produced a 

structural transformation of the position error distribution, approximating its distributions to 

the Gaussian error. 

On the other hand, it was verified how using a system aimed at smoothing trajectories 

between waypoints can produce a spin effect if the new waypoints are updated with a 

frequency such that the UAV cannot obtain the previous target and these new waypoints 

correspond to the same position, but with high uncertainty. Therefore, the path planning 

system with path smoothing between waypoints can work as an error amplifier performing a 

circular trajectory. 

Finally, we conclude that the combination of an exponential altitude decrease, together 

with the correction of systematic estimation error and a sliding time window filtering, 

improves all three-quality metrics proposed and reduces the effect of the inter-waypoint 

noise spin effect. These results facilitate the development of new applications that require a 

lightweight but robust precision landing strategy. 
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Chapter 5: Artificial Neural Networks 

5.1. Introduction 

ccording to the Cambridge dictionary [1] Artificial Intelligence (AI) is defined as "the study 

of how to produce machines that have some of the qualities that the human mind has, 

such as the ability to understand language, recognize pictures, solve problems, and learn". It 

is a general concept that addresses different fields of study. Approaches that aim to replicate 

biological behaviors have been very successful in the last decades, some of these success 

stories are bio-inspired algorithms or artificial neural networks. Today the concept of artificial 

neural networks (ANN) is commonly used by the digitized society. However, the first proposals 

date back to the 1950s. At the end of the 1950s, the scientist Frank Rosenblatt, inspired by 

the previous work of Warren MCCulloch and Walter Pitts [2], developed the perceptron model 

[3]. These first advances on artificial neurons were inspired by the discovery of Camillo Golgi 

and Santiago Ramón y Cajal, on the biological neuron and its functioning. These discoveries 

were recognized with the Nobel Prize in Medicine in 1906. 

The basic unit of an ANN is the neuron, when several neurons are connected, they form 

a network, and when the connections between different neurons are modified, the behavior 

of the network changes. The process of tuning the connections between neurons in a network 

to a final objective is known as learning. 

During the second half of the 20th century, research on the fundamentals of neural 

networks, learning mechanisms, and applications progressed steadily. Although their 

potential remained latent for decades, the end of the 20th century and especially the 

beginning of the new century brought remarkable technological advances in computing and 

an explosion of data from the Internet. The information age had arrived, and artificial 

intelligence (AI), especially ANNs, was of great interest to society. The cases of success are 

innumerable, covering problems in any type of sector such as economics, engineering, 

robotics, medicine, ecology, etc. 

In general, the machine learning problems in which networks have shown outstanding 

performance are classification and regression. In the first case, classification, one of the main 

engines of research has been the search for solutions for computer vision systems. In this field, 

researchers for decades have devoted their efforts to finding the main features of images on 

which to apply traditional classification strategies. Convolutional Neural Networks (CNN) burst 
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with force in the field of vision by the hand of classification systems such as AlexNet [4]. The 

main advantage is that they are able to learn the main features from the training set. This 

allows to find the hyperspace of variables that maximizes the separation of classes. 

As with regression problems, natural language processing has been and continues to be 

an important area of research for neural networks. This is due to the complexity of modeling 

long-term temporal properties that are difficult or impossible to approximate by Markovian 

models such as state space models. In this area, Recurrent Neural Networks (RNN) with 

models such as Long-Short Term Memory (LSTM) [5] or Gated Recurrent Units (GRU) [6] have 

proven to be able to extract nonlinear and Markovian trends. 

Although papers such as the Prof. O.I. Abiodun et al. [7] discuss the hegemony of CNNs 

and the RNN, as of the date of this manuscript, it is strange to find papers on AI that do not 

mention "Transformers". According to Stanford University researchers in [8], transformers 

"represent a paradigm shift for AI". This type of network has been published by A. Vaswani et 

al. [9] as a proposal for the problem sequence 2 text translation. It is characterized by learning 

from context without recurrent and convolutions.  This is another level of intelligence if we 

compare it to humans, because from a human point of view, understanding, interpreting, or 

reasoning the context is another level of abstraction. 

5.2. The basic unit of ANN  

The artificial neuron tries to reproduce the essence of biological neural systems and 

emulate their behavior. The first advances date back to the 1950s and 1960s, when the 

scientist Frank Rosenblatt developed the perceptron [3]. These early advances in artificial 

neurons can be described as follows: 

• Each neuron gets a series of "inputs" (either original data or "outputs" from other 

neurons). Each input arrives through a connection that has a certain "strength", or 

"weight", which is equivalent to the synaptic efficiency of a biological neuron. Each 

neuron also has a certain threshold value. The weighted sum of the inputs minus the 

threshold value makes up the "activation" of the neuron (also known as the Post-

Synaptic Potential (PSP) of the neuron). 

• The activation signal flows through an activation function, or transfer function, to 

produce the "output" of the neuron. This function limits the range of values that the 

neuron's output variable can take. 

Consider that there is a signal 𝑥𝑗 at the input of 𝑗-synapse of neuron 𝑘, when crossing 

through the j-th synaptic connection, the variable 𝑥𝑗 is multiplied by the “weight” 𝑤𝑘𝑗 and a 
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threshold 𝑏𝑘 ("Bias") is added to the result. This result 𝑧, becomes mapped by an activation 

function 𝜑. In the literature it is usual to consider 𝑏𝑘 as an extra weight 𝑤𝑘0. 

𝑎𝑘 = 𝜑(𝑧𝑘)| 𝑧𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=1 + 𝑏𝑘 (5.1) 

5.2.1. Activation Neurons 

The first functional artificial neuron, called perceptron, was composed of a step activation 

function 𝜑, which can only take binary values. This function is also called the McCulloch-Pitts 

neuron and is defined by (5.1) Fig. 5.1 (a). It is commonly used in classification problems 

because of its binary output. 

𝜑(𝑧) = {
1, 𝑧 ≥ 0
0, 𝑧 < 0

 (5.2) 

The limitation in the input and output values of the perceptron motivated the study of 

other kind of activation functions. The first substantial change occurred when using the 

sigmoid neuron (5.3). This neuron can take input values between 0 and 1 as can be show in 

Fig. 5.1 (b). 

The sign of a sigmoid function means whether it opens to the left or to the right. It is well 

suited to represent concepts such as "very large" or "very negative". The importance of this 

function is that its derivative is always positive and close to zero for big values. This feature is 

essential when applying the learning rules. If the slope is very high, the sigmoid will 

approximate the step function.  

𝜑(𝑎, 𝑧, 𝑐) =
1

1 + 𝑒−𝑎(𝑧−𝑐)
 (5.3) 

In addition, if it is desired to translate the interval from [0 1] to [-1 1] the sigmoid function 

can be defined as the hyperbolic tangent (5.4), Fig. 5.1 (c). 

𝜑(𝑧) = tanh 𝑧 = 2𝑠𝑖𝑔𝑚(2𝑧)  − 1 (5.4) 

Another derivable function used in the literature is the Gaussian function (5.5), Fig. 5.1 

(d). In this case, the width and amplitude can be adjusted using the A and B parameters. 

𝜑(𝑧) = A𝑒−𝐵𝑧 (5.5) 

The search for solutions to nonlinear problems has led to the generation of models with 

great depth, in other words, a large number of neurons (nodes) between the input and output 

of the system. This implies a high computational cost for systems with derivable but complex 

activation functions, such as sigmoidal or Gaussian. One of the proposals to preserve the 
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degree of saturation at the extremes and the derivability is the piecewise defined function 

(5.6), Fig. 5.1 (e). 

𝜑(𝑧) =

{
 

 1,                     𝑧 ≤ −
1
2⁄                  

𝑧 + 0.5,             1 2⁄ > 𝑧 > −1 2⁄

0,                     𝑧 ≥ 1 2⁄  

 (5.6) 

The slope in the linear region is assumed to be unity but can easily be approximated by 

the step function when the slope is infinite. In all other cases it is the combination of three 

simple functions. 

However, the most popular function at present is the Rectified Linear Unit (ReLU) 

function (5.7), Fig. 5.1 (f). These functions let all positive values pass without changing them, 

while setting all negative values to zero. It could be understood as a piecewise definite 

function with slope one and zero ordinate at the origin.   

𝜑(𝑧) = max (0, 𝑧) (5.7) 

ReLU has two main advantages: 

• Non-saturated gradient, by the fact that x > 0; thus, the problem of gradient dispersion 

in back propagation process is alleviated and the parameters in the first layer of the 

neural network can be updated quickly. 

• Low computational complexity, given its own definition. 

However, it has the disadvantage that the ReLU neuron may die when it receives a high 

negative gradient during backpropagation. This can be avoided by carefully initializing the 

weights or using Leaky ReLU (5.8), Fig. 5.1 (f), which is similar to ReLU, but its output is linear 

multiplied by a small value (about 0.001) when the input is negative. This reduces the 

possibility of node death by avoiding returning zero for values below zero. 

𝜑(𝑧) = max (0.01z, z) (5.8) 

Relevant reviews, such as that of Professor Tomasz Szandała [10], approach their study 

from the formulation of learning problems and their challenges. In addition, it describes the 

behavior of other neurons such as Swish, Softplus or Maxout which may be alternatives to 

ReLU. 

Fig. 5.1 shows the function of each of the activation functions described above. 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.1: Activation functions. a) Step function. b) Sigmoid function with [a, b] = [2,4] and [a, b] = [-2, 4] 

(red). c) Hyperbolic tangent function, d) Gaussian function with A=0.5 B=1.5. e) Piecewise function. f) 

ReLU and Leaky ReLU (red). 

5.3. Artificial Neural Network  

In the previous section it was shown how the input of a neuron is the linear combination 

of its different inputs. the union of different neurons forms a network. One of the most 

generalized ways to connect neurons is a layered structure. This divides the network into three 

main parts, an input layer, an output layer, and one or more layers in between, called hidden 

layers. This is the topology of a feedforward network [11]. In it, all the nodes of one layer are 

connected to each node of the next layer, thus feeding the successive layers to each other. 

Each node is a neuron.  As in the basic neuron unit, biases can be added in all layers (input, 

output and hidden). 

Each 𝑙-layer of a network with 𝑛-layers is defined by 𝐿𝑛, so the first layer is 𝐿1 and the 

output 𝐿𝑛. The dimensionality of a layer is defined by the number of neurons that compose it 

(𝑠𝑙). 

In this type of architecture, all neurons are connected, with each connection having its 

own weight. For an input, the neurons would start a cascade of operations, receiving inputs 

and passing the outputs to the neurons of the next layer. This can be seen very graphically 

with the visualization tool provided by TensorFlow [12]. The network parameters consist of 

𝑊𝑖𝑗
(𝑙) and 𝑏𝑖

(𝑙). The former corresponds to the weight between the 𝑗𝑡ℎ neuron of layer 𝐿𝑙  and 

the 𝑖𝑡ℎ neuron of layer 𝐿𝑙+1. For example, 𝑊12
(3) means the connection coefficient between 
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the second neuron of the third layer and the first neuron of the fourth layer. The other 

parameter, 𝑏𝑖
(𝑙), denotes the bias associated with the 𝑖𝑡ℎ neuron of layer 𝐿𝑙+1. 

To reduce computational cost, weight parameters are stored in matrices and vectors in a 

process called "vectorization". By organizing the parameters into matrices and applying tensor 

operations, it is possible to take advantage of fast linear algebra routines to perform the 

neural network computation efficiently. Finally, as shown in (eq.), the weight coefficients 𝑊𝑖𝑗
(𝑙) 

and 𝑏𝑖
(𝑙) can be vectorized. 

𝑊(𝑙) = [

𝑊11
(𝑙)

⋯ 𝑊1𝑠𝑙
(𝑙)

⋮ ⋱ ⋮

𝑊𝑠𝑙+11
(𝑙)

⋯ 𝑊𝑠𝑙+1𝑠𝑙
(𝑙)

]   ;   𝑏(𝑙) = [

𝑏1
(𝑙)

⋮

𝑏𝑠𝑙+1
(𝑙)
]    

 

(5.9) 

The dimension of the matrix 𝑊(𝑙) will be 𝑠𝑙+1 × 𝑠𝑙, or zero in the case of no connection, 

and the length of the vector 𝑏(𝑙) will be 𝑠𝑙+1. Moreover, these values are the parameters that 

define the connections between the layers 𝐿𝑙  and 𝐿𝑙+1. Therefore, in a neural network with 

𝑛𝑙  layers, it will be composed of 𝑛𝑙−1 matrices/vectors for each parameter. 

Taking 𝑎𝑖
(𝑙) as the output value or activation of the 𝑖𝑡ℎ neuron in the 𝐿𝑙  layer. For the input 

layer 𝑙 = 1, the activation will be the 𝑖𝑡ℎ input signal, then 𝑎𝑖
(1) = 𝑥𝑖 . For the output layer, 

𝑙 = 𝑛𝑙  , the activation will be the output signal, defined as ℎ𝑊,𝑏(𝑥).  This is the hypothesis that 

will define a neural network given fixed parameters 𝑊 and 𝑏. 

To generalize the activation function of a feedback neural network, the definition of (5.1) 

can be used.  First, we want to identify the activation function of each layer. To do this, recall 

that the output of the 𝑖-neuron in layer 𝐿𝑙, called 𝑎𝑖
(𝑙), is the output of the activation function 

𝜑, which takes as input the sum of the activations of all the neurons connected in layer 𝐿𝑙−1 

to the 𝑖-neuron in layer 𝐿𝑙, multiplied by the coefficients 𝑊𝑖𝑗
(𝑙−1) of each connection, and adds 

a bias 𝑏𝑖
(𝑙−1). Thus, the 𝑖-neuron of layer 𝑙 is defined by (5.10). 

𝑎𝑖
(𝑙)
= 𝜑 (∑𝑊𝑖𝑗

(𝑙−1)
∙ 𝑎𝑗
(𝑙−1)

+

𝑠𝑙−1

𝑗=1

𝑏𝑖
(𝑙−1)

) (5.10) 

For 𝑙-layer, 𝐿𝑙 , the matrix form is given by (5.11). 

𝑎(𝑙) = 𝜑

(

  
 

[
 
 
 
 
 𝑊11

(𝑙−1)
𝑊12
(𝑙−1)

𝑊21
(𝑙−1)

𝑊22
(𝑙−1)

⋯
𝑊1𝑠𝑙−1
(𝑙−1)

𝑊2𝑠𝑙−1
(𝑙−1)

⋮ ⋱ ⋮

𝑊𝑠𝑙1
(𝑙−1)

𝑊𝑠𝑙2
(𝑙−1)

⋯ 𝑊𝑠𝑙𝑠𝑙−1
(𝑙−1)

]
 
 
 
 
 

∙

[
 
 
 
 𝑎1
(𝑙−1)

𝑎2
(𝑙−1)

⋮

𝑎𝑠𝑙−1
(𝑙−1)

]
 
 
 
 

+

[
 
 
 
 𝑏1
(𝑙−1)

𝑏2
(𝑙−1)

⋮

𝑏𝑠𝑙−1
(𝑙−1)

]
 
 
 
 

)

  
 

   (5.11) 
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Typically, the weighted sum of all inputs of the 𝑖-neuron in layer 𝐿𝑙, 𝑧𝑖
(𝑙), is used to 

compact the notation (5.12).  

𝑎𝑖
(𝑙)
= 𝜑 (∑ 𝑊𝑖𝑗

(𝑙−1)
∙ 𝑎𝑗
(𝑙−1)

+
𝑠𝑙−1
𝑗=1 𝑏𝑖

(𝑙−1)
) = 𝜑 (𝑧𝑖

(𝑙)
)  (5.12) 

What has been shown is a basic concept of a feedforward neural network. These 

networks have no feedbacks or loops between neurons or layers. Classification systems have 

as many neurons as classes at the output of the network, and recurrent networks feedback 

their layers and neurons. This increases the complexity of the architectures and consequently 

their computational cost. 

5.3.1. The space power of CNNs 

To understand the power of CNNs, it is important to put them in the context of their 

previous appearance in the field of computer vision and neural networks. A low-resolution 

image, say 128x128 [px], in three-channel Red, Green, Blue (RGB) format contains a total of 

128x128x3=49,152 data. Approaching this problem from the back-propagation neural 

network approach requires an input layer with almost 5000 neurons. The computational cost 

was excessive for the time, so dimensionality reduction strategies were applied, where the 

search for main features in the images was widely accepted. However, these features were 

based on concepts such as corners, edges, etc. With these features, the dimension of the 

space is reduced, but in a proper way, some of the information contained in the image may 

be wasted. Faced with the dimensionality problem posed by the challenges of pattern 

recognition, K. Fukushima [13] came up in 1980 with the "Neocognitron", the forerunner of 

what we know as Convolutional Neural Networks (CNN). At the end of the 1980s, work such 

as that of LeCun et al. [14] appeared, which refined and applied the concepts of convolutional 

kernels and successfully trained the architectures using the "back-propagation" algorithm 

[15]. 

These mathematical mechanisms together with activation layers allow CNNs not only to 

stabilize the input dimensionality, but also to learn hidden features in the image data.  

Although they are widely known for their efficiency in problems related to images and 

classification, there are many cases in which they have been successfully applied in vessel 

trajectory classification [16], audio classification, temporal sequences or regression, among 

others [17]. 

Classical convolutional blocks such as those of the relevant AlexNet architecture [4] are 

composed of three layers, convolution, activation, and pooling [17]. This configuration allows 
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concatenating convolutional blocks, making easier the dimensionality structure between 

inputs and outputs. 

For a classification architecture with CNN, this set of blocks provides the feature 

extraction. In addition, the activation layers of the convolutional blocks are the focus of 

attention mechanisms in image detection systems such as networks mentioned in Part I, 

Chapter 3 Machine vision systems, section 4 of object detection. 

5.3.2. The sequential domain of the RNNs 

Temporal dependencies in data, such as time series, can be modeled by Markov chains [18]. 

Markov chains model the transitions between states of an observed sequence. Hidden 

Markov Models (HMM) appear 50 years later, in the 1950s, and probabilistically model an 

observed sequence depending on a sequence of unobserved states [19]. But these models 

have limitations.  First, they are limited because their states must be extracted from a reduced 

state space. Programming algorithms for inference with these model’s scale with time. 

Transitions that capture the probability of moving between adjacent states become infeasible 

with an HMM when the set of possible hidden states is large. Furthermore, each hidden state 

can only depend on the immediately preceding state, as is the case with dynamical systems in 

state space models. 

While it is true that the temporal window can be expanded by creating new state spaces, the 

state space grows exponentially with the size of the window, making them computationally 

impractical for modeling long-term dependencies. 

Given these limitations, recurrent networks attempt to address the limitations of HMMs, 

especially long-term temporal dependencies. 

According to Z.C, Lipton and J. Berkowitz [19], “Recurrent neural networks are feedforward 

neural networks augmented by the inclusion of edges that span adjacent time steps, 

introducing a notion of time to the model.”  

This assumes that the connection between edges connecting adjacent steps produces cycles. 

The size of the cycle denotes the degree of recurrence, where one cycle means self-

connections of a neuron or node to itself. It is assumed that at 𝑡-time step, the nodes receive 

the newly data 𝑥(𝑡), but also information from the hidden states at previous times ℎ(𝑡 − 1). 

Thus, the output  𝑦̂(𝑡)  is computed with the hidden nodes ℎ(𝑡). This allows a past input 𝑥(𝑡 −

1) to influence the current output 𝑦̂(𝑡), (5.13). 

ℎ(𝑡) = 𝜑(𝑊ℎ𝑥  𝑥(𝑡) +𝑊ℎℎ𝑥(𝑡 − 1) + 𝑏ℎ)  (5.13) 
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Where 𝑊ℎ𝑥  are the weights between the inputs 𝑥 and the hidden layer ℎ. On the other 

hand, 𝑊ℎℎ is the matrix of recurrent weights between itself and adjacent time steps. The 

vector 𝑏ℎ is a bias vector of the hidden layers. 

Papers published by Jordan [20] in 1987 and by Elman [21] in the early 1990s introduced 

connections between outputs and new neurons connected to hidden layers called "context 

units". The goal of these networks is to learn the context of the input data. These works were 

essential for the development of the popular LSTMs [5] almost ten years later and the GRUs 

networks [6] in 2014. 

5.3.3. Transformers: Understanding the context  

Recently, AI fields related to natural language processing (NLP) and computer vision have 

been catapulted in performance and efficiency by ANN models such as GPT2/3/4 [22], SAM 

[23] or XMem [24], among others. 

Transformers base their potential on attention mechanisms. Attention mechanisms allow 

networks to focus learning efforts on understanding context. One of their advantages is the 

reduction of computational cost, which allows to process a larger amount of data. The vanilla 

Transformer, unlike RNNs, does not have recurrences, but instead uses positional coding to 

model sequences [25]. The central block of the vanilla Transformer architecture is the self-

attention module. It is assimilated to a fully connected layer in which weights are dynamically 

generated based on the input patterns. The result of this block makes it possible to maintain 

the maximum length of a fully connected layer, but with far fewer parameters. This feature 

makes it suitable for modeling long-term time properties. The review paper by M. Guo et al. 

[26] describes attention mechanisms depending on the data domain. The authors divide 

attention methods into six categories, which are further divided into two groups: basic 

mechanisms and hybrid mechanisms. The basic mechanisms include: 

• Chanel attention: aims to identify “what to pay attention to”. 

• Spatial attention: aims to identify “where to pay attention”. 

• Temporal attention: seeks to identify “when to pay attention”. 

• Branch attention: aims to identify “which to pay attention to”. 

On the other hand, the hybrid mechanisms are Chanel & spatial attention and Spatial & 

temporal attention. 

Attention mechanisms allow parallelizing the internal processes reducing the computational 

cost of training with respect to RNN and CNN [27]. This allows training with huge databases 

as in the case of the SAM [23] (Segment Anything Model), which was trained with more than 

11 thousand images and 1 billion masks. This does not mean that transformers improve the 



 

-134- 

 

performance of RNNs or CNNs in all cases, but they do improve the computational cost in 

training and inferences. 

Attention models have limitations, including that they can be difficult to train, requiring 

complex optimization methods and/or new strategies. These difficulties, together with their 

complexity, can be negative for some applications. In addition, the parallelization of attention 

mechanisms and input tokens limits the exploitation of the full sequential potential of 

networks [28]. However, all these limitations open the possibility of exciting challenges for 

researchers and IA. 
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Abstract. Some of the limitations of state-space models are given by the difficulty of modeling certain systems, 
the filters convergence time, or the impossibility of modeling dependencies in the long term. Having agile and 
alternative methodologies that allow the modeling of complex problems but still provide solutions to the classic 
challenges of estimation or filtering, such as the position estimation of a mobile with noisy measurements and 
unknown motion models, are of high interest. In this work, we address the problem of position estimation of 1-
D dynamic systems from a deep learning paradigm, using Long-Short Term Memory (LSTM) architectures 
designed to solve problems with long term temporal dependencies, in combination with other recurrent 
networks. A deep neuronal architecture inspired by the Encoder-Decoder language systems is implemented, 
remarking its limits and finding a solution capable of making predictions of high accuracy with models learnt 
from training data of a moving object. We use a panel data model for training and validation. In the 
experimentation, we use sliding overlapping time windows in a recursive and standardized way to avoid the 
saturation problem of the networks in increasing trend estimates. The results are finally compared with the 
optimal values from the Kalman filter, obtaining comparable results in error terms. These results show the 
proposed system has great potential for target tracking. 

Keywords: Deep Learning, Filtering, Forecasting, LSTM, Encoder-Decoder, Attention.  

6.1. Introduction 

 wide variety of physical and scientific problems are based on the estimation of the state 

variables of a system that evolves with time, using for these purpose sensors that provide 

measurements with a certain level of uncertainty, so-called noisy observations. 

To a large extent, these problems are formulated with state-space approximations. These 

approaches model the system behavior through a mathematical approximation mainly 

centered on a state vector, which is intended to contain all relevant and necessary information 

to describe it and make predictions. The sensors provide measurement or observation vectors 

that are related to the state vector of the analyzed system. 

A 
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To analyze and infer a dynamic system, it is mainly required a model that describes the 

evolution of the states with time, and a second one that relates the observations with the 

states. These two large groups can be denominated from the state-space formulation as 

equations for state dynamics, and equations for observations (or likelihood), respectively. 

In this context, many problems are tackled from the probabilistic formulation of the state 

space with Bayesian approximations, which provide a general solution for dynamic states 

estimation problems. Knowing the governing equations for dynamic systems allows 

forecasting, estimations, or control studies by structural stability analysis and bifurcations. 

However, when systems are very complex and/or when measurements are corrupted by not 

modeled errors [1], many complications may appear. In H. H. Afshari et al. [2] work can be 

found a summary of different state estimation techniques from classical and Bayesian 

perspectives. 

It has been addressed that State Space Models (SSM), such as Hidden Markov Models 

(HMM) and Linear Dynamic Systems (LDS), have been and continue to be powerful tools for 

series modeling, estimation, and filtering. However, these approaches are based on linear, 

Gaussian, or Markov assumptions, while in real systems it is difficult for them to be linear or 

Gaussian and can have long-term dependencies that cannot be captured by these techniques, 

so their use is restricted. 

Distinguishing the aforementioned cases by their probabilistic inference model, using 

artificial intelligence (AI) paradigms we can add intelligent inference methods.  

If we group under AI data-driven estimators, there are recent novel works such as Tianchen 

Li and Honqui Fan [3]. In this work, the authors address the problem of real-time detection and 

tracking of non-cooperative targets [4] in the challenging scenario of not having a priori target 

information such as target dynamics, birth, death, or probability of detection. For the 

estimation of the movement, authors uses trajectory functions on time (T-FoT) [5]. This system 

fits a polynomial-time function to the received data. Least squares and Mahalanobis distance 

are used to adjust the polynomial-time parameters. This estimator is adjusted iteratively by 

applying online training with sliding-time windows, thus allowing it to adapt to hostile 

situations such as maneuver changes. In addition, the authors propose an initialization system 

based on clustering and a hypothesis test to identify if two measurements belong to the same 

object. This binary test is based on the Mahalanobis distance and the neighborhood radius. The 

proposal is evaluated in two cases of non-cooperative objectives. On the one hand a linear 

system and on the other hand a non-linear system, using the optimal subpattern assignment 

error (OSPA) [6] as a metric. In addition, it is compared with an ideally modeled Bernoulli filter 

[7, 8]. The proposal shows comparable results with the ideally modeled Bernoulli filter and 
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even outperforms it under certain conditions, demonstrating that the proposal provides a 

promise alternative to state space models.  

In [9] software sensors are treated as an alternative way to obtain estimators by means of 

classical methods. These AI-based estimators are computational algorithms designed to predict 

unmeasured parameters that are relevant for developing control laws or other applications.  

LSTM neural architectures are not new [10], having been used in many applications that 

were related with natural language processing [11] or attention [12] problems. Additionally, 

LSTM has shown good results in other scenarios, such as classification systems [7, 8], signal 

filtering after measurement [15], time estimations (e.g., oil production estimation [16]), traffic 

forecasting [17], stock index prediction [18] and system modeling [19], among others.  

Orimoloye's and working team [18] compare deep learning (DL) architectures with soft 

architectures such as a support vector machine (SVM) to predict stock indexes with different 

sample times (hours, minutes, seconds) observing that predictive accuracy reaches a 

maximum point regardless of the size of the training set. It is also verified how the rectified 

linear unit (ReLU) activation function presents better results than the tanh (hyperbolic 

tangent). 

Rassi et al. [20], model highly non-linear systems that are restricted in the state space or 

centered around equilibrium points with ideal synthetic data. Rudy et al. work [1], models 

highly non-linear systems with noisy measurement information. The aim of this work focuses 

on the modeling of highly nonlinear systems using neural networks combined with numerical 

methods around equilibrium points or attractors that prevent saturation effects in the neural 

models. Section 4 of the paper [1] expresses certain limitations that mainly reflect the problems 

of estimation very close to the attractors and even with changing initial conditions. The neural 

architectures used are composed of dense layers in a four-step Runge-Kutta scheme without a 

study of the associated forgetting rate, so that in non-Markovian models they may present 

different results since they are not designed to maintain long-term trends. Both papers [1] and 

[20] show the behavior of a single trajectory under different noise levels but no general 

statistical analysis of the performance of the models is performed. In the framework of target 

tracking challenges, it is interesting to study the behavior of the systems in the absence of 

measurements, however, in both papers, the authors focus especially on the modeling 

problem of the systems. These limits knowing the potential of this work in the face of the 

interesting challenge of monitoring objectives in the absence of measures. 

In Zheng et al. work [21] present a new combined algorithm between LSTM and Monte Carlo 

for tracking, testing a continuous increasing function with noise (line) but bounded to a specific 

time sequence. 
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In this paper we tackle the estimation/filtering problem with the position in a 1D moving 

object with an RNN inspired by the language encoder-decoder systems among others, 

comparing with the optimal solution of the Kalman filter (KF). This work brings to the neuro-

estimators area, a new neural architecture, and we obtained comparable results in terms of 

error to Kalman and opening new alternatives to problems not approachable by classical 

systems. Our work, in contrast to the majority of studies or problems in the literature such as 

[1, 14, 15] delocalizes the problem from a specific or bounded estimation region and 

generalizes it, transforming in it into a recursive standardization-inference-unstandardization 

problem. For this purpose, the system is trained in a wide range of initial conditions. 

6.2. Problem formulation 

We suppose an unknown dynamic system 𝑓(𝑥(𝑡)) not necessarily linear, Gaussian, or 

Markovian. From the system, we know 𝑧(𝑡) measurements of some of its states 𝑥 in time 𝑡. 

These measurements are related to the states of the system 𝑓 by ℎ(𝑥(𝑡), 𝑣(𝑡)) function. 

Generally, ℎ can be considered nonlinear and dependent on a stochastic parameter with noise 

𝑣(𝑡).  

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡)) (6.1) 

𝑧(𝑡) = h(𝑥(𝑡), 𝑣(𝑡)) (6.2) 

Where 𝑥(𝑡) ∈ ℝ𝑛 is a state vector 𝑓 and is a state vector field.  

Not knowing if the stochastic system can present temporary dependencies in the long term 

means that the estimation of states of a system cannot be done only with immediate 

contiguous states in time. In this way discretization of a continuous system can be done as 

follows: 

𝑥𝑘+1 = 𝐹(𝑥𝑘) = ∫ 𝑓(𝑥(𝜏))d𝜏
𝑡𝑘+1

𝑡𝑙

 (6.3) 

Where 𝑡𝑙  is a temporal instant less than 𝑘 and generally unknown in non-Markovian 

systems, where the approach for the previous discretization can no longer be used. In this way, 

a classical dynamic system can be considered as a particular case of a non-Markovian system. 

According to this notation, forecasting state problems is formulated in relation to previous 

states (6.3), that is to say, forecasting consists of identifying states in future times (𝑥𝑘+1). On 

the other hand, a filtering problem consists to identify certain 𝑥𝑘  states at the same moment 

in which 𝑧𝑘 noise measurements are received (6.4). 
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𝑥𝑘 = ℎ
−1(𝑧𝑘, 𝑣𝑘) (6.4) 

However, in real problems, the value of 𝑣𝑘 is not usually known, neither if the function ℎ is 

invertible and in case of being able to demonstrate its local or global existence by the inverse 

function theorem, this will only tell us if it exists, but not what it is or how to calculate it. But it 

is important to note that the function ℎ is most likely not invertible in real cases. 

This paper proposes the estimation of state variables of an a priori unknown noisy dynamic 

system, which may not depend only on a previous state but may present long- term temporal 

dependencies. 

Thus, the state vector must be estimated from the observations. If we call 𝐹̂+ and 𝐹̂ filtering 

and prediction estimators respectively, the problem is how to determine the estimators from 

the data. 

𝑥𝑘 = F̂
+(𝑧0, … , zk−1, zk) (6.5) 

𝑥𝑘+1=F̂(𝑧0, … , 𝑧𝑘−1, 𝑧𝑘) (6.6) 

The ∧ term over 𝐹 function, mentions the estimator term that we have inherited from the 

classical stochastic observers notation.  

For this purpose, we simulate the behavior of an ideal one-dimensional uniform rectilinear 

motion (URM), 𝑊𝑘 = [0, 0]
𝑇 in which all parameters are controlled and distorted under 

constant Gaussian noise 𝑉𝑘, simulating measurements 𝑧𝑘 of the position state variable 𝐻 =

[1 0]: 

[
𝑝
𝑣
]
𝑘⏟

𝑥𝑘

= [
1 ∆𝑇
0 1

]
⏟    

𝐴

[
𝑝
𝑣
]
𝑘−1

⏞    
𝑥𝑘−1

+𝑊𝑘 (6.7) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑉𝑘 (6.8) 

For this simple, short-term model, when all parameters are known, classical SSM 

estimation techniques can be used. However, in the general case, LSTM architectures could 

generate a better prediction of series using long-term dependencies without assuming linear, 

Gaussian, or Markovian systems.  

Thus, the use of LSTM architectures has great potential in object tracking problems with 

complex dynamics that cannot be handled by classical systems. 

In this line, we propose to approach the problem from the deep learning (DL) perspective 

as a "sequence-to-sequence" learning problem, widely used in natural language processing 

problems. We propose to adapt our neural network (NN) architecture Fig. 6.8 to a supervised 
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database 𝚽 composed by 𝑁 number of Φ𝑖 data packages. Each data package Φ𝑖 is composed 

by the association of a series of measurements with noise 𝑍𝑖  of time length 𝑘̃ and 𝑛 

characteristics with a target series 𝑋𝑖 of time length 𝑘̃′ and 𝑛′ characteristics. We set 𝑘̃ = 𝑘̃′ 

and 𝑛 = 𝑛′.  The temporal relationship between 𝑍 and 𝑋 is that the target series 𝑋 contains 

the filtered values of measured series 𝑍 and one temporal unit ahead, both with the same 

number of samples.  

Given 𝑗 = {𝑝, 𝑣} as the dimensions of state vector of the system 𝑓 (6.7), 𝑛̃ = ∑(𝑗) is the 

size 𝑛̃ of the full state vector 𝑥. It is important to note that 𝑋𝑖 is a sequence and does not have 

to contain the complete state vector of the system (𝑥). So, 𝑋𝑖 is formed by the components of 

state vector in the i-sequence, which can be complete or not (𝑛 ≤ 𝑛̃), directly linking to 𝑧-

state measurements by 𝑍𝑖  sequence.  

𝑋𝑖 = {

𝑥𝑖,1,1, … , 𝑥𝑖,1,𝑘̃′+1
…

𝑥𝑖,𝑛′,1, … , 𝑥𝑖,𝑛′,𝑘̃′+1
} ; 𝑍𝑖 = {

𝑧𝑖,1,1, … , 𝑧𝑖,1,𝑘̃+1
…

𝑧𝑖,𝑛,1, … , 𝑧𝑖,𝑛,𝑘̃+1
} (6.9) 

In our case 𝑋𝑖 is not complete and only includes the ideal state corresponding to 

positions, corresponding to the observed measurements 𝑍𝑖  (𝑛̃ > 𝑛 = 𝑛
′ = 1| 𝑗 = 1). 

Therefore, each data package is defined as Φ𝑖 = 𝒁𝒊 ∪ 𝑿𝒊| 𝑍𝑖 = {zi,1, zi,2, … zi,k} and  𝑋𝑖 =

{𝑥𝑖,2, 𝑥𝑖,3… xi,k+1}. In learning terms, it can be said that the system learns to forecast a value 

one time step beyond the observations. 

Most dynamic systems are not restricted in their state space domain, while neuronal 

architectures are bounded systems defined by the functions that constitute each layer. These 

layers are composed by the functions that define each of their units and, in greater depth, the 

activation functions of each of the artificial neurons. In this way, the regression problems will 

be bounded to the training space unless a generalization is proposed to cover all the domain. 

The most common artificial neural network (ANN) activation functions are bounded, so 

the composition of all the neuron layers provides a system composed of bounded functions, 

which means that the output function of the network will be bounded. That is, the network 

function provides a subset of solutions restricted to the training space, which implies that 

estimates outside this range require special treatment. 
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Fig. 6.1. Network saturation effect in forecasting process when we move away from the training space 

(watched in URM). 

In Fig. 6.1 we can see in red-point forecasting positions outside the training space. A noisy 

data set with a full-size training window is shown in green. The blue dotted line above the 

second time window shows the ideal trend values. Finally, the blue horizontal line with dots 

and lines shows the asymptote to which the forecasts tend. In the first forecasts, the values 

can be adjusted to the blue target, but during few predictions, we check how the system tends 

asymptotically to a maximum value (Saturation). This example shows the saturation network 

effect when we try to forecast with a growing trend outside the training space.  

This effect can be seen also in terms of internal network activation level. Fig. 6.2 shows 

the first 5 hidden units of the lstm-1 Table 6.3 architecture in prediction for two sequences 

inside the normalized space (set 1 and set 2) and the last one forecasting outside the 

normalized space.  We can see how the first two heat maps are similar while the third one 

does not evolve with time and is different from the previous two and it stays with the same 

all the time. This means that there are no internal updates, and the LSTM cells discard the new 

inputs through the input gate. As there are no changes in the network while the input changes, 

we can say the network is saturated. 

To avoid this problem, some authors work around stable equilibrium points of systems 

that guarantee the restriction of space along with online training. In other cases, the systems 

do not have growing trends, only oscillation. In this work, to address this issue, we propose 

using a recursive method of standardization based on the sliding time window through the 

data, maintaining a small overlap region with the previous window for network activation at 

each window shift. This overlap area hopes to retain the long-term dependencies Fig. 6.4. 
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The activation process consists to introducing a small section of measured sequence into 

the network, so that the internal network architecture can adjust its internal weights to link 

them to the training data. These corrections are made by transitions, and the transitions 

happen when measurements are inserted. 

 

Fig. 6.2. Internal activation heatmaps. The first and second heatmaps belong to two predicted series in 

standard training space. Third heatmap predicted outside standard training space. 

6.3. Database 

We generate a synthetic database to simulate the measurement of objects positions with 

URM. These trajectories are linear, and they are generated with the model (6.7) to obtain ideal 

values. To simulate the sensor behavior, Gaussian noise is added to the ideal values (6.8).  

We consider positive and negative positions and speed as initial conditions. With previous 

descriptions, our synthetic database 𝚽 (6.10), it’s composed by N=1000 measured paths 

𝑍𝑖  and their corresponding ideal values 𝑋𝑖, according to parameters in Table 6.1. 

𝚽 =⋃ 𝑍𝑖 ∪ 𝑋𝑖
𝑁

𝑖=1
 (6.10) 

where (6.10) means the 𝜱 database is the union of 𝑁 data packets 𝛷𝑖 = 𝑍𝑖 ∪ 𝑋𝑖. These 

𝜙𝑖  data packets are composed of the measured data 𝑍𝑖  and their corresponding ideal states 

𝑋𝑖. 

The simulated values were generated by adding Gaussian noise to the ideal trajectory 

using a random number generator as in Kay chapter 5-9 [22] with the initial conditions in the 

ranges of Table 6.1. 
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Table 6.1. Synthetic data generation parameters. 

 Data generation range 

Parameter Minimum Maximum 

Initial position [m] | Speed [m/s] -25 | -55 25 | 55 

Simulation end times [s] | Sampling time [s] 8 | 0.05 

Number of window data | Overlap [Nº data] 80 | 15 

Gaussian noise measurement 𝑽𝒌~𝓝(𝟎, 𝝈𝒁)  0.9 

The speed range was decided considering that the maximum speed of a vehicle for this 

type of problem is 198 km/h. The rest of the values have been considered in a heuristic way. 

6.3.1 Database division 

In supervised learning processes, the databases must be split up for training and 

validation processes. In this splitting process, it is common to assign a percentage of data for 

training and the remainder for validation. If we represent the most used general structures of 

the database, we can divide our data in two principal ways as shown in Fig. 6.3. 

 
Fig. 6.3. Principal training and validation data splitting method. 

With the aim of extracting the maximum information from the set of trajectories, that we 

assume start from different initial conditions, in this work we choose to select time windows 

of each of the 𝑖 series option B in Fig. 6.3. This data selection can be considered as a panel 

data structure [23]. To control the training and validation process, we selected two sets of 

data from the database corresponding to two time-symmetric and contiguous time windows 

without overlapping with each other. 

The training and validation subsets are obtained through two consecutive time windows 

of 81 samples for each path. The first-time window is associated to the training set and the 

second to the validation set, obtaining two subsets with the same number of data. 
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6.3.2. Data standardization  

Considering the networks' sensitivity to data scaling, data standardization is performed 

as in X. Song [16] but under a geometrical interpretation of them. The behavior of a URM, in 

general, shows an increasing tendency in absolute value, so this interpretation is essential for 

training and model inference. 

For this interpretation, we use a URM 1D trajectory given its conceptual simplicity in the 

visualization growing trend. This growth is a key point to control and avoid the saturation 

problem in the forecasting process whit ANN. 

So, the activation process can have certain previous information, a small region of overlap 

is used between the adjacent windows, defined by a set of data from the previous window 

that is used for the activation of the network at each window movement (overlap). 

 

Fig. 6.4. Graphical data standardization process. 

A translation is performed to transform for the second (and successive) time window into 

the first, by subtracting the minimum (m) value of the data series to all its measurements. 

Then, knowing the maximum (M) value of the window and the minimum, the normalization is 

done by dividing the set of data from which the minimum value has been subtracted by the 

amplitude of the data series in the window, which we can be obtained as the difference 

between the maximum value minus the minimum, this normalization represents a scaling in 

geometric terms. This whole process is shown in Table 6.2, procedure 1.  

Finally, if we want to go back to the initial space we need to "undo" the previous rules so 

we can apply a unstandardization process to transform the data in the opposite order to the 

previous one Table 6.2. To do this we need to know the maximum (𝑀) and minimum (𝑚) 

values of the standardized data. 

 

       
    

  

 

 

  

  

  

  

  
   

  
 

1St window 

2Nd window 

Normalizat

ion 

Overl

ap 

              
 

   

   

   

   

   

   

   

   

   

 

Overl

ap 



 

-147- 

 

Table 6.2. Standardization/ unstandardization algorithm. 

1: Procedure 1 STANDARDIZATION (𝑿∗) 1: Procedure 2 UNSTANDARDIZATION (𝑿∗′,𝒎,𝑴) 

2: [𝑚,𝑀] = [min(𝑋∗) ,max(𝑋∗)] 2: 𝐢𝐟 (m −M) = 0 
3: 𝐢𝐟 (m − M) = 0  3: i𝐟 𝑀 = 0 
4: i𝐟 𝑀 = 0 4: 𝑋∗ = 𝑋∗′ 

5: 𝑋∗′ = 𝑋∗ 5: else 
6: else 6: 𝑋∗ = 𝑋∗′𝑀 +𝑚  

7: 𝑋∗′ = (𝑋∗ −𝑚) 𝑀⁄   7: end if 
8: end if 8: else  

9: else  9: 𝑋∗ = 𝑋∗′(𝑀 −𝑚) +𝑚 

10: 𝑋∗′ = (𝑋∗ −𝑚) (𝑀⁄ − 𝑚) 10: end if 
11: end if 11: end procedure 2 

12: end procedure 1   

The 𝑚 and 𝑀 parameters required for unstandardization are essential for a good fitting 

between the results of the standardized space and the real space with which to obtain 

comparative metrics, so they will be specified for each one of the experimental sections. 

Applying the transformation to a subset of data belonging to the database 𝚽, we get a 

representation like the following: 

 
(a) 

 
(b) 

Fig. 6.5. Standardization/ unstandardization dataset. (a) Raw database image, (b) Standardization 

database image. 

In Fig. 6.5 (a) we can see different URM paths in real world position starting as indicated 

in Table 6.1 initial conditions range. Fig. 6.5 (b) shows URM paths under standardization 

procedure 1 shown in Table 6.2. Over each image, the ideal 𝑋𝑖 paths and simulated noise 

measurements 𝑍𝑖  are shown. 

In Fig. 6.5 (b) it’s interesting to note how all the slopes of 𝑋𝑖 overlap in two different 

classes associated with positive and negative speeds. On the other hand, it is shown how the 

noise associated with steep slopes is reduced with the transformation. However, low slopes 

increase the noise level after standardization but bounded. This differentiation and bounded 

data are good signs to use ANN. 
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In this way the standardization system allows to transform sections of trajectories from 

not bounded systems to a bounded space. 

6.3.3. Setting up data for training  

From a supervised learning point of view, we can define the learning objective or "target" 

as the ideal trajectories 𝑋𝑖 corresponding to the measured trajectory 𝑍𝑖. The input data 𝑍𝑖  and 

network target 𝑋𝑖 have the same time lengths, and they are standardized and truncated as 

follows Fig.  6.6. 

 

Fig. 6.6. Visual data packages structure. 

From each data packet 𝜙𝑖  we take a time window size 𝑆 with 𝑘 + 1 values. The time size 

of the 𝑍𝑖  measurement series and the 𝑋𝑖 target series has the same time size 𝑆 as a time unit 

displaced from each other. The last value of each 𝑍𝑖  measurement series is removed and the 

first value of 𝑋𝑖 too.  

In this way, data are structured for a sequence-to-sequence architecture of the same 

input-output dimension but shifted one unit of time, allowing the long-term estimation of how 

long ("window size") 𝑋 = [𝑥2, … , 𝑥𝑘+1⏞      
𝑆

] target from measured values 𝑍 =  [𝑧1, … , 𝑧𝑘⏟    
𝑆

] under a 

certain Gaussian noise. This process is similar to the validation paths. 

6.4. LSTM neuro position estimator  

In this section, we describe the general process of our proposal, the ANN architecture 

employed, and the training parameters used. 

The general process shown in Fig. 6.7 describes at a high level the inference process with 

our system. First, a standardized data set is taken to activate the network (yellow area in each 

sliding window). Then, we check if we have new zk measurements. If we have new zk 

measurements, these are standardized in order to introduce them into the network and 
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predict the filtered state 𝑥̂𝑘+1. This prediction is unstandardized to bring it back to real space. 

In the case without new measurement, our system introduces in the network the state 

forecast in the previous temporal step. The maximum number of predictions is bounded by 

the size of the selected time window, in our case 80 measurements (4 seconds). To remember 

what happened in the previous time window, the windows are overlapped with an 

overlapping region that is used for network activation/initialization. 

 
Fig. 6.7. General inferences process. 

Based on the good results in linear regression models with multilayer models of 

perception [24] and under the stability studies in recurrent neural networks of [25], the 

deepest part of the network is composed of a fully connected layer with ReLU activation 

functions and a dropout layer of 20%. According to reminding long term tendencies and under 

the good results in estimation problems with LSTM architectures like [18, 19] among others, 

and around encoder-decoder architectures concept for non Markovian models like [11, 14, 

20] together with the good results in filtering problems [15] and for the system identification 

with noise [1], [20] the final architecture is composed by 8 set layers Fig. 6.8. 

In Fig. 6.8 the network structure presents two main high-density blocks, the encoder, and 

the decoder. For the encoder, the density is defined by the size of the input layer (80) and the 

encoder depth (400). For decoder density came from the fully connected interconnection 

layer (16) and from the decoder depth (200). In Table 6.3 we detail in a summarized and 

structured way the information of the proposed architecture. 



 

-150- 

 

 
Fig. 6.8. General neural network architecture. 

We can see that the input and output layers are formed by time sequences. At this point, 

we can ask ourselves how can the system work in real time with only one measured 𝑧𝑘 without 

having a complete sequence? This happens thanks to the internal LSTM states that can 

interpret the input measurements and remember from learning the previous and later 

measurement relations. This case is considered as a partial sequence and can be predicted 

step by step saving and updating the internal states of the network. If we have the complete 

sequence, the network reconstructs the data and predicts a filtered step, while receiving step-

by-step measurements predicts step-by-step. In the same way as Kalman, by having a larger 

number of previous measurements, the system is better adjusted to the target. On the other 

hand, to initialize the system we need at least one measurement. To better adjust the states 

of the network we take a set of measurements that we call the activation area. This activation 

area can be considered as a transition to minimize the error in the filtered forecast. 

Table 6.3. Listing of neural network layer: S=80 is the number of samples per input trajectory 

Nr Name and type Activation/ prop. Learnable States 

1 
Sequence Input: 

1x80 
1 - - 

2 
lstm_1: LSTM 

Hidden units: 400 

State activation 

function: tanh 

Gate activation function: 

sigm 

Input Weights: 1600x1 

Recurrent Weights: 

1600x400 Bias:1600x1 

Hidden States: 

400x1 

CellState:400x1 

3 
fc_1: Fully 

connected 
16 Weights: 16x400 Bias:16x1 - 

4 relu_1: ReLU 16 - - 

5 Do: Dropout 20% 16 - - 

6 
lstm_2: LSTM 

Hidden units: 200 

State activation 

function: tanh 

Gate activation function: 

sigm 

Input Weights: 800x16 

RecurrentWeights:800x200 

Bias:800x1 

Hidden States: 

400x1 

CellState:400x1 

7 
fc_2: Fully 

connected 
1 Weights: 1x200 Bias: 1x1 - 

8 Regression output Loos function: HMSE - - 
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For training our model proposal, we used Adam optimizer for the excellent result shown 

in multi-layer recurrent network training [28]. We train with 20 batches during 80 epochs 

starting from an initial learning rate of 0.005 and with a drop of the learning factor of 0.5 after 

the first 8 epochs. The training updates the individual weights using the Adam algorithm but 

with an ℒ2 adjustment of the target function under the regularization factor of 10-4 with the 

intention of reducing over/under fitting in the training process. Loss training function: 

ℒ𝐻𝑀𝑆𝐸(𝜽) =
1

2𝑆
∑∑(𝑋𝑖𝑗 − 𝐹̂𝜽(𝑍𝑖𝑗))

2
𝑅

𝑗=𝟏

𝑆

𝑖=1

 (6.11) 

Where 𝐹̂𝜃 means a network function parameterized by the internal 𝜽 terms. These 

internal parameters are the weights and biases of each internal neuron. The term ^ means 

“estimated”, which is inherited from the classical notation from stochastic observers. 𝑆 is the 

sequence length and 𝑅 is the number of sequences parameters. In our case S=80 and R=1. Our 

loss function is not normalized by R. 

 

Fig. 6.9. Training and validation process. 

Finally, in Fig. 6.9 we represent the training process as well as the validation process. It is 

important to mention that the ϕ𝑖 data packages for the training and validation process are 

different and correspond to consecutive non-overlapping time windows. The upper central 

part of the figure shows the training process while the lower part refers to the validation 

process. Although the two processes are shown on the same figure, they are carried out in 

different and totally decoupled phases. In the experimental section, we describe in detail the 

evaluation process. 
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6.5. Experiments 

The following section presents 3 different experiments. First, the LSTM model presented 

in chapter 0 is validated with the data set presented in chapter 0 and compare with KF, using 

a visual comparison over 2 histograms Fig. 6.11 of the estimation error and the metric of 

equation (6.12). The second experiment simulates the estimated filtering behavior as it 

receives new measurements. Finally, the third experiment simulates the estimation behavior 

with loss measurements.  

In the first experiment, we use the root means square error (RMSE) (6.12) metric over 

two checkpoints (CP) {1,2}, the last filtered value from the validation set (CP=1), Fig. 6.11 (a), 

and the first one after the overlap window (CP=2), Fig. 6.11 (b), always in real space.  

RMSE1 = √
1

N
∑ (𝑋𝑖,𝑘,𝑗 − 𝑋̂(𝑍𝑖,𝑘,𝑗))

2
𝑁
𝑖=1 |

k=CP{1,2}

  (6.12) 

Where j is the system state to be estimated (position j=1) and 𝑋̂ is the estimator used 

(Kalman or LSTM). The 𝑘 term is the trajectory time step and refers to the CP to be checked. 

To validate experiments 0 and 0 we use the RMSE-2 (6.13) after the overlapping area O over 

new simulated trajectory with new 𝑥0 initial conditions. The size of the time window is 𝑆 and 

𝑗 = 1 is the state to be study, position. 

RMSE2 = √
1

𝑆
∑ (𝑋𝑘,𝑗 − 𝑋̂(𝑍𝑘,𝑗))

2
𝑆
k=O+ 1   (6.13) 

Each experiment is compared with the output of a KF. The KF is used as a reference 

system to compare the proposal. In order to use the KF the measurements are simulated with 

Gaussian noise. This KF assumes as models a zero process noise 𝑊𝑘 = [0, 0]
𝑇for system 

prediction, and position measurement with Gaussian noise 𝒩(0, 𝜎𝑍) (6.8)  with parameters 

indicated in 0. The system model corresponds to equation (6.7). KF is initialized after two 

consecutive measurements to determine the unmeasured state (speed) as 𝑣2 = (𝑝2 −

𝑝1)/∆𝑇 and the covariance matrix starts like this: 𝑃2 = 𝜎𝑍 (
1 100
100 2

). 

6.5.1. LSTM validation. 

To validate our model, we use a time window in the same way as the training process but 

using the validation set, as shown in Fig. 6.10. 

After applying the estimation methods (Kalman and LSTM) on each of the validation 

paths, two control points are used on each path of the validation set. The first is located after 

the activation region of each 𝑖 validation series. The second CP is located on the last filtered 

measurement. This CP is justified based on the worst and best estimate expected from Kalman 
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in the optimal estimation for a linear system with continuous feed measurement (no losses) 

and gaussian noise.  This is done after the overlap/activation region required for internal 

network activation. We understand activation as a transitory state of the network required to 

adjust its internal states.  

 
Fig. 6.10. Validation Checkpoint in sliding time window. 

Fig. 6.10 shows graphically where the checkpoints are located over the noisy path in the 

time space of a validation measurement window. 

All CP is taken over trajectories in real space. In the Kalman case filtering value generation 

is immediate with its algorithm, on the other hand, the network must apply the 

unstandardization like Table 6.2 procedure 2. 

The unstandardization process in our neural network proposal is produced after NN 

inferred process. In this step we recover the maximum (𝑀𝑖) and minimum (𝑚𝑖) value of each 

𝑍𝑖  measurements series where picked up in standardization first step. 

The following figures illustrate the position error histograms obtained in prediction for 

the first-time window of data from 1000 validation series in both checkpoints. 

Fig. 6.11 (a) shows the Gaussian behavior of the measurements, Kalman, and the network 

at the first checkpoint. It is checked how in this first checkpoint the two systems reduce the 

error of the measurements and it is highlighted how the network presents better performance 

in this first checkpoint. 

However, at the second checkpoint Fig. 6.11 (b) Kalman improves the performance of the 

network. In this case, while Kalman shows Gaussian behavior in its error, the network tends 

to stabilize its error as acquired with the training process. Also, it is verified that around 50% 

of the results are clustered around 0 but a group of solutions is distributed with negative 

values, showing an asymmetric distribution of error. 
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(a) (b) 

Fig. 6.11. Histogram error: (a) First estimation after overlap measurements area in 1St time window of 80 

measurements, (b) Last estimate in 1St time window of 80 measurements. 

Table 6.4. Kalman and LSTM validation results. 

Model 
Histogram RMSE [𝟏𝟎−𝟏] 

1st checkpoint 2nd checkpoint 

Measures | Kalman | LSTM 9.090 | 4.750 | 1.490 9.281 | 1.969 | 5.912 

6.5.2. Filtering system simulation with new measurements 

The experiments in this section and section 3 use a new path from the following initial 

conditions: 𝑥0 =  [−23.4897,−5.3815]. The measurements are simulated using the 

parameters in Table 6.1. 

In this following case, the systems are continuously updated with new measurements. In 

the case of the LSTM model, the network determines internally if the measurement is relevant 

or not to forecast the next time step state to be forecast, while in Kalman’s case this is used 

to reduce the filtering error. The selection process of new input values in the LSTM cells is 

controlled by the input gate, like we can see in [10], [17], [29]–[31]. In figure Fig. 6.12, 

Kalman’s filter tends to minimize his error when he receives new measurements, but the LSTM 

model too, getting in this first phase, an improved error regarding the KF. 

The first graph of Fig. 6.12 (b) shows the evolution time in the second time window of the 

LSTM model and the KF. While the second shows the error evolution in that time window. 

In each time window, we can see the overlap/activation regions in yellow. While Kalman 

starts working after the initialization with the second measurements (green), the LSTM starts 

working after the activation area (purple). Kalman reduces his covariance exponentially as it 

gets new measurements, this can be seen with the error evolution in both time windows. On 

the other hand, it can be shown how the network error remains bounded but without a 

downward trend. 
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(a) (b) 

Fig. 6.12. LSTM and Kalman with new feed measurements. (a) First, (b) Second, time-windows. 

Table 6.5. RMSE with continues new measurements after overlap window. 

Model 
RMSE [𝟏𝟎−𝟏] 

1St Window 2Nd Window 

Kalman | LSTM 5.533 | 1.660  0.969 | 2.046 

The RMSE analysis is shown in Table 6.5. In the first time window, can be appreciated a 

better performance of the network than Kalman. However as new measurements are taken, 

Kalman continuously improves its error while the LSTM error remains with similar values all 

the time. 

6.5.3. Loss position measurements effect simulation 

This section shows the system evolution in the first and second-time window when only 

one set of measurements (overlap/activation) is used to make an estimate and then it is feed 

with the previous estimate, both in the Kalman model and in the LSTM model. In the second 

time window, all the data from the first window are used to feed the KF, while only the data 

at the overlap region is used to activate the neural architecture. Later in both cases, we make 

an estimation without measurements. This process is aimed to simulate classical estimation 

problems when some measurements are lost. 

The first window graph in Fig. 6.13 (a), shows how the KF has not enough measurements 

to reduce its error and it diverges from real trajectory when it does not receive new 

measurements, increasing its error during the prediction as a linear function of elapsed time, 

while LSTM architecture with few measurements manages to make good estimations and gets 

in that window an RMSE lower order of magnitude than Kalman. In Fig. 6.13 (b), we see how 

Kalman with first window data has managed to improve its behavior but will continue to 

increase its error with the estimates passage, while the LSTM architecture keeps its error 

bounded, remembering that has been activated only with overlapping window data. 
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 (a) (b) 

Fig. 6.13. LSTM and Kalman without new feed measurements. (a) First, (b) Second, time-windows. 

Table 6.6. RMSE without new measurements after overlap window. 

Model 
RMSE [𝟏𝟎−𝟏] 

1St Window 2Nd Window 

Kalman | LSTM 42.534 | 2.054 2.084 | 2.4142 

Analyzing RMSE in first and second time windows, we see how the network behaves 

better when measurements are lost after a few measurements, while in the second time 

window when Kalman has received enough measurements, Kalman improve the LSTM 

behavior. 

6.6. Conclusions 

In this paper, we implemented a neuro-estimator/filter architecture with recurrent LSTM 

layers and inspired by encoder-decoder systems for sequence-to-sequence learning problems 

able to estimate and filter a trajectory based on noisy position measurements of a uniform 

rectilinear motion.  

We proposed a recursive model with overlapping sliding windows that allows avoiding 

the problem of network saturation with unbounded systems and maintains the trends from 

past times. To train our system, we use a panel data model standardized and pre-processed 

for prediction.  

The model has been validated by comparing the filtering performance at two checkpoints 

with respect to the input sequence of measurements. 

This model was compared in filtering and forecasting with a KF along with two time-

windows, showing in the first one that the LSTM model improves the results in filtering and 

estimation with respect to Kalman, also showing evidence of bounded error in the 

estimation/filtering process being able to interpret internally the measurement noise.  
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We have verified that with few initial measurements the LSTM system manages to extract 

the general trend of the trajectory, while the KF with few measurements may not be able to 

reduce their estimation error and the system is susceptible to diverge from real trajectory in 

the absence of measurements to update the predicted values, Fig. 6.13 (a). The magnitude 

orders of errors and RMSE are equivalent throughout this study between Kalman and LSTM, 

but it is noticeable how the LSTM model shows a minor magnitude in the RMSE at the first 

estimates, Fig. 6.11 (a), Table 6.4.  

It’s important to also mention the fact that in the processes of unstandardization Table 

6.2 for the neuronal architecture data for all experiments, we used (𝑚) and (𝑀) parameters 

obtained from the standardization of ideal trajectories 𝑋, associated with the series of 

measurements 𝑍, with the aim of making a first approximation with the lowest possible error 

level of these neural systems. So, to a certain degree, the LSTM neural system is endowed 

with some additional information as compared to the Kalman model. 

In conclusion, the presented LSTM model may be a good proposal for an alternative or 

hybridization with a KF, since KF provides the optimum solution in long time ranges and 

continuous measurements for a URM. In this way, our method has great potential for target 

tracking. 
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Abstract: Certain difficulties in path forecasting and filtering problems are based in the initial 

hypothesis of estimation and filtering techniques. Common hypotheses include that the system can be 

modeled as linear, Markovian, Gaussian, or all at one time. Although, in many cases, there are 

strategies to tackle problems with approaches that show very good results, the associated engineering 

process can become highly complex, requiring a great deal of time or even becoming unapproachable. 

To have tools to tackle complex problems without starting from a previous hypothesis but to continue 

to solve classic challenges and sharpen the implementation of estimation and filtering systems is of 

high scientific interest. This paper addresses the forecast–filter problem from deep learning paradigms 

with a neural network architecture inspired by natural language processing techniques and data 

structure. Unlike Kalman, this proposal performs the process of prediction and filtering in the same 

phase, while Kalman requires two phases. We propose three different study cases of incremental 

conceptual difficulty. The experimentation is divided into five parts: the standardization effect in raw 

data, proposal validation, filtering, loss of measurements (forecasting), and, finally, robustness. The 

results are compared with a Kalman filter, showing that the proposal is comparable in terms of the 

error within the linear case, with improved performance when facing non-linear systems. 

Keywords: LSTM, Filtering, Forecasting, Regression, Encoder-Decoder, Attention, System 

identification, Deep learning. 

 

7.1. Introduction  

any problems in engineering and research require or are based in forecasting or 

filtering parameters along time, understood by forecasting the predicted values for 

future times in the sequence. These processes are often associated with sensor-recorded 

values with a certain degree of accuracy. When the noise level has been reduced from the 

desired parameters, this is a filtering case. 

M 
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The problems of estimation and filtering are not new, a classic study field is the theory of 

stochastic observers. The Aström [1] and Lewis [2] books provide an introduction into 

stochastic estimator theory and have been referenced in thousands of publications. Classical 

estimation methods have innumerable successful applications and continue to be one of the 

starting points for estimation and filtering problems. For an overview of classical and Bayesian 

estimation techniques, H. H. Afshari et al.’s [3] work provides a systematic review of all 

classical and Bayesian estimation techniques and their possible applications. 

 One of the principal landmarks in stochastic observer theory is the optimal stochastic 

estimators formulation or Kalman filter (KF) [4]–[6]. These estimators are based in the state 

space systems and different versions, such as extended KF (EKF) [7]–[9], unscented KF (UKF) 

[10, 11], or robust KF (RKF) [12], generalize its use with nonlinear Gaussian problems as shown 

in Afshari et al. [3]. However, sometimes the systems can present complexities that may be 

unapproachable from a classical perspective. In other cases, the systems present behaviors 

with memory (non-Markovian), like people moving around among other people [13]. In these 

cases, classical solutions provide approximations that diverge from the wanted behavior. 

The KF is a widely used system for filtering and state estimation. This estimator uses linear 

systems and Gaussian noise as starting assumptions to find a feedback gain (Kalman gain) that 

exponentially minimizes the system covariance. On the other hand, the systems that can be 

solved by Kalman or its extended version, EKF, are Markovian, in other words, for state 

estimation they only use contiguous states but without taking into account the behavior 

(states) at other times. This limits the use in problems with context, such as natural language 

processing or human behavior, among others. 

In the face of these limitations, artificial intelligence paradigms provide an interesting 

opportunity to study. It is interesting how hybrids between classical and artificial intelligence 

systems have been achieved, such as those made by Satish. R et al. [10] or H. Caskun [14]. In 

[14], a neuronal estimator was fused with a KF for human image pose regularization. Works 

such as J. Mohd et al. [15] used the term "software sensors" to describe computational 

algorithms to estimate system states that are complex to measure, expensive, or non-

observable. Thus, computational artificial intelligent (AI) techniques were shown to be an 

alternative to classical estimators in the face of certain problems. In this line we can find many 

works, such as those of [15, 16], in which they use several features of the input in their models. 

New perspectives in machine learning techniques address several classical theories 

limitations problems as shown in Park's work [17]. Park modeled the potential trajectories of 

nearby vehicles from a grid that formed an occupation map and an encoder–decoder system 

based on long short-term memory (LSTM) cells. If we know the states to be estimated or 

modeled, we can find problems with time series estimation or systems modeling.  
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Time series forecasting works, to some extent, to identify/model the dynamical system 

that the observations describe. The LSTM cells architectures have proved their potential in 

front of traditional techniques, such as ARMA (AutoRegressive Moving Average), SARIMA 

(Seasonal Autoregressive Integrated Moving Average Model), and ARMAX (AutoRegressive-

Moving Average with exogenous terms). A good example of this is Muzaffar and Afshari’s work 

[18], where they compared the previous traditional techniques with a light LSTM architecture 

for the electric charge estimation case in ranges of different time sampling, under root mean 

squared error (RMSE) and mean absolute percentage error (MAPE) metrics, where the LSTM 

architecture showed better results than the traditional techniques in several experiments, and 

this proposed system is very susceptible to improvements to increase the performance. 

Deep learning (DL) in forecasting, filtering, or classification problems attempts to fit 

internal network functions to an input data set to make inferences. Relying on the architecture 

of the neural network, the cost function, the training algorithm, hyperparameters, and 

especially the dataset, the network can be adapted to a greater or lesser extent to the desired 

output. 

While Kalman seeks to minimize its covariance based on prior assumptions, a deep neural 

network does not assume any of Kalman's assumptions but attempts to adapt its hidden 

dynamics to the training data independently of their distribution or the dynamical relationship 

between them. This neural network flexibility provides an opportunity to generalize 

estimation and filtering problems under artificial intelligence paradigms. 

A previous work [19] made a first approach to forecasting and filtering problems in an 

increasing linear dynamic system with noisy measurements from a DL perspective. In [19], the 

authors highlighted the neural network saturation problem in non-bounded system 

estimation. To solve this problem, a recursive data standardization method based on 

overlapping sliding windows and a neural architecture with LSTM cells is proposed. 

This paper tackles the forecast-filtering problem of trajectories from deep learning 

paradigms. We propose a novel method of network density adjustment based on J. Llerena et 

al.’s work [19]. That method generalized the estimation and filtering problem without any 

initial hypothesis about the system or measurement type (linear or nonlinear, Markovian or 

non-Markovian, or Gaussian or non-Gaussian), performing a rigorous analysis of the problem 

and solutions with a high experimental burden to evaluate the estimator performance.  

Unlike Kalman, this proposal performs the process of prediction and filtering in the same 

phase, while Kalman requires two phases. In this evaluation, we study three different dynamic 

system trajectories. We have selected a set of systems with a progressive transition for the 

reader, starting from the position estimation in a uniform rectilinear motion (URM) in 1D 
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7.4.1. (7.4.1.); next, a sinusoidal paths of a 1D object (7.4.2.); and finally the curved trajectories 

defined by a nonlinear dynamic model described by the Volterra–Lotka evolutionary 

equations (7.4.3.). The proposed neural estimator is evaluated for different cases under five 

experiments: data preprocessing effect on database (7.4.4.1.), filtering with complete 

sequences (7.4.4.2.), recursive filtering with new measurements (7.4.4.3.), loss in 

measurement estimation simulation (7.4.4.4.), and finally the impact on the filtering when 

receiving measurements far from the model (7.4.4.5.).  

The neural estimators proposed are supported by an encoder–decoder system based on 

natural language processing methods, which increases its depth with the complexity of the 

systems. 

Finally, the contributions of the present work can be summarized in the following items: 

• An approach has been developed to adapt a neural architecture previously used for 

natural language processing to the specific problem of estimation and filtering without 

needing previous hypotheses about the type of system. 

• The proposed method shows a comparable performance in terms of error with respect to 

KF in linear systems, while in the case of nonlinear systems it shows its potential to 

improve in terms of error and robustness. 

• The principal advantage of our method lies in the simplicity of the neuro-estimator/filter 

as a model building learnt from data with respect to KF. 

• The proposed method can address estimation and filtering problems for linear, nonlinear, 

Markovian, non-Markovian, Gaussian and non-Gaussian systems. 

7.2. General problem formulation 

We consider an unknown dynamic system 𝑓 not necessarily linear or Markovian. From 

this system we only know noise measurements 𝑧 of trajectories described from observable 

system states 𝑥 in time 𝑡. Measurements 𝑧 are connected with the system states by the ℎ 

function. Generally, ℎ can be considered nonlinear and dependent of a stochastic parameter 

𝑣(𝑡). 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡)) (7.1) 

𝑧(𝑡) = ℎ(𝑥, 𝑣) = ℎ(𝑥) + 𝑣  (7.2) 

Here, 𝒙(𝑡) ∈ ℝ𝑛 is the state vector, 𝑓 is a state vector field, and ℎ is a function that selects 

a subset of specific states. If 𝑓 is of Lipchitz type, it is possible to transform the continuous-

time problem to a discrete-time one: 
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𝑥𝑘+1 = 𝐹
∗(𝑥𝑘) = 𝑥𝑘 + ∫ 𝑓(𝑥(𝜏))d𝜏

𝑡𝑘+1
𝑡𝑘

  (7.3) 

A common way to discretize generally linear systems is to use the approximation 𝑥̇ =
𝑥𝑘+1−𝑥𝑘

𝑇𝑠
, where 𝑇𝑠 refers to the sampling time that we can also find as 𝛥𝑇 or 𝑇. 

Removing the assumption of a Markovian system, the future states not only depend on 

the previous instant states 𝑥𝑘, but also have long-term temporal dependencies, and thus we 

can formulate it as follows: 

𝑥𝑘+1 = 𝐹
∗(𝑥𝑘) = ∫ 𝑓(𝑥(𝜏))d𝜏

𝑡𝑘+1
𝑡𝑙

  (7.4) 

where 𝑡𝑙  is a temporal instant less than 𝑘 and generally unknown in non-Markovian 

systems, where the approach for the previous discretization can no longer be used. In this way 

classical dynamic system can be considered as a particular case of a non-Markovian system. 

According to this notation, the forecasting state problem is formulated in relation to the 

previous states (7.4), which means that the forecasting consists of identifying states in future 

times (𝑥𝑘+1). On the other hand, a filtering problem base identifies certain 𝑥𝑘 states at the 

same moment in which 𝑧𝑘 noise measurements are received (7.5). 

𝑥𝑘 = ℎ
−1(𝑧𝑘 − 𝑣𝑘) (7.5) 

However, in real problems, it is not possible to know the noise value, 𝑣𝑘, and the ℎ 

function may not be invertible, so that the state vector has to be estimated from observations. 

If we name F̂+ and F̂ the filtered and predicted estimators, respectively, the problem is how 

to generate these estimators from observations: 

𝑥𝑘= F̂+(𝑧0, … , zk−1, zk) (7.6) 

𝑥𝑘+1=F̂(𝑧0, … , 𝑧𝑘−1, 𝑧𝑘) (7.7) 

The objective of this process is to build the estimators with the minimum error from the 

ideal values.  

7.2.1. Kalman solution 

In Bayesian estimation theory, KF is the optimal solution for a linear dynamic system and 

Gaussian noise in the measurement and estimation process [1, 2]. For a stochastic nonlinear 

dynamic system (7.8), the first approximation derived from the KF is the EKF.  

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤) 
𝑧 = ℎ(𝑥, 𝑣) 

(7.8) 
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As in the linear KF [1–3], 𝑤 shows the noise process and 𝑣 shows the measurement noise. 

The system and measurement model can be nonlinear. The EKF idea is built around the 

linearization system over the estimated states 𝑥̂. This means that 𝑓 and ℎ must be derived 

with respect to the states 𝑥, the model noise 𝑤, measurement noises 𝑣, and the input signal 

𝑢. In our case, we consider an autonomous system: 

𝐴 = 𝛻𝑓(𝑥, 0,0)|(𝑥̂,𝑢,0) 

𝑊 = 𝛻𝑓(0,0,𝑤)|(𝑥,𝑢,0) 

𝐻 = 𝛻ℎ(𝒙𝑘 , 0)|(𝑥̂,𝑢,0) 

𝑉 = 𝛻ℎ(0, 𝑣)|(𝑥̂,𝑢,0) 

(7.9) 

The first bracket in the previous equations refers to the terms with respect to the 

functions derived from the system and measurements, while the second bracket refers to the 

values to be substituted in our Jacobian matrix. 

The matrices 𝐴, 𝑊, 𝐻, and 𝑉 are the equivalent to the linearized 𝑓,ℎ system. 𝐴 is the 

linear system matrix, 𝐻 is the observation matrix, 𝑊 is the process noise, and 𝑉 is the 

observation noise, all in continuous space. If the system has an input signal 𝑢, we can find the 

input matrix 𝐵 and the direct transmission matrix 𝐷; however, in autonomous systems, these 

matrices do not exist. When discretizing a linear continuous system to discrete space with a 

sampling time ∆𝑇 , some of the above matrices traditionally acquire another notation symbol: 

𝐴 →  𝜙 and 𝐵 ⟶ Γ.  

When the continuous system has been linearized, the next step is to discretize and apply 

the same process as in the linear KF. This classical theory decouples, in two different phases, 

the problem of prediction and filtering. 

Kalman filters and EKF have two steps, prediction and update. To identify these steps and 

the temporary state, Kalman notation uses a sub-index in the form 𝑥𝛾|𝛿 . The first, 𝛾, refers to 

the temporal state (current=𝑘 and previous=𝑘 − 1) and the second, 𝛿, refers to the filter step 

(prediction=𝑘 − 1 and update=𝑘). 

The KF step formulation is formulated as follows when the system does not have noise in 

the estimation process and is autonomous when Γ = 0 or when the control signal 𝑢𝑘 = 0. 

Prediction step: 

𝑥𝑘|𝑘−1 = 𝜙𝑥𝑘−1|𝑘−1 

𝑃𝑘|𝑘−1 = 𝜙𝑃𝑘−1|𝑘−1𝜙
𝑇 + 𝑄𝑘 

 

(7.10) 

Update step: 

𝐺𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅𝑘)
−1 

 

(7.11) 
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𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐺𝑘(𝑧𝑘 −𝐻𝑥𝑘|𝑘−1) 

𝑃𝑘|𝑘 = (𝐼 − 𝐺𝑘𝐻)𝑃𝑘|𝑘−1 

In this way, both problems with forecasting and filtering in Kalman are decoupled. In the 

Kalman case, the forecast is made on the current state 𝑘; thus, it is usually called prediction 

in place of forecast. First, a state space model (SSM) predicts the current time state vector 

𝑥̂𝑘|𝑘−1 (prediction step), and then the prediction is improved 𝑥̂𝑘|𝑘 (current state vector in 

update step) with the current measure vector 𝑧𝑘. 

The KF aim is to find a feedback gain 𝐺 (optimal Kalman gain) that allows us to 

exponentially minimize the covariance 𝑃 matrix (measure of the estimate accuracy) taking 

into account the covariance of the process noise 𝑄 (𝑊𝑘~𝒩(0, 𝑄𝑘)) and the covariance of the 

measured observations 𝑅 (𝑉𝑘~𝒩(0, 𝑅𝑘)), under the assumption that all noises are Gaussian, 

uncorrelated, and zero-mean. 

7.2.2. Deep Learning Solutions 

Many works related to forecasting or filtering problems can be found in the literature 

under system modeling, filtering/reconstruction, and prediction keywords around deep 

learning paradigms. In system identification we can highlight works related to the resolution 

of ordinary differential equations, such as that of Chen et al. [20]. Solving these equations lets 

us move through the state space that defines a dynamic system at the instant of time 

desired—in other words, predict the future states of the system or reconstruct them. 

Some of the works on system modeling, such as Sierra and Santos [21], compare 

traditional techniques versus neural networks highlighting the relevance of using neural 

networks when the mathematical modeling is complex. Modeling solutions have been found 

that are robust to noise in the data. Rudy’s [22] work proposes a new modeling paradigm that 

simultaneously learns the dynamics of the system and the noise estimate of the 

measurements in each observation, managing to separate additive noise in the observations 

of the states of different systems. 

Artificial neural networks (ANN) for the modeling of nonlinear dynamical systems have 

proven to be a relevant solution. In Raissi [23], the performance of a neural system for the 

modeling of different nonlinear dynamic systems starting from synthetic data. The data refer 

to a time series describing the states of the systems under study. In this study, they used a 

simple neural architecture and compared the error of the predicted trajectories versus the 

density and depth of the neural networks, concluding that a deeper and denser network will 

not always show better results. 
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In the case of signal filtering, the Arsene work [24] showed a performance comparison in 

electrocardiogram (ECG) signal filtering between two deep learning filters with the two most 

popular trends at present, convolutional neural networks (CNN) and LSTM, versus wavelet 

filters. Finally, the CNN architecture achieved better performance than the LSTM and the 

wavelet filter, but the proposed LSTM architecture can be improved. 

When the systems to be predicted show non-Markovian behavior, SSM are not suitable. 

A widely studied set are those related to natural language processing. 

Different studies regarding natural language processing with deep learning provides 

exportable tools to other study areas. In relation to this work, we can remark on the encoder–

decoder architectures or the attention models. Y. Zhu et al. [25] showed a novel comparative 

study of different LSTM encoder–decoder architectures and attention mechanisms. Finally, 

they proposed a combined method of an encoder–decoder with attention mechanisms and 

LSTM cells for prediction. They used two different datasets, from the Alibaba Open Cluster 

Trace Program and Dinda workload dataset. Finally, the experiments showed that their 

proposed model achieved state-of-the-art performance. 

 The common link between several of the above studies lies in the intention to extract 

time trends from data sets with LSTM neural cells. LSTM neural cells are not new [26], but 

they have proven to be powerful in catching long short temporal dependencies in multiple 

examples. This is the reason for its use in other than recurrent architectures, such as gated 

recurrent unit (GRU), bidirectional-LSTM (BI-LSTM), or bidirectional encoder representations 

from transformer (BERT) architectures, used with great success as a new context extraction 

technique in natural language processing, as shown in J. Delvin's paper [27]. 

The LSTM is an recurrent neural network (RNN) that allows long-term dependencies and 

overcomes the vanishing gradient issue [28]. Considering the relevance of this layer, detailed 

information of its structure can be found in works, such as those of [16], [25], [26], [29]–[32]. 

In X. Song [16], we can see a typical structure of a LSTM layer versus a traditional recurrent 

network layer. Each cell of the LSTM layer is composed by different functions as shown in Y. 

Liu [32]. The processes that an LSTM cell performs when it receives new data are described as 

follows. 

Given an input 𝑥𝑘 at time instant 𝑘 and the hidden cell state ℎ, the basic operation 

involves different sections of the neural cell, forget gate (7.12), input gate (7.13), candidate 

(7.14), and output gate (7.15). The hidden state ℎ gives the LSTM cell the property to acquire 

memory, and this memory provides the opportunity to address non-Markovian problems. The 

forget gate 𝑓𝑘 decides which information 𝑐k−1 is removed from the previous cell state. The 

input gate is responsible for identifying the input information 𝑥𝑘, which should be kept in the 
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candidate memory cell 𝑐̃𝑘. The current memory vector 𝑐k is updated by linking the past 

information 𝑐k−1 with the candidate information 𝑐̃𝑘 (7.14). Finally, in the output gate (7.15), 

the hidden state ℎ𝑘  cell is confirmed with the cell state 𝑐k and the 𝑜𝑘 output information. 

𝑓𝑘 = 𝜎(𝑥𝑘𝑈𝑓 + ℎ𝑘−1𝑤𝑓 + 𝑏𝑓) (7.12) 

𝑖𝑘 = 𝜎(𝑥𝑘𝑈𝑖 + ℎ𝑘−1𝑤𝑖 + 𝑏𝑖) 

𝑐̃𝑘 = tanh(𝑥𝑘𝑈𝑐 + ℎ𝑘−1𝑤𝑐 + 𝑏𝑐) 
(7.13) 

𝑐𝑘 = 𝑓𝑘𝑐k−1 + 𝑖𝑘 𝑐̃𝑘 (7.14) 

𝑜𝑡 = 𝜎(𝑥𝑡𝑈𝑜 + ℎ𝑘−1𝑤𝑜 + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) 
(7.15) 

Here, 𝑈 is the input weight, 𝑊 is the recurrent weights and b is the bias. Subscripts represent 

the gates: 𝑓 = forget, i = input, c = candidate, and o = output. The activation function 𝜎 is 

the sigmoid function, and tanh is the hyperbolic tangent function. The first function is 

bounded between 0 and 1, and tanh between -1 and 1. 

All the above cases are grouped under a regression problem in which the objective is to 

optimize/adjust the network function 𝐹̂𝜃 to the 𝚽 dataset. To fit 𝐹̂𝜃 to the 𝚽 dataset, the 𝐹̂𝜃 

function must be parameterized (𝜽) with a cost function ℒ(θ) to be optimized and an 

optimization methodology, where 𝐹̂𝜃 means a network function parameterized by the internal 

𝜽 terms. These internal parameters are the weights and biases of each internal neuron. 

As S. Rudy et al. showed in [22], we can mathematically define a recurrent neural network 

as the composition of 𝑔𝑖 functions that define each i-layer of the network. In addition, these 

𝑔𝑖 functions are the result of the composition of the 𝑠𝑗 functions that define each neuron. 

𝐹̂𝜃(𝑥) = (∏ 𝐶𝑔𝑖
𝑙
𝑖=1 )(𝑥)  (7.16) 

Here, 𝑔𝑖(𝑥) = (∏ 𝐶𝑠𝑗
𝑁𝑖
𝑗=1 ) (𝑥) | 𝑠𝑗 = 𝜎𝑗(𝑥𝑊𝑗 + 𝑏𝑗 ) is an i-layer function. 𝐶𝑠𝑗  is the 𝑠 

composition operator for each 𝑗 activation function 𝜎𝑗: ℝ → ℝ and 𝜃 = {𝑊𝑖 , 𝑏𝑖 }𝑖=1
𝑙 |𝑊𝑖 ∈

 ℝ𝑁𝑖×𝑁𝑖−1 , 𝑏𝑖 ∈  ℝ
𝑁𝑖 is the network parameterization function in terms of its weights 𝑊𝑖 and 

biases 𝑏𝑖 . 𝑁0, 𝑁1, … , 𝑁𝑙  are the number of neurons in each layer, where 𝑁0 = 𝑑 | 𝑑 ∈ ℕ is the 

input layer and 𝑙 ∈ ℕ is number of network layers. The term ^ over the 𝐹 function means 

“estimated”, which is inherited from the classical notation from stochastic observers. 

Taking LSTM cells in different layers, we must take into consideration the weights 

associated with the internal states 𝑈𝜕,𝑖 and transitions of the LSTM cells. Finally, the parameter 

network functions are: 𝜃 = {𝑈𝜕,𝑖,𝑊𝜕,𝑖 , 𝑏𝜕,𝑖 }𝑖=1
𝑙

where 𝑊𝜕,𝑖 ∈  ℝ
𝜕×𝑁𝑖×𝑁𝑖−1 , 𝑏𝜕,𝑖 ∈  ℝ

𝜕×𝑁𝑖 and 
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spreading typical LSTM notation 𝜕 ≡ {forget = f, input = i, output = o , candidate =

c, and non_LSTM_𝑔𝑎𝑡𝑒 = 𝑛}. 

7.3. Proposal formulation  

In this paper, we propose to approach the joint problem as forecasting-filtering 

trajectories without assuming a hypothesis of linear, Markovian, or Gaussian behaviors, based 

only on supervised information and in only one processing stage to build the estimator 𝑥̂𝑘+1 

from the available observations, 𝑧𝑘, 𝑧𝑘−1, … 𝑧𝑘−𝐿 based on a model built with representative 

training data. 

𝑥𝑘+1 = 𝐹̂
∗(𝑥𝑘) = 𝐹̂

∗(ℎ−1(𝑧𝑘 − 𝑣𝑘)) = 𝐹̂(𝑧𝑘) (7.17) 

For this purpose, the recursive method with overlapping sliding time windows with 

Llerena et al.’s work [19] is combined with the artificial neural architecture configuration 

process of Table 7.2. The general process can be seen at a high level in Table 7.1. The 

overlapping region between windows is used to activate the network, with activation being 

understood as a period for initializing the network to update its hidden states. This allows the 

network to activate its internal long-term memory with which to recall time trends of data 

from the previous time window. We have two cases of initialization, during the first-time 

window (no overlap window yet), lines 6–8 in Table 7.1 and, when overlaps between adjacent 

windows happen, lines 9–10. In the first case, as new measurements are received, they are 

piled up in an 𝑆-sequence until the size of the overlay/activation is defined as 𝑂. In the second 

case, the last measurements received in the previous time window are recycled to activate 

the network during the second (and successive) time windows. 

The method makes it possible to address problems with continuous measurements in a 

recursive manner and also when a measurement is lost. If we look at the general process of 

Table 7.1 line 12 to 20, in the case of not receiving new measurements, the system uses the 

previous filtered estimation to feed the network and obtain the following state. 

For this, three main blocks are differentiated: the generation of a synthetic database that 

allows us to control the system's performance, network building, and training, and finally 

inference with the trained network, like Table 7.1 shows.  

The key to the generation of the synthetic database 𝚽, lies in matching noisy trajectories 

with ideal trajectories shifted one-time unit under Φ𝑖 data packages. The noise paths 𝑍𝑖  are 

generated by adding a Gaussian noise with 𝑅𝑘 variance to the simulated system states paths 

𝑋𝑖
∗ to be measured. If the measured paths 𝑍𝑖  start at 𝑧0 and end at 𝑧𝑘, the target paths 𝑋𝑖

∗ 

start at 𝑥1
∗ and end at 𝑥𝑘+1

∗ , thus, maintaining the dimensionality one unit shifted. The size of 

the time window is therefore the L values. The length of the simulated trajectories is equal to 
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two consecutive non-overlapping time windows, so that the first-time window of each 

trajectory is used for the training subset and the second for the validation subset. Thus, the 

problem is formulated as a sequence-to-sequence learning system. 

Table 7.1. General proposal process. 

1: L= sliding time window length 

2: O= overlap window length (activation area)  

3: procedure GENERAL PROCESS (𝐿, 𝑂, 𝑧𝑘)  

4: for 𝑘 = 1 → 𝐿 

5:  𝑰𝒇 start & 1st sliding window 

6:   While Nº measurements< O 

7:    𝑆𝑘 = 𝑧𝑘 

8:   end while 

9:  else if start 

10:   S=[𝑧𝐿−𝑂 , 𝑧𝐿−𝑂+1, … 𝑧𝐿]  

11:  else  

12:   If new measure 

13:    𝑆 = 𝑧𝑘   

14:    𝑆 → standardization→ 𝑆∗ →Net & update internal states→ 𝑥̂𝑘+1
∗   

15:    𝑥̂𝑘+1
∗ → 𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 → 𝑟𝑒𝑡𝑢𝑟𝑛(𝑥̂𝑘+1) 

16:   else  

17:    𝑆∗ = 𝑥𝑘
∗  

18:    𝑆∗ →Net & update internal states→ 𝑥̂𝑘+1
∗   

19:    𝑥̂𝑘+1
∗ → 𝑢𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 → 𝑟𝑒𝑡𝑢𝑟𝑛(𝑥̂𝑘+1) 

20:   end If 

21:  end if 

22: end for 

23: Move sliding window L-O & Start again 

24: end procedure 

To make step-by-step inference, a neural architecture is composed of LSTM cells. These 

neuronal units take advantage of their internal states as a memory to be able to relate 

measurements to previous and later states, allowing inferences from sequence to sequence, 

sequence to step, and step to step. 

We assume, for this purpose, the neural network function 𝐹̂𝜃 can be adapted to a function 

𝐹 that defines a dataset 𝚽 , where 𝜽 are the internal network parameters. The ∧ symbol over 

𝐹𝜃 is inherited from the classical estimator’s notation.  

Then, the problem is to identify the parameters 𝜽 of an ANN using exclusively supervised 

information, as in [19], which associates Φ𝑖 packages of 𝑍𝑖  noise system paths with ideal 𝑋𝑖
∗ 

paths states.  

𝐹̂𝜽(𝑧𝑘) ≈ F(𝑧𝑘) (7.18) 
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7.3.1.  Artificial neural network architecture 

The general network architecture proposed in Llerena et al. [19] consists of an encoder–

decoder system based on good results with non-Markovian system models like [18, 23, 32]. 

Other fundamentals of design of this architecture focus on filtering problems, such as [24] or 

the identification of noisy systems [22, 23]. The encoder and decoder are composed of LSTM 

recursive structures. Using LSTM layers, it is possible to extract long-term and non-Markovian 

trends and show their potential in estimation problems [16], [33]–[35]. However, other types 

of dynamic systems have other particular conditions of information or number of measured 

states, and the architecture proposed in [19] does not have to be suitable with all systems; 

thereby, Table 7.2 proposes a configuration method to adapt [19]’s neural architecture to a 

specific case. 

 Starting from the structure proposed in [19], focused on the benefits in front of 

regression problems of each one the layers and proven performance in URM paths, we 

propose an algorithm in Table 7.2 to increase the depth of the encoder and decoder to adapt 

the results in front of other paths that are likely more complex in learning terms compared 

with URM paths. 

Finally, at the output network side, we added a regression layer to implement the cost 

function ℒ(𝜽) (7.19) used to train the network system. Depending on the variability of the 

training set and the complexity of the system, the depth of the encoder–decoder and, in 

general, the network density must be adapted to obtain good training results. 

Table 7.2. The network architecture configuration process. 

1: SLIDING TIME WINDOW DIMENSION SELECTION 

2: J. Llerena [19]  ARCHITECTURE ADAPTION 

3: Width = number of features 

4: procedure ADAPT NETWORK TO SPECIFIC SYSTEM 

5: train 𝑙𝑜𝑜𝑠,𝑀𝑆𝐸 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 

6: while 𝑅𝑀𝑆𝐸 (𝑛𝑒𝑡) >> 𝑅𝑀𝑆𝐸(𝑑𝑎𝑡𝑎) 

7:   switch 𝑁º 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

8:   case 1: 

9:   Hidden encoder and decoder layer = number of data whit sliding time window 

10:   case 2: 

11:   Increase number of units in the interconnexion layer. 

12:   otherwise 

13:   Add new LSTM layer in encoder with half hidden units than previous LSTM layer 

13:   end switch 

14:   go to → train 

15: else 

16: Save trained network 

17: end while 

18: end procedure 
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7.3.2. Computational neural network framework 

Under the supervised learning paradigms, we found that our problem consisted in 

identification systems or the regression problem. We can consider this problem as an 

optimization problem where we attempt to minimize the cost function ℒ(𝛉) by modifying the 

internal 𝜽 parameters from function 𝐹̂𝜽 that we want to identify/adjust from the 𝚽 dataset. 

The typical cost function ℒ(𝛉) is the means square error (MSE). When we take the derivative 

of the MSE used in the updating the parameters during the backpropagation, the value 2 of 

the power can be cancelled if the term 
1

2
 is added to the MSE. Thus, the mathematical 

arrangement for the definite cost function is obtained and called the half means square error 

(HMSE). To control for possible overfitting effects, an 𝐿2 regularization is added to the net 

weights, with 𝜆 being the regularization factor. 

ℒ(𝜽) =
1

2𝑆
∑∑(𝑋𝑘𝑗

∗ − 𝐹̂𝜽(𝑍𝑘,𝑗))
2

𝑅

𝑗=𝟏

𝑆

𝑘=1

+ 𝜆∑∑‖𝜃𝑗‖2
2

𝑁𝑖

𝑗=1

𝑙

𝑖=1

 (7.19) 

𝑆 is the sequence length and 𝑅 is the number of sequence parameters. On the other 

hand, this can be found in the literature [36]–[39], as the addition of Gaussian noise in the 

input data helps the regularization the network, for example with Tikhonov regularization 

[40]. Thus, using 𝑧-data with a certain level of 𝒩(0, σ2) noise also helps the regularization 

effect in the network.  

As an optimization methodology, the Adam algorithm is used, which has amply 

demonstrated its performance with recurrent neural architectures as can be seen in the 

comparison with other algorithms in Kingma and Lei’s work [41]. 

Unlike Kalman, our system does not require Gaussian noise distribution, as the cost 

function does not assume any distribution. In addition, the network or cost function does not 

need to assume the system is linear, because the network function is fitted to the data 

behavior. 

7.4. Case studies and experimentation 

The following shows different case studies. For each one, we describe the synthetic data 

generation model, the classic estimator model and the neuronal structure used. All of them 

are accompanied by the configurations to help reproduce the results. 

Among the classical estimators, KF is the optimal solution in the case of linear dynamical 

systems with Gaussian noise. When the system is not linear, its first approximation, EKF, is a 

widely extended method. To facilitate the comparison of our solution with the KF as a 
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reference system in the experimentation, the measurements are simulated with Gaussian 

noise. 

For each study case, we conducted the following experiments: 

1. Standardization effect. 

2. LSTM model validation and filtering comparison. 

3. Filtering system simulation with new measurements along the first and second-time 

window. 

4. Simulation of missing measurements in the input to filtering system; we estimate in 

the first and second-time window on a signal test, applying only measurements in the 

overlap section, first window, and first window measurements for the second case.  

5. Impact on filtering of measurements generated with parameters far from the design. 

The first experiment was used to visually check that the data converted to the 

standardized space remained bounded. The systems were evaluated in filtering and 

estimation. The RMSE was used as an evaluation metric in different ways. For complete 

sequences, we used experiment 7.4.4.2. with (7.21) on each of the 𝑁 validation trajectories 

over the k-time position associate with two different checkpoints. 𝑅 is the number of states 

to be analyzed. If the system had a 𝑅 > 1, the RMSE was determined for each of 𝑗 states 

independently and in aggregate as the RMSE of the geometrical distance error 𝐷𝑖,𝑘 (7.20). This 

can be seen in case study 7.4.. With partial sequences, continuous feed data, and loss data, 

we used experiments 7.4.4.3. and 7.4.4.4. For these cases, (7.22) was used as the evaluation 

metric, where 𝐿 is the temporal size of the trajectories, 𝑅 is the number of states, and 𝑂 means 

the number of overlap data. 

Experiment 7.4.4.5. tested the behavior of the systems in the face of new data deviating 

from the original design. The mean (7.24), median (7.25), and mode were used to evaluate 

the behavior with the RMSE (7.23) obtained from each of the 𝑁 new trajectories obtained in 

each variation of the independent terms of the simulation systems. The mode of the ordered 

set 𝐸, will be the value 𝐸𝑖 with the highest frequency in 𝐸, where 𝐸 = {𝐸1 =

min𝑖(𝑅𝑀𝑆𝐸3
𝑖), 𝐸2, … , 𝐸𝑁−1, 𝐸𝑁 = max𝑖  (𝑅𝑀𝑆𝐸3

𝑖)}
𝑖=1

𝑁
. 

𝑒𝑖,𝑘,𝑗 = 𝑋𝑖,𝑘,𝑗
∗ − 𝑋̂∗(𝑍𝑖,𝑘,𝑗); 𝐷𝑖,𝑘 = √∑ 𝑒𝑖,𝑘,𝑗

2𝑅
𝑗=𝟏   (7.20) 

RMSE1 = √
1

N
∑ 𝐷𝑖,𝑘

2𝑁
𝑖=1 ;  𝑘 = 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 {1,2}  (7.21) 

RMSE2 = √
1

𝐿
∑ 𝐷𝑘

2𝐿
k=O+ 1   (7.22) 



 

-175- 

 

RMSE3
𝑖 = √

1

𝐿
∑ 𝐷𝑖,𝑘

2𝐿
k=1   (7.23) 

𝑀𝑒𝑎𝑛 =
1

N
∑ 𝐸𝑖
𝑁
𝑖=1   (7.24) 

𝑀𝑒𝑑𝑖𝑎𝑛 = {
𝐸(𝑁+1)/2 𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝐸𝑁 2⁄ + 𝐸1+𝑁 2⁄ ) 𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

  (7.25) 

Expression (7.20) is the estimation error and geometrical distance error, where 𝑋̂∗(𝑍𝑖,𝑘,𝑗) 

can be Kalman 𝑋̂∗𝑖,𝑘,𝑗| 𝑘 or LSTM 𝐹̂𝜽(𝑍𝑖,𝑘,𝑗), remembering that the superscript ∗ refers the sub-

vector state to be estimated. The subscript 𝑖 denotes trajectory 𝑖 in a set of 𝑁 trajectories, if 

the error (7.20) is calculated over a single trajectory, the term is removed as in (7.22). Finally, 

the subscript 𝑘 is the time step, and 𝑗 is the system state. 

For the second experiment, we show a histogram of the estimation error of each test 

trajectories over the check points. If the system predicts 𝑅 > 1 states (case study 7.4.3.), 

initially, this is shown as the error of each state and then the Euclidean distance between the 

ideal checkpoint 𝑋𝑖,𝑘,𝑗
∗  and estimate system 𝑋̂∗𝑖,𝑘,𝑗. Experiments 7.4.4.3. and 7.4.4.4. show the 

trajectory evolution and step-by-step error for specific initial conditions during two 

consecutive time windows. The error was determined for each state independently as in 

(7.20). Finally, experiment 7.4.4.5. shows the KF and LSTM mean, median, and mode evolution 

in 7.4.2. and 7.4.3. case studies as the independent terms of the trajectory simulation systems 

are changed. 

To simulate each system trajectory, we used the Ode45 algorithm [42], while, for the 

estimation of states for each case study with Kalman techniques from the classical models, 

the formulation used is indicated in each of the systems. For training each ANN model, we 

trained over 80 epochs with 20 batches and an initial learning rate of 0.005. After eight epochs, 

we applied a 0.5 learning drop factor. Finally, we applied a 𝜆 = 10−4 𝐿2 regularization factor.  

All the algorithms were implemented on MATLAB [43]. The experiments were performed 

on a commodity machine with Windows 10 Home 64 bit hosted in Intel ® Core™ i7-8550U CPU 

@1.80 GHz 1.99 GHz with 12 GB RAM and 512 GB SSD from internal memory, graphic card 

Nvidia GeForce 940MX 64 bits. 

7.4.1. Linear paths (Uniform Rectilinear Motion)  

The model of linear paths is associated with a 1D uniform rectilinear motion, composed 

of the states of position 𝑝 and speed 𝑣. To simulate state measurements, we only considered 

the position 𝐻 = [1 0] under gaussian noise 𝑉𝑘~𝒩(0, 𝜎𝑝). The simulated paths consider the 

ideal model, without process noise 𝑊𝑘 = [0, 0]
𝑇. 
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[
𝑝
𝑣
]
𝑘
= [
1 𝑇
0 1

] [
𝑝
𝑣
]
𝑘−1
+𝑊𝑘 (7.26) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑉𝑘 (7.27) 

The synthetic data is generated with Table III as described in Llerena’s work [19]. 

7.4.1.1. Classical state estimator 

As an estimator, we used a linear KF. In this case, the process noise is 𝑊𝑘 = [0, 0]
𝑇 , and 

the position measurements have gaussian noise 𝒩(0, 𝜎𝑍) (7.27), as in Table 1 described in 

Llerena’s work [19]. The system model corresponds with equation (7.26) and Table 1’s 

parameters of [19]. KF requires two steps to obtain the unmeasurable state (speed) as 𝑣2 =

(𝑝2 − 𝑝1)/𝑇 and initialize the covariance matrix start, like this: 𝑃2|k−1 = 𝜎𝑍 (
1 100
100 2

). 

𝑥𝑘|𝑘−1 = 𝜙𝑥𝑘−1|𝑘−1 (7.28) 

7.4.1.2. Artificial neural structure 

As in work [19], the architecture referenced in Table 2 of that work is used. This 

architecture is composed of an input layer with 80 samples and one feature. The encoder has 

400 hidden units, and the decoder has 200, both composed with LSTM cells. The 

interconnection layer between the encoder and the decoder corresponds to a fully connected 

layer with a rectified linear unit (ReLU) function. 

7.4.2. Sinusoidal paths (Simple harmonic motion) 

To generate sinusoidal paths, we considered a 1D system with simple harmonic motion 

that defines the transversal position with constant amplitude and frequency. The system 

states are given by the position 𝑥1 and the speed 𝑥2. 

[
𝑥̇1
𝑥̇2
] = [

0 1
−𝜔2 0

] [
𝑥1
𝑥2
] +𝑊 (7.29) 

𝑧 = 𝐻𝑥 + 𝑣 (7.30) 

To simulate state measurements, we only consider the first estate 𝑥1, 𝐻 = [1 0] under 

gaussian noise 𝑉𝑘~𝒩(0, 𝜎𝑥1). The simulated paths consider the ideal model, without process 

noise 𝑊𝑘 = [0, 0]
𝑇. 

The synthetic data is generated with Table 7.3 conditions: 
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Table 7.3. Synthetic data generation parameters: sinusoidal paths. 

Data generation range 

Parameter Minimum Maximum 

𝒙𝟏 [m] -10 10 

𝒙𝟐 [m/s] -3 3 

𝝎𝟐 [𝒓𝒂𝒅/𝒔]𝟐 6 

Simulation end times [s] 10.01 

Sampling time 𝑻 [s] 0.01 

Number of window data 500 

Overlap 𝑶 [Nº data] 90 

𝑽~𝓝(𝟎, 𝝈𝒁) 0.4 

7.4.2.1. Classical state estimator 

Starting from equations (7.29) and (7.30), using discretization (7.3) and applying Taylor's 

series developments, finally our linear system is discretized as follows: 

[
𝑥1
𝑥2
]
𝑘⏟  

𝑥𝑘|𝑘−1

= [
𝑐𝑜𝑠(𝜔𝑇)

𝑠𝑖𝑛(𝜔𝑇)

𝜔
−𝜔𝑠𝑖𝑛(𝜔𝑇) 𝑐𝑜𝑠(𝜔𝑇)

]

⏟                
𝜙

[
𝑥1
𝑥2
]
𝑘−1

⏞    

𝑥𝑘−1|𝑘−1

 (7.31) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑉𝑘. (7.32) 

By assuming that we only measured the first of the states, we used the linear trajectory 

system strategy to find the second state and be able to initialize a filter in the third measure. 

As the estimator minimizes the covariance in an exponential way, the cross covariances can 

be made large to converge quickly, and this helps the new poles of the feedback system have 

a high negative real part: 

𝑃2|𝑘−1 = 𝜎𝑍 (
1 1000
1000 2

) (7.33) 

7.4.2.2. Artificial neural structure 

Taking the method described in the process of Table 7.2, the architecture proposed for 

the sinusoidal paths is the one indicated in Table 7.4. 

Table 7.4. Listing of neural network layer with sinusoidal paths: s=500 samples per input path. 

Nr Name and type Activation/ prop. Learnable States 

1 
Sequence Input: 

1x500 
1 - - 

2 

lstm_1: LSTM 

Hidden units: 

500 

State activation function: 

tanh 

Gate activation function: 

sigm 

Input Weights: 2000x1 

Recurrent Weights: 

2000x500 Bias: 2000x1 

Hidden States: 500x1 

CellState: 500x1 
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3 

lstm_2: LSTM 

Hidden units: 

250 

State activation function: 

tanh 

Gate activation function: 

sigm 

Input Weights: 

1000x500 

Recurrent Weights: 

100x250 Bias:1000x1 

Hidden States: 250x1 

CellState: 250x1 

4 

lstm_3: LSTM 

Hidden units: 

167 

State activation function: 

tanh 

Gate activation function: 

sigm 

Input Weights: 668x250 

Recurrent Weights: 

668x167 Bias:668x1 

Hidden States: 167x1 

CellState:167x1 

5 
fc_1: Fully 

connected 
100 

Weights: 100x167 

Bias:100x1 
- 

6 relu_1: ReLU 100 - - 

7 Do: Dropout 20% 100 - - 

8 

lstm_4: LSTM 

Hidden units: 

500 

State activation function: 

tanh 

Gate activation function: 

sigm 

Input Weights: 

2000x100 

RecurrentWeights: 

2000x500 Bias:2000x1 

Hidden States: 500x1 

CellState:500x1 

9 
fc_2: Fully 

connected 
1 

Weights: 1x500 Bias: 

1x1 
- 

10 
Regression 

output 
Loss function: HMSE - - 

7.4.3. Smooth curved paths (Volterra–Lotka system) 

The proposed model to generate smooth curved paths is the Volterra–Lotka predator–

prey model. This model indicates the evolution of two species parameterized with the growth 

rates of the prey 𝑟1, the success of the hunt of the predator that affects the prey 𝑎1, the growth 

rate of the predator 𝑟2, and the success of the hunt that affects predator 𝑎2. The paths used 

are those defined by the union of the two states, also known as phase diagrams. 

This is an autonomous system that does not require any input or external signal 𝑢 and 

presents a great variety of smooth curved paths in the whole of its state space. 

We added a process noise term to the system 𝑊 = [𝑤1, 𝑤2]
𝑇 = [0,0]𝑇 . 

{
𝑥̇1 = 𝑓1(𝑥, 𝑤) = 𝑟1𝑥1 − 𝑎1𝑥1𝑥2 +𝑤1
𝑥̇2 = 𝑓2(𝑥, 𝑤) = 𝑎2𝑥1𝑥2 − 𝑟2𝑥2 +𝑤2

 (7.34) 

𝑧 = ℎ(𝑥, 𝑣) = 𝐻𝑥 + 𝑉 (7.35) 

This system has an equilibrium point in 𝐸𝑃 = [
𝑟2

𝑎2
,
𝑟1

𝑎1
]. Around this point, the system paths 

present a periodic evolution associated to a limit cycle attractor. 

This study focuses on the set of initial conditions around 20% of the equilibrium point 

where the variety of trajectories is more pronounced. 
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Table 7.5. Synthetic data generation parameters: Volterra–Lotka paths. 

Data generation range 

Parameter Minimum Maximum 

State 𝒙𝟏 0.8
𝑟2
𝑎2⁄  1.2

𝑟2
𝑎2⁄  

State 𝒙𝟐 0.8
𝑟1
𝑎1⁄  1.2

𝑟1
𝑎1⁄  

𝒓𝟏, 𝒓𝟐, 𝒂𝟏 1 

𝒂𝟐 2 

Simulation end times [s] 20.05 

Sampling time 𝑻 [s] 0.05 

Number of window data 200 

Overlap 𝑶 [Nº data] 40 

𝑽~𝓝(𝟎, 𝝈𝒁𝟏) = 𝓝(𝟎, 𝝈𝒁𝟐) 0.09 

7.4.3.1. Classical state estimator 

Using the approximation of (7.3), 𝑥̇ =
𝑥𝑘+1−𝑥𝑘

𝑇
 the system is discretized as follows: 

{
𝑥1,𝑘+1 = 𝑥1,𝑘 + (𝑟1𝑥1,𝑘 − 𝑎1𝑥1,𝑘𝑥2,𝑘 +𝑤1,𝑘)𝑇

𝑥2,𝑘+1 = 𝑥2,𝑘 + (𝑎2𝑥1,𝑘𝑥2,𝑘 − 𝑟2𝑥2,𝑘 +𝑤2,𝑘)𝑇
 (7.36) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑉𝑘 (7.37) 

Since the system is non-linear, an EKF is formulated as an extension of the KF. In this way, 

the EKF is formulated with the following parameters: 

𝐴 = 𝛻𝑓(𝑥, 0)|(𝑥,0) = (
1 + (𝑟1 − 𝑎1𝑥2)𝑇𝑠 −𝑎1𝑥1𝑇𝑠

𝑎2𝑥2𝑇𝑠 1 + (𝑎2𝑥1 − 𝑟2)𝑇𝑠
)|
(𝑥̂,0)

 

𝑊 = 𝛻𝑓(0,0, 𝑤)|(𝑥,0) = 02𝑥2 

𝐻 = 𝛻ℎ(𝑥𝑘 , 0)|(𝑥̂,0) = 𝐼2𝑥2 

𝑉 = 𝛻ℎ(0, 𝑣)|(𝑥̂,0) = 𝑉2𝑥1 

(7.38) 

We consider the system to be fully observable in which we can simultaneously measure 

the two states that we consider as positions on a two-dimensional plane, known in other 

environments under the phase diagram name. The measurement noise corresponds to a 

gaussian noise 𝒩(𝜇, 𝜎𝑧) with mean 𝜇 = 0 and variance 𝜎𝑧. 

𝑃1|𝑘−1 = 𝜎𝑍𝐼2𝑥2 (7.39) 

7.4.3.2. Artificial neural structure 

Starting from the initial structure of the URM, the proposed structure for the Volterra–

Lotka system is: 
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Table 7.6. Listing of neural network layer: s=200 is the number of samples per input path. 

Nr Name and type Activation/ prop. Learnable States 

1 
Sequence 

Input: 2x200 
2 - - 

2 

lstm_1: LSTM 

Hidden units: 

400 

State activation function: 

tanh 

Gate activation function: 

sigm 

Input Weights: 1600x2 

Recurrent Weights: 

1600x400 Bias:1600x1 

Hidden States: 

400x1 

CellState:400x1 

3 
fc_1: Fully 

connected 
16 Weights: 16x400 Bias:16x1 - 

4 relu_1: ReLU 16 - - 

5 
Do: Dropout 

20% 
16 - - 

6 

lstm_2: LSTM 

Hidden units: 

200 

State activation function: 

tanh 

Gate activation function: 

sigm 

Input Weights: 800x16 

RecurrentWeights:800x200 

Bias:800x1 

Hidden States: 

200x1 

CellState:200x1 

7 
fc_2: Fully 

connected 
2 Weights: 2x200 Bias: 2x1 - 

8 
Regression 

output 
Loss function: HMSE - - 

Although apparently the structure is similar to the URM, the density of the network is 

higher because it contains one more feature in the input and output layers, as well as a larger 

number of measurements to define the input/output layers. 

7.4.4. Experimentation 

In the following section, we show, in a compact way, each of the proposed experiments 

for the different study cases.  

7.4.4.1. Standardization effect  

In this section, we show the dataset information mapping before and after applying the 

standardization process. We used the standardization process described in [19] based on [16]. 

First, it is important to emphasize that the arrival spaces after the standardization are 

bounded, Fig. 7.1. Another perception that can be observed is that, for certain trajectories, 

the noise in the arrival space after the transformation can be attenuated (pronounced speeds, 

big amplitudes, or big closed paths) on the contrary increased (small speeds, amplitudes, and 

closed paths). This differentiation can be perceived by an intelligent system. These features 

combined with a bounded space are good hints to use ANN. 
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Raw dataset image  Standardization dataset image  

 

(a) 
 

(b) 

 

(c) 
 

(d) 

 

(e) 
 

(f) 

Fig. 7.1. (a), (c), and (e) a set of 10^3 ideal paths in real space with uniform rectilinear motion (URM), 

sinusoidal, and Volterra System. (b), (d), and (f) a set of 10^3 paths in standardized space with URM, 

sinusoidal, and Volterra System. 

7.4.4.2. Architecture validation 

The validation process of the different architectures is carried out using two checkpoints 

on each path. The first checkpoint is located just after the activation window and the second 

at the end of the data window. This is justified based on the KF covariance evolution, where it 

decreases exponentially in a linear system. Thus, KF will be less accurate at the beginning of 

receiving measurements than at the end. 

The checkpoints are taken over the measured, Kalman, and LSTM network outputs. The 

values obtained with each of the previous paths are compared with the ideal values, and the 
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error value is saved. These errors are shown as a histogram in Fig. 7.2, and the values of the 

RMSE obtained are shown in Table 7.7. 

1st Checkpoint 2nd Checkpoint 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

Fig. 7.2. LSTM and Kalman histogram validation: (a) First and (b) second, checkpoint in the URM model. 

(c) First and (d) second checkpoint in the sinusoidal path model. (e) First and (f) second checkpoint in 

the Volterra system paths. (g) First and (h) second checkpoint in the Volterra system (Euclidian distance 

error). 

Table 7.7. Kalman and LSTM validation results. 

Path-Model 

Histogram RMSE [𝟏𝟎−𝟏] 

(Measurements | Kalman | LSTM) 

First checkpoint Last checkpoint 

Lineal 9.086 | 4.569 | 1.444 8.697 | 2.038 | 5.799 

Sinusoidal 3.971 | 0.720 | 1.395 3.955 | 1.092 | 1.068 

Volterra state 𝒙𝟏 0.893 | 0.195 | 0.424 0.933 | 0.948 | 0.089 

Volterra state 𝒙𝟐 0.847 | 0.168 | 0.107 0.885 | 0.501 | 0.125 

Volterra paths (distance) 1.231 | 0.258 | 0.437 1.286 | 1.072 | 0.153 

The error distributions of the sensor-measured data simulation show an invariant 

Gaussian behavior of the path position at the checkpoint. Given the nature of the RMSE, the 

values obtained correspond to the variance of the Gaussian noise.  

We verified that the KF behavior implemented also presented a Gaussian distribution 

with less variance in the second checkpoint in linear systems cases (URM and sinusoidal). 

However, in the EKF case, we can see how the filter presents difficulties at the end of the paths 

but maintained the noise below the measurements. 

In the case of the LSTM networks, we can see how the behavior was generally Gaussian 

except for the second checkpoint in the linear paths of the URM model. In the case of the 

second state of Volterra, it remained practically bounded, while in the sinusoidal trajectories, 

the first state of Volterra was reduced and was lower than in Kalman. 

Fig. 7.2 (g) and (h), show the system error as a Euclidean distance of the estimated XY 

positions with respect to the ideal values in order to check the deviation of the filter. All 

distributions have a tail to the right; however, this metric allows us to highlight the amount of 
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data centered around the zero error. We verified how the performance of the LSTM network 

for this non-linear system showed great performance as the EKF approached.  

Finally, we verified how the proposed system with LSTM networks reduced the noise of 

the measurements and presented an error comparable to the KF. 

7.4.4.3. Filtering system simulation with new measurements 

This experiment shows the behavior of Kalman and the proposed network when they are 

in continuous measurement feeds during the first and second time window when faced with 

a new set of data different from those used in the training and validation. 

The initial conditions used in each system simulation are shown in Table 7.8. We used the 

same initial conditions for both experiments with continuous feed measurements and in the 

measurement experiment 7.4.4.4. 

Table 7.8. The initial simulation conditions. 

 System-Model Initial conditions 𝒙𝟎 

URM −23.4897, −5.3815 

Sinusoidal 4.8647, −0.9199 

Volterra–Lotka 3.0298 , 0.8219 

 

First time window Second time window 

(a) (b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 7.3. Kalman and LSTM with new feed measurements. (a) First and (b) second time window URM 

path evolution. (c) First and (d) second time window sinusoidal path evolution. (e) First and (f) second, 

time window Volterra path evolution in both two states. (g) First and (h) second window, Volterra phase 

diagram evolution. 

Fig. 7.3 and Fig. 7.4 in (a) to (f) show the overlapping regions in yellow—that is, the region 

without estimates, and is used to activate the networks and also to adjust the KF states in 

iterative way. After this time, the different systems were fed with new measurements to 

perform the filtering. In the linear case, this was checked as during the first two time windows, 

while the KF tended to reduce the RMSE, the network kept the error bounded to acquire the 

desired trend, Table 7.9. 

In the sinusoidal case, we checked during the first two time windows as the KF tends to 

reduce its error. In the case of the neural network, it does not manage to improve on the 

Kalman results, but it remained with an acceptable trend and a comparable RMSE, Table 7.9. 

In the case of Volterra's system, the trajectory was split into the components defined by 

the system states. During the first time window, the EKF and the network acquired the system 

trend but with a higher amplitude offset by the EKF than the LSTM, showing a behavior with 

less error than EKF in the initial moments but with a comparable RMSE. This effect is better 

observed in Fig. 7.3 (g) (phase diagram first window) where it is shown that, even maintaining 

a comparable RMSE, the EKF was much farther than the LSTM from the ideal values. During 

the second time window Fig. 7.3 (h) the effect was even more pronounced, and, this time, we 
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found that the LSTM had a behavior with less error than the EKF. We can see the joint states 

error in the error diagram of the second time window Fig. 7.3 (h), where the error in the 

evolution of the LSTM is shown compressed around (0,0), clearly more compact and reduced 

than the EKF and, in this case, an order of magnitude higher than the network. 

Table 7.9. The RMSE with continuous feed measurements. 

Model 
RMSE [𝟏𝟎−𝟏] (Kalman | LSTM) 

1St Window 2Nd Window 

Lineal 5.533 | 1.660 0.969 | 2.046 

Sinusoidal 1.325 | 1.444 0.678 | 1.269 

Volterra state 𝒙𝟏 1.118 | 0.723 1.728 | 0.597 

Volterra state 𝒙𝟐 0.800 | 0.861 1.099 | 0.410 

Volterra paths (distance) 1.500 | 1.125 2.157 | 0.725 

7.4.4.4. Effect of missing observations in the input sequence 

We simulated the loss of measurements after the overlap/activation region in two 

consecutive time windows. In the first window, we only used data from the overlap section 

for network activation and as feed measurements in the Kalman filters. In the second time 

section, KF used the set of measurements of the first-time window, while the neuronal model 

only used the overlapping region for the activation. When measurements are missing, the 

systems were fed with predictions based on the previous estimates from each system as Table 

7.1 explains. 

In the case of the URM system, we see how, with few measurements lost, KF can diverge 

from the real trajectory, while the network managed to extract the trend of the system and 

maintain a bounded error Fig. 7.4 (a). On the other hand, when Kalman was fed with a 

complete time window, it managed to extract a trend that reduced its error compared to the 

LSTM in terms of the RMSE. However, it may be the case that this is not sufficient and the 

system continues to decouple as long as the network keeps its error bounded. Fig. 7.4 (b) 

shows how the Kalman RMSE was lower than the LSTM but with a slightly increasing error 

trend indicating that it continues to decouple, while the LSTM remained bounded. 

In the case of the sinusoidal paths, we verified how the well-adjusted KF managed to 

maintain the trends better than the LSTM during the first two-time windows. We also 

observed how the network managed to have a behavior like Kalman in the first estimation 

moments, but it decoupled in the absence of measurements and introduced a certain gap in 

the estimation. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 7.4. Kalman and LSTM without feed new measurements. (a) First and (b) second time window URM 

path evolution. (c) First and (d) second, time window sinusoidal path evolution. (e) First and (f) second, 

time window Volterra path evolution in both states. (g) First and (h) second window, Volterra phase 

diagram evolution. 
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Finally, in the case of Volterra system, it can be seen how the EKF in the first and second 

time windows is much more vulnerable and can diverge from the ideal trajectory with respect 

to the proposed LSTM solution. This is easily observed in each state graphs in Fig. 7.4 (g) and 

(h), especially in the joint state diagrams in error part, where the error of the LSTM is clearly 

bounded around (0,0) while the EKF is not. Fig. 7.4 (g) and (h) show that the EKF was more 

vulnerable to decoupling in the absence of measurements compared with the neuronal 

system as observed in the evolution of systems in terms of the amplitude, phase, and finally 

higher error.  

Fig. 7.4 (e) and (f) show that the EKF was more vulnerable to decoupling in the absence 

of measurements compared with the neuronal system, as observed in the evolution of 

systems in terms of the amplitude, phase, and definitely higher error. Fig. 7.4 (g) shows how 

in the first moments around (1.5 ,1) the EKF, the network, and the ideal measurements 

evolved together, while the neuronal network extracted the tendency of the equilibrium point 

and presented an evolutionary behavior on an invariant set, the EKF began to diverge from 

the limit cycle decoupling itself from the system and becoming unstable in terms of tendency 

and comparison with the ideal system. 

Table 7.10. The RMSE with measurement loss simulation. 

Model 
RMSE [𝟏𝟎−𝟏] (Kalman | LSTM) 

1St Window 2Nd Window 

Lineal 42.534 | 2.054 2.084 | 2.414 

Sinusoidal 0.903 |17.455 0.323 | 10.898 

Volterra state 𝒙𝟏 2.855 | 1.188 2.855 | 0.690 

Volterra state 𝒙𝟐 2.034 | 0.817 1.893 | 0.541 

Volterra paths (distance) 3.901 | 1.442 3.803 | 0.877 

7.4.4.5. Impact on filtering of measurements simulated with different parameters with 
respect to the design 

To perform these experiments, we used an ideal model for training and to configure the 

KF, but we generated new paths with slight changes in the dynamic simulation model with 

respect to the ideal model. 

This 𝛼 variation was made over each constant’s parameters 𝜓𝑖  of the ideal model, 

between 5% and 200% of the ideal value. The variation was made with only one parameter to 

study their impact without changing the rest of the terms with the initial/ideal model. Finally, 

the new constant 𝜓𝑖
∗ is as equation (7.40), where 𝑖 indicates the different constants in the 

dynamic model and 𝑗 indicates the variation range. 

𝜓𝑖
∗ = 𝜓𝑖. 𝛼𝑗  (7.40) 
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For this test, the mean value, the median, and the mode of the set of RMSE values were 

determined over 1000 new test paths generated over each modification of the constant 

parameters. This means that, when making 40 modifications, we finally generate 40.000 new 

paths per study case.  

This test was performed on the sinusoidal case by modifying the system frequency and 

with the Volterra system for each of the four constant terms (7.34). 

In Fig. 7.5 and Fig. 7.6, there are two essential regions in each of the graphs delimited by 

the variance of the measurements (blue lines). Over this border, the filtering was worse than 

the measurements; however, this could be due to missing measurements, and so it is 

interesting to study the evolution over the border of measurements and compare the 

differences between the classical system and the proposed LSTM system. 

Sinusoidal system: 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.5. RMSE evolution as the independent term changed in the sinusoidal measurements model: (a) 

RMSE mean, (b) RMSE median, and (c) RMSE mode. 

In the sinusoidal case, 𝜔2 = 𝜓 was considered as the constant term. The general RMSE 

evolution in the average and median KF showed a linear-symmetric growth, while the network 

showed an irregular behavior, but with an increasing trend on both sides of α=1. In the lower 
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region of the measure’s variance, Kalman had a lower value than the LSTM, reaching the 

border after the LSTM in both sides of the optimum. However, we found a region in the range 

of [1.25, 1.5] in Fig. 7.5 (a) and (b) in which the network continued filtering while Kalman did 

not. To the right of this region, Kalman performed worse than the network. In terms of the 

RMSE frequency (mode), we can see how both systems for the set of ranges studied were 

maintained in the filtering region and Kalman generally showed the best performance Fig. 7.5 

(c). 

Volterra system:  
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(𝑏3) 

 
(𝑏4) 

 
(𝑐1) 

 
(𝑐2) 

 
(𝑐3) 

 
(𝑐4) 

Fig. 7.6. The RMSE evolution as the independent term changed in Volterra model: (a) RMSE mean, (b) 

RMSE median, and (c) RMSE mode. Subscripts indicate Volterra constant terms: [1,2,3,4] =

 [𝑟1, 𝑎1, 𝑟2, 𝑎2]. 

Based on the statistical values of the mean and median RMSE with Volterra's system 

trajectory, the EKF sensitivity to changes in the independent terms are shown in Fig. 7.6 (a) 

and (b). The EKF quickly left the filtering region and showed an increasing trend on both sides 

of the optimum (𝛼 = 1). On the other hand, the LSTM architecture was much less sensitive to 

these changes, becoming practically invariant in the second state (𝑥2) to 𝑎1 modifications. 

The previous trend was generalized for all terms. The mode of the RMSE in Fig. 7.6 (c) showed 

the same behavior emphasizing the difference between the EKF and the network with the 𝑎2 
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constant term modifications, where the network with even a slight increasing trend in the 

edges did not achieve, in the study range, the filtering border. 

7.5.  Conclusions 

In this work, three neuro-estimator/filters were implemented through a common but 

different density encoder–decoder architecture, based on recurrent LSTM cells and using the 

Table 7.2 design process. These models were compared with a KF adapted to each specific 

case obtaining similar results in terms of the RMSE but, unlike Kalman, working in only one 

processing stage. The Kalman algorithm consists of two main processing stages, namely 

prediction and update, using ad-hoc models, while the proposed solution works in a single 

stage applying the model built after the training stage. 

The study was limited with two consecutive time windows for two linear systems with 

linear and sinusoidal paths in a one-dimensional path space. In addition, it included a 

nonlinear autonomous system defined by Volterra–Lotka's equations, which describes a set 

of smooth, curved paths in a two-dimensional space. The simulated measurements were 

made by adding a Gaussian additive term in the state of the system case. 

KF has proven to be the optimal process for linear systems; however, the proposed neural 

architectures, without taking any assumptions as Gaussian, linear, or Markovian processes, 

managed to show a comparable performance in terms of RMSE Table 7.7. Although it has been 

justified why our proposed system does not initially assume Gaussian systems or 

measurements (7.3.1), the system has not been tested with other noises to be compared with 

a reference system, such as KF or EKF. We verified that the system proposed in the case of 

linear trajectories, with few measurements, managed to acquire the desired trend in front of 

possible decoupling of the KF in absence of the measurements in Fig. 7.4 (a) and (b). When 

the system had non-linearity, the approaches used in the EKF may diverge from the ideal 

solution. The neural proposed system managed to improve the behavior of the EKF both in 

the filtering and in estimation in the absence of measurements Fig. 7.4 (e)-(h). 

One of the principal advantages of our method lies in the simplicity of modeling the 

neuro-estimator/filter as KF. Finally, we studied the system behavior in the face of separate 

trajectories from the models for which the systems had been designed. To do this, we 

generated new paths modifying each constant term 𝜓𝑖  of the dynamic models by a 

multiplicative value 𝛼. As expected, in all cases, the optimal value was found when the 

independent term matched between the model and generated values—that is, the 

multiplicative value 𝛼 = 1. 

We proved, as in the case of a linear system (sinusoidal paths), Kalman grew linearly out 

of the filtering region after the neuronal system. The irregularity of the growth for the 
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neuronal system proposed for sinusoidal paths was shown to exist in regions where Kalman 

does not work while the network does (understanding by that “work” refers to the filter 

process). 

As far as Volterra's system is concerned, the influence of each of its four independent 

terms (𝑟1, 𝑎1, 𝑟2, 𝑎2) on EKF systems and the proposed LSTM solution were verified. We 

checked how the LSTM architecture can be maintained in the filtering area with a higher 

variation range than Kalman when each one of the independent terms is modified. In the case 

of 𝑎1 and 𝑎2, our system remained practically invariant as shown in Fig. 7.6 (𝑎2)-(𝑏2), (𝑎4)-

(𝑏4)-second state 𝑥2. On the other hand, the EKF with its linear approximations quickly left the 

filter region in Fig. 7.6. We can affirm that, for all the cases regarding parameter modification 

on the Volterra system and in the study domain as a whole, the LSTM solution was more 

robust than the EKF, with the filtering border beyond the EKF or even not having that border 

in certain cases. 
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Chapter 8: LSTM vs CNN in real ship 

trajectory classification 
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Abstract. Ship type identification in a maritime context can be critical to the authorities to control the activities 
being carried out. Although Automatic Identification Systems has been mandatory for certain vessels if a vessel 
does not have them voluntarily or not, it can lead to a whole set of problems, so the use of tracking alternatives 
such as radar is fully complementary for a vessel monitoring systems. However, radars provide positions, but 
not what they are detecting. Having systems capable of adding categorical information to radar detections of 
vessels makes it possible to increase control of the activities being carried out, improve safety in maritime 
traffic, and optimize on-site inspection resources on the part of the authorities. This paper addresses the binary 
classification problem (fishing ships versus all other vessels) using unbalanced data from real vessel 
trajectories. It is performed from a Deep Learning approach comparing two of the main trends, Convolutional 
Neural Networks and Long Short-Term Memory. In this paper, it is proposed the weighted Cross-Entropy 
methodology and compared with classical data balancing strategies. Both networks show high performance 
when applying weighted Cross-Entropy compared to the classical machine learning approaches and classical 
balancing techniques. This work is shown to be a novel approach to the international problem of identifying 
fishing ships without context. 

Keywords: Deep Learning, LSTM, CNN, Weighted Cross Entropy, Automatic Identification System, 
Fishing ship classification. 

8.1. Introduction 

lthough the problem of Illegal, Unreported and Unregaled Fishing (IUU-Fishing) is not 

new [1], it continues to be a topical issue in international relationships [2, 3]. 

As the Food and Agriculture Organization of the United Nations (FAO) shows in [4], yearly 

in the world IUU-fishing extract around 26 million tons of seafood. Recent studies, such as that 

of U.R.Sumalia et al. [5], estimated between 8 and 14 million metric tons of unreported 

catches estimating financing of the illegal fishing market of US$9 billion to US$17 billion in the 

world. In addition, the study estimates the annual economic impact and the loss of tax 

revenue for the countries between US$2 and US$4 billion, showing a table with the detailed 

data. 

Vessel Monitoring Systems (VMS) and Automatic Identification Systems (AIS) are 

powerful tools for authorities to address legislative challenges as IUU- fishing. Any VMS 

requires technology on the vessel, onshore, and communication between them. Specifically, 

A 
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AIS systems provide real-time vessel type and position information. All other ships in turn can 

know the positions of their nearest neighbors. 

Although these systems are mandatory, the use of radars is essential for a robust and 

functional VMS. Unlike the GPS systems associated with vessels, radars only provide the 

position of objects in the detection range, so they cannot differentiate the type of vessel. 

Having systems capable of extracting context information related to the trajectories that these 

systems can identify is of particular interest not only to improve the accuracy of VMS systems 

but also to identify irregularities in maritime traffic, to identify illegal activities, or even for 

rescue work. 

In this paper we address the problem of vessel classification based on trajectories. 

Specifically, the binary classification of fishing ships trajectories versus other ships, studying 

the performance provided by two trendy deep learning (DL) approaches. These approaches 

transform the classification problem into a data learning problem. This learning problem is 

base to adjust the internal neural network parameters, so the low-level problem is translated 

into an optimization problem. To address the learning problem associated with 

approximations with highly unbalanced real-world data, we propose to use weights in the cost 

function during the learning phase and compare the performance with other classical 

techniques.  

This paper is organized as follows: Section 8.2. shows the related works. Section 8.3. 

describes the methodology describing the data set, validation strategies, classification models 

and the learning problem. Experimental results are shown in Section 8.4. Finally, the 

conclusions are presented in Section 8.5. 

8.2. Related works 

In D. Sánchez et al. [6] authors focus on feature extraction of vessel trajectories from the 

Danish Coastal getting from the AIS system [7]. The authors propose a data preprocessing 

methodology that they validate using a set of classical machine learning (ML) approximation 

classifiers to solve the binary problem of fishing ships versus other vessels. These 

approximations show high sensitivity to the bias of the data in the proposed binary problem. 

The authors introduce the problem unbalanced data and evaluate the performance of 

classifiers applying different subprocesses including two balancing methods, Random 

Undersampling (RUS) [8] and Synthetic Minority Over-sampling Technique (SMOTE) [9]. Other 

researches such as [10, 11] also focus on the classification of fishing ships with classical 

approaches and searching features to describe vessel trajectories. However, these approaches 

seem to have reached an impasse  as can be seen in [6], so use other approaches with high 

results in other fields such as Deep Learning (DL) is justified.  
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 From the DL classification approach, there are two main branches. The first one uses a 

Convolutional Neural Networks (CNN) [12, 13] and the second one uses Long Short-Term 

Memory network (LSTM) [14, 15]. The previous works focus in one of the two branches, 

nonetheless a comparison between the two trends on the same problem can yield interesting 

solutions. For example, in estimation problems related to ships trajectories we can find 

comparisons between LSTM and CNN solutions. In [16] three solutions with CNN, LSTM and a 

hybridization between both, BDLSTM-CNN, are compared for the estimation of the maritime 

vessel flow. In this research the LSTM architecture has a lower Error Rate than CNN, but both 

are improved by the BDLSTM-CNN proposal in the prediction problem over 4 time steps. 

The features used to define the flow are limited to the spatial grid of the study, being a 

bounded solution to the case study. 

CNNs in classification problems have two principal steps, feature extraction 

(convolutional phases) and classification. These approaches have proven to be one of the most 

accurate techniques in multiclass problems due to their ability to learn relevant classification 

features. CNN architectures require a fixed input structure, for example, an image or in the 

case of trajectories a fixed time window. LSTM models are widely used with sequential data, 

mainly in non-Markovian systems such as natural language processing [17] or human behavior 

[18]. This is because their long-term memory properties allow remembering past trends of the 

states, understanding as state the temporal input variables to the network. Generally, DL-

based classification systems use cross-entropy [19] as a cost function to optimize the internal 

network parameters. Related work on real-world data such as [20, 21] proposes the use of 

weights associated with classes to improve learning and avoid classification bias. This 

technique is known as Weighted Cross-Entropy (WCE). The research of Y. Sousa et al. [20] 

propose a new approach called CSEFMLP (Cost-Sensitive Cross-Entropy Error Function for MLP 

neural networks) based on the cross-entropy radius to weight the weights of the cross-

entropy. This radius evaluates the contribution of each class on the cost function. The authors 

compare the performance of the proposal with other common balancing-classification 

techniques for different unbalanced databases. They finally conclude that the performance 

generally improves or at least similarly the performance of other strategies. In the work of 

M.R. Rezaei et al. [21] a binary classification problem with the Inception-V3 network is 

presented in which different increasing values of weights associated to the cost function are 

compared under usual classification metrics. WCE assigns more weight to the minority class, 

penalizing more incorrect predictions, and thus enabling better and faster training for the 

minority class. Research such as that of Shen Lu et al. [22] proposes a dynamic weighting cross-

entropy technique for semantic segmentation. In this type of WCE the value of the weights 

changes as the background is differentiated from the non-background. Their research shows 
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the use of the proposed WCE method improves the degradation from the extremely 

unbalanced data. In recent studies such as [23] or  J.P.Llerena et al. [24] authors used LSTM 

networks for state-space estimation and filtering in highly nonlinear systems.  These studies 

show the LSTM learning capacity in complex environments. It also shows the possibilities of 

using Sequence-to-sequence architectures that allow step-by-step estimation opening the 

possibilities to classify step-by-step temporal sequences or trajectories. 

8.3. Methodology  

In this paper, we propose to compare the two principal deep learning approach trends in 

literature, CNN, and LSTM architectures, to classify an extremely imbalanced data problem 

and find the contribution to use WCE in relation to other balance techniques. Specifically, this 

paper use kinematics features from trajectories of two classes of vessels (fishing ships and 

other ships). For this purpose, the methodology section first describes the database, its 

structure, and partitioning for the learning problem with two different validation strategies. 

Then we briefly describe the classical approach model that we will use as comparison. Finally, 

this section is concluded with the proposed neural network architectures used and the 

justification for the weight selection proposal method in the NN-learning problem. 

8.3.1. Real world binary dataset 

We use trajectories of AIS-recorded ships off the coast of Denmark [7] preprocessed 

according to [6]. Each AIS raw trajectory is defined as a succession of spatial positions and a 

sampling time. This research explains in detail the data preprocessing and the set of 

references on which they are based to finally extract the kinematic states of the vessels. In 

addition, the segmentation of the resulting trajectories is justified, and finally, a set of 

trajectories defined by continuous segments of 50 samples, normalized 10-feature space and 

𝑁 elements. In this work, we start from this data structure provided by its authors. Specifically, 

the database Φ is structured for a learning problem Φ = {(𝒙𝑖, 𝑦𝑖 ) ∈ 𝒳 × 𝒴|𝑖 = 1, … , 𝑁} 

where the tensor features 𝒙𝑖
1 = {𝑡, 𝑝𝑥,𝑦, 𝑣𝑥,𝑦, Δ𝑣, |𝑣𝑥,𝑦|, 𝑑, Δ𝜓, Δ𝑡}, building a data panel of 10 

features and 50 samples, 𝒙1 ∈ ℝ𝑁𝑋10𝑋50, superscript one over 𝑥 means first data structure. 

Where 𝑡 is the normalized sample times, 𝑝𝑥,𝑦 is the normalization position component, 𝑣𝑥,𝑦 

speed components, Δ𝑣 is the speed variation, |𝑣𝑥,𝑦| is the speed vector modulus, 𝑑 is the 

distance inter-samples, Δ𝜓 is the direction variation, and the end Δ𝑡 is the time gap. In order 

to flatten the data panel 𝒙𝑖
1, to be applied in classifiers with a flattened fixed input, we 

generate a flatten vector as [6] composed of normalization total time and five main blocks. In 

addition to the statistical characteristics of [6], the sum value is included in each feature block. 

Specifically, 
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𝒙𝑖
2 = {𝑇. 𝑇𝑖𝑚𝑒, 𝑠𝑝𝑒𝑒𝑑, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝐶𝑜𝑢𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, 𝑠𝑝𝑒𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒 𝑔𝑎𝑝𝑠}. 

Each block composes by sum, mean, max, min, standard deviation, mode, and three quartiles, 

from each feature from the previous panel data 𝑥𝑖
1, getting a vector of 46 static characteristics 

for each trajectory, were 𝑥2 ∈ ℝ𝑁𝑋46𝑋1. In this way, we define the trajectory 𝑖 of vessel 𝑦𝑖, in 

two different ways, 𝑥𝑖
1 and 𝑥𝑖

2. So, we use two learning sets Φ1 = {(𝑥𝑖
1, 𝑦𝑖  ) ∈ 𝒳

1 × 𝒴|𝑖 =

1, … , 𝑁} and Φ2 = {(𝑥𝑖
2, 𝑦𝑖  ) ∈ 𝒳

2 × 𝒴|𝑖 = 1,… ,𝑁}. Being N=118884, the number of 

trajectories. Although the AIS system can differentiate a total of 18 different classes of vessels, 

in this paper we focus on the fishing class as opposed to the rest, in other words, two different 

classes {𝐴, 𝐵}, fishing ships, and other ship types respectively. Associating to each sample the 

class 𝐴 or 𝐵 we obtain that 𝑁𝐴 = 22495 and 𝑁𝐵 = 96389, where it is easily observed that the 

classes are unbalanced Fig. 8.1 and propagated for training and validation. While in a balanced 

set the samples would be split 50/50, in our case the samples are split 81.1% for B and 18.9% 

for A. 

8.3.2. Data for validation methodologies 

In this paper we use two of the main techniques for validation models Holdout and 

stratified K-fold. To apply each of these methodologies, the database is divided differently. 

For the holdout case the database is divided into two parts with random data selection, 

training, and test. Specifically, 70% of the data is selected for training and the remaining 30% 

for validation 𝑁 = {𝑁70% , 𝑁30%} = {83218, 35666}. Fig. 8.1 (a) shows the distribution of 

training and test data. The number of trajectories per class in holdout partition is 𝑁𝐴 =

{15746, 6749} and 𝑁𝐵 = {67472, 28917}. 

On the other hand, to apply K-fold validation, the dataset is divided into K packages (folds) 

similar than holdout structure (training and test). 

 

(a) 

 

(b) 

Fig. 8.1. Data partition to validation methodology. (a) Holdout partition. Blue training data, brown 

validation data. (b) K-Fold stratified partition set. 
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The selection of the data for the K-folds is done randomly but keeping the same 

proportion by classes as in the starting set. This type of selection is called K-Fold stratified and 

show in Fig. 8.1 (b). A fair amount of research has focused on the empirical performance of 

cross-validation. In R. Bharat Rao and Glenn Funng [25] research different studies are 

discussed where it seems to have been agreed that a value of k=10 usually shows good bias-

variance compensation results for classifiers. In addition, Sánchez et al. [6] authors include a 

K-Fold section where they use 10 folds. Based on previous research in this paper we use 10-

folds. Each fold training-test set has 𝑁𝐴 = {20245, 2250} and  𝑁𝐵 = {86750, 9639} 

trajectories per class. In both cases of Fig. 8.1, the different numbers of trajectories per class 

show an imbalanced distribution. 

8.3.3. Classical approach  

A first attempt to differentiate fishing ships from other ships using features extracted 

from vessel trajectories is to use the classical decision tree algorithm. The algorithm is 

integrated into the MATLAB Machine Learning Toolbox [26], based on the classic text of Leo 

Breiman et al. [27]. This method requires a flattened vector 𝒙2 ∈ ℝ𝑁𝑋46𝑋1 with fixed input 

features, so it uses the preprocessed set Φ2 described in section 8.3.1. 

8.3.4. Deep Learning approach 

Since the features extracted from the trajectories can be expressed in a temporal way Φ1 

and in a static way Φ2, we propose to address the problem with the most common DL trends 

in the literature, LSTM, and CNN networks. Both proposals share the SoftMax output layer 

and cross-entropy cost function [19]. Thus, the classification problem becomes a biased 

learning problem. 

8.3.4.1. CNN classifier structure 

The CNN structure is inspired by the feature extraction stage in the architecture proposed 

by [28] for speech command recognition and the famous AlexNet architecture [29] for the 

classification step. We generate two CNN networks that differ at the input layer. On the one 

hand, the first one addresses the static database with 46x1x1 structure, while the second one 

uses the data panel with 10x50x1 structure. Finally, the architecture is composed of an input 

layer, a convolutional module C, two consecutive fully connected layers with a Rectified Linear 

Unit (ReLU) activation function of 4096 units and 30% dropout. The last block is composed of 

a fully connected layer with 2 units (binary classification) and a SoftMax layer, Fig. 8.2. 

Module C include 3 consecutive convolutional blocks. Each convolutional block is 

composed of four layers, convolution, batch normalization, activation, and pooling. The 

convolutional layer has 12, 24, and 48 filters respectively of 3x3 filter size, astride of 1x1, and 

padding same to ensure the output has the same size as the input. Then a batch normalization 
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layer follows of ReLU activation layer and pooling layer. The max pooling layer is composed of 

pool size 3x3 and stride 2x2 and padding same. In the case of temporary CNN, the last 

convolutional block is duplicated. 

 

Fig. 8.2. CNN Architecture, first block: input layer. Second: convolutional deep feature extraction 

module. Third and fourth: Fully connected plus ReLU layer and dropout. Last two layers, fully 

connected layer and SoftMax layer. 

It is used Adam optimizer [30] with an initial learning rate of 3.10−3 and learning rate 

drop factor 0.09. The minimum batch size is 200 and 40 epochs. In the case of K-Fold each of 

the K-Folds is trained in the same way but with 15 epochs.   

8.3.4.2. LSTM classifier structure 

In the case of the LSTM architecture, the network learns hidden transitions of the 

temporal sequences of the input features. The model used is employed in the work of [31] for 

fault detection in chemical processes, and can be seen represented in Fig. 8.3. The 

architecture is composed of a 10x50 sequence input layer, three consecutive LSTM layers with 

20% dropout and 52, 40, and 25 hidden units respectively. Finally, a fully connected layer with 

two units and a classification SoftMax layer. The outputs of the first two LSTM layers are 

complete sequences, while in the case of the last LSTM layer only the last step sequence is 

selected to connect it to the fully connected layer.  

 

Fig. 8.3. LSTM Architecture, first block input layer (sequence), second to fourth block LSTM layers with 

dropout. Last two layers, fully connected layer and SoftMax layer. 
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The training hyperparameters are optimizer Adam, minimum batch size 550. Gradient 

thresholding is applied with value 1 using the 𝐿2 norm. 

8.3.4.3. Learning problem 

The main relation between CNN and LSTM approach lies in the output SoftMax layer and 

the cost function. Specifically, the typical cost function ℒ used in classification deep learning 

problems is cross-entropy, that compare two probability distribution over the same 

probability space. 

Given a database Φ = , in which each element 𝑖 is described by a feature tensor 𝑥𝑖  and 

has a 𝑞𝑖,𝑘 probability of belonging to a categorical class 𝑘, designing an artificial neural 

network classifier 𝑞̂𝜽(𝑥𝑖)𝑘, involves identifying the internal NN 𝜽 parameters that minimize 

the error function ℒ (8.1). 

ℒNN(𝜽) = −
1

𝑁
∑∑𝑤𝑘

𝐾

𝑘=1

𝑞𝑖,𝑘

𝑁

𝑖=1

ln(𝑞̂𝜽(𝑥𝑖)𝑘) 
(8.1) 

Where, 𝐾 is the total number of classes, and 𝑁 is the total number of samples.  

The real probability of sample 𝑖 belonging to class 𝑘 are 𝑞𝑖,𝑘 and 𝑞̂𝜃(𝑥𝑖)𝑘 the probability 

given by the prediction of the model/neural network with internal weights 𝜽 of sample 𝑖 (with 

inputs 𝑥𝑖) belonging to class 𝑘. On the other hand, 𝑞, 𝑞̂: ℝ𝐾⟶ [0,1]𝐾  and in the case of 𝑞̂ 

provided by the SoftMax function (8.2). 

𝑞̂(𝑧𝑖)𝑘 =
𝑒𝑧𝑖,𝑘

∑ 𝑒𝑧𝑖,𝑘𝐾
𝑘=1

 (8.2) 

Where 𝑧𝑖,𝑘 = 𝑓𝜽(𝑥𝑖) is the 𝑘 element of the output vector at the network output function 

𝑓𝜃, before getting the SoftMax layer when introducing a 𝑥𝑖  feature tensor. In other words, 

𝑓𝜽(𝑥𝑖) is the NN function. We use the hat over 𝑞 (𝑞̂) inherited from the estimator notation 

since the network provides an estimate while 𝑞 tells us the true value of the database. 𝑤𝑘 is 

the weight associated with class 𝑘. For the case of two classes A and B: 

ℒNN(𝜽) = −
1

𝑁
∑𝑤𝐴𝑞𝑖,𝐴

𝑁

𝑖=1

ln(𝑞̂𝜽(𝑥𝑖)𝐴) + 𝑤𝐵𝑞𝑖,𝐵 ln(𝑞̂𝜽(𝑥𝑖)𝐵) 
(8.3) 

Since the SoftMax function provides the probability of belonging to each A or B class, 

𝑞̂𝑖,𝐴 + 𝑞̂𝑖,𝐵 = 1, and likewise the database probabilities satisfy the same relationship but in an 

unequivocal way 𝑞𝑖,𝐵 = 1 − 𝑞𝑖.𝐴, 𝑞𝑖,𝑘 ∈ {1,0} : 
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ℒNN(𝜽) = −
1

𝑁
∑𝑤𝐴𝑞𝑖

𝑁

𝑖=1

ln(𝑞̂𝒊,𝜽) + 𝑤𝐵(1 − 𝑞𝑖) ln(1 − 𝑞̂𝒊,𝜽) 
(8.4) 

The first term of the summation in (8.4), contributes to the error of the positive terms 

(fishing ships) while the second term contributes to the error of the negative terms (other 

vessels). If the database is balanced means 𝑁𝐴 = 𝑁𝐵 = 0.5𝑁, the probability of element 𝑖 

belonging to the classes A or B is the same [20], in such that both terms will act the same 

number of times 𝑞𝑖,𝑘 =
𝑁𝑘

𝑁
=
1

2
 . However, if the database is unbalanced, 𝑞𝑖,𝐴 ≠ 𝑞𝑖,𝐵 the 

majority subset will contribute more times in the error function than the minority subset. This 

effect over the cost function can be balanced by weights (𝑤𝑘), were:  

{

𝑁𝐴 = 𝑁𝐵 , 𝑤𝐴 = 𝑤𝐵 = 1
𝑁𝐴 ≪ 𝑁𝐵, 𝑤𝐴 > 1 𝑦 𝑤𝐵 < 1
𝑁𝐴 ≫ 𝑁𝐵, 𝑤𝐴 < 1 𝑦 𝑤𝐵 > 1

 (8.5) 

In order to have the same contribution of each class over the error function 𝑤𝐴𝑞𝑖,𝐴 =

𝑤𝐵𝑞𝑖,𝐵, 𝑤𝐴 =
𝑁𝐵

𝑁𝐴
𝑤𝐵. The previous relationship indicates that the weight associated with a 

class 𝑘 must be inversely proportional to the number of samples 𝑁 of that class. In addition, 

to maintain the definition of cross-entropy (8.1), the sum of the weights must be equal to the 

number of classes ∑ 𝑤𝑘
𝐾
𝑘=1 = 𝑤𝐴 + 𝑤𝐵 = 𝐾 = 2 . Based on these restrictions, we use (8.6). 

𝑤𝑘 =
1 𝑁𝑘⁄

1
𝐾
∑ 1/𝑁𝑘
𝐾
𝑘=1

=
𝐾

𝑁𝑘 ∑ 1/𝑁𝑘
𝐾
𝑘=1

 (8.6) 

Fig. 8.4 shows the contribution of the classifier error to the cross entropy to applied 

equation (8.6). When the database is balanced the effect of the classification error is similar 

in booth classes. However, in our case the database is imbalanced with a ratio around to the 

18,9% to the positive class and 21,9% for the negative class. With these relationships equation 

(8.6) gives the weights of Fig. 8.4 (b). This figure shows the error effect of the minority class, 

solid blue line, is stronger than the majority class, dashed red line. 
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(a) 

 

(b) 

Fig. 8.4. Contribution to cross-entropy with weight adjustment (8.6). Solid blue line, positive class, 

dashed red line, negative class. (a) Weights for balanced database. (b) Weights for unbalanced database. 

8.4. Experiments and results 

The experimentation seeks to evaluate the performance of the two proposed deep 

learning approaches to the same fishing ship classification problem, introducing as a novelty 

the WCE to solve the classification bias produced by the imbalance data. The classification 

methods are a decision tree, CNN, LSTM and CNN by fix time window over kinematics data 

that we call CNN_T. During the training phase, unbalanced raw features (Without B.), two 

classical balancing methods RUS and SMOTE and the WCE formulated in 8.3.4.3.

 Learning problem section. We applied two validation strategies, holdout, and stratified 

K-Fold with 𝐾 = 10. RUS and SMOTE balancing techniques are applied over each k-folds 

training sets, isolated synthetic disturbance validation folds or decimation data. The results 

are compared in ℝ2 bounded space defined by accuracy (8.7) and 𝐹1-Score (8.9) metrics. The 

first metric indicates an overall accuracy of the positives, however in an unbalanced sample a 

classifier can show a very high accuracy without detecting some classes, so the classifier’s will 

also be unbalanced. For this reason, we use the harmonic mean between precision and recall 

(8.8) called 𝐹𝛽-Score or 𝐹1. Where 𝛽 is a weight indicating the importance, we give to precision 

versus recall, in our case the same (𝛽 = 1). The quantitative results are shown in Table 8.1 

and Table 8.2. The union of these two metrics forms a plane ℝ2 of precision in which the ideal 

classifier would be at coordinates (1,1). 

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 (8.7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
;  𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (8.8) 
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𝐹𝛽 − 𝑆𝑐𝑜𝑟𝑒 = (1 + 𝛽
2) ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8.9) 

Where 𝑇𝑝, 𝑇𝑛, 𝐹𝑝 and 𝐹𝑛 mean the set of combinations between true-false and positive 

or negative cases in the confusion matrix. In the confusion matrix, the first class is defined by 

the minority class A, fishing ships.  

Table 8.1. Accuracy results (Holdout|K-Fold). 

Feature type Model  Without B. [%] RUS [%] SMOTE [%] WCE [%] 

Static: Φ1 
Tree 71.07|83.27 52.30|82.25 76.80|79.03 -------- 

CNN 75.85|84.90 75.34|79.74 73.73|79.52 79.80|74.45 

Kinematic: Φ2 
LSTM 81.08|83.75 69.79|80.20 78.94|83.65 81,38|77.12 

CNN_T 83.16|85.26 81.34|89.53 82.31|80.96 80.23|80.22 

Table 8.1 shows the results of the accuracy of the four classification models against the 

different balancing techniques used. On the other hand, the results obtained in the F-score 

are shown in Table 8.2. 

Table 8.2. F1-Score (Holdout|K-Fold) 

Feature type Model  Without B. [%] RUS [%] SMOTE [%] WCE [%] 

Static: Φ1 
Tree 66.59|72.71 35.71|72.48 70.30|74.19 -------- 

CNN 74.62|73.97 64.85|78.25 74.76|77.75 68.86|75.50 

Kinematic: Φ2 
LSTM -------|68.70 71.68|80.84 69.72|68.71 73.48|74.78 

CNN_T 67.20|72.50 60.34|89.40 63.87|79.20 70.42|78.71 

Table 8.2 shows a strong bias for LSTM in holdout validation strategy when it is does not 

apply a balancing technique. This model classifies the validation set as the majority class, 

obtaining a similar accuracy as the percentage data of the majority class, but a null 𝐹1- Score. 

The classifier with the highest accuracy in holdout and k-fold is CNN_T with unbalanced data 

and RUS respectively. For the 𝐹1- Score case the static CNN and CNN_T acquire the best results 

with a RUS. While in the case of holdout the classifier with the best accuracy and 𝐹1- Score 

relationship is the LSTM with WCE, these results are improved when K-Fold is used. 

Specifically, CNN_T with RUS shows significantly higher values than the other classifiers. WCE 

improves 𝐹1- Score in 83% of cases and improves the accuracy of CNN and LSTM using Holdout 

validation. In the case of the tree classification, WCE has not been applied, so in Table 8.1 and 

Table 8.2, the results are shown with dashed lines. Using the accuracy and F1-Score variables 

shown in Table 8.1 and Table 8.2 as variables of an ℝ2 space, it is obtain Fig. 8.5. This figure 

shows the distribution of the different classifiers whit holdout and K-Fold validation strategies 

on the evaluation space-plane. In Fig. 8.5, 90% of the classifiers appear clustered around 70-

90% accuracy and 65-90 𝐹1- Score, while 3 of the classifiers are positioned very far apart due 
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to lack of accuracy, 𝐹1- Score or both. To differentiate between them, we zoom into the region 

of maximum classifier concentration. 

 

Fig. 8.5. Classifiers with different balancing techniques and validation strategies. Solid markers Holdout, 

solid edge without face color K-Fold. Edge and marker face color, {red, green, blue, cyan} = {Tree, CNN, 

LSTM and CNN Time}. Markers {circle, square, triangle and diamond} = {unbalanced, RUS, SMOTE, 

WCE}. 

8.5. Conclusions  

This paper has presented two main approaches to automatically classify fishing ships 

from other vessels using trajectory information. The two approaches used are classical and 

DL. In addition, in the DL approach, two of the main trends in the literature, LSTM, and CNN 

neural networks, have been compared using panel and flattened data structure. The classifier 

clustering around the same region of the comparison plane suggests a similarity of the 

evaluation methods. However, applying K-Fold eliminates outliers in the classifiers, clustering 

the results to a greater extent than holdout on the comparison plane. The performance of the 

DL approximations is superior to the classification tree approximations. It has been shown that 

in the case of the CNN architecture the influence of the bias in the data is not as pronounced 

as in the LSTM, which is completely biased in classification. However, applying balancing 

techniques produces a considerable improvement, achieving the best accuracy-F-Score ratio 

applying WCE. 

Zoom 
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 The successful results of CNN with both static and sequential kinematic data structures 

suggest that the convolutional layers are capable to extract hidden features from the 

trajectories. Furthermore, applying RUS in the training process has shown good results with 

CNNs, which may be a consequence of the decimation of large numbers of segments from the 

same complete trajectories. WCE has been shown to improve or at least equal results in the 

case of holdout validation, but with K-Fold cross-validation other strategies have been shown 

to be superior in the face of bias. For an ideal classifier, the evaluation with Holdout and K-

fold should be similar. However, as seen in Table 8.1 and Table 8.2 a high variability of results 

is observed due to random under-sampling with RUS method. Even so, the proposed WCE 

method, with the CNN_ T classifier has a 1% change between the two evaluation methods, so 

it is considered more stable than the rest of the proposed methods and classifiers. Although 

the general results show a superior performance of CNNs, the ability of LSTMs to work 

dynamically on non-fixed sequences of data or the possibility to deepen and densify the 

presented structure or even hybridize it with convolutional layers shows great opportunities 

for problems such as this work. Finally, this paper provides a new approach to the vessel 

classification. 
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Conclusions and future research   

his section presents a summary and conclusions of the works detailed throughout the 

different chapters of the thesis. In addition, a number of future lines of work are provided 

to continue the practical examples proposed at the end of each chapter. 

It's important to note that the main contributions of this thesis are concentrated in 

chapters 4, 6, 7, and 8. Chapters 1, 2,3 and 5 are used as an introduction of the principal 

contributions. For each contribution, the error is evaluated and novel strategies and methods 

to mitigate it are provided.  

Part I: Drones, Navigation and Vision-based precision landing 

• Chapter 1: Overview on drones 

Drones are just one branch of the UAV cluster, where the drive for new business 

opportunities is catapulting the technologies that comprise them. UAS are complex 

ecosystems composed of a variety of subsystems that perform specific tasks and are 

underpinned by powerful physical and mathematical foundations. The development of new 

applications requires a broad approach to their operation and internal communication 

mechanisms. In order to advance the development of safe applications that comply with 

current regulations, hyper-realistic simulation in SITL and HITL are shown to be powerful 

development tools. 

• Chapter 2: UAS INS/GNSS Navigation 

Navigation systems are based on the theory of estimation based on state space models 

and Kalman filter. Although the concept of navigation is broad and there are different 

navigation problems, the most widely used in the UAS field are INS/GNSS navigation systems. 

The configuration of these systems is not easy. Not only do they depend on the parameters 

provided by the sensor manufacturers, but the definition of the measurement models, 

prediction model, and process noise is critical. Mastering the operations for which a specific 

navigation system is intended is essential for fine-tuning these systems. This opens up new 

opportunities such as proposed in the paper "Tuning process noise in INS/GNSS fusion for 

drone navigation based on evolutionary algorithms" recently accepted at the 18th 

International Conference on Soft Computing Models in Industrial and Environmental 

Applications, SOCO 2023. In addition, although the vector structure of these systems allows 

T 



 

-214- 

 

to increase their state vector, the influence of other states can be a great challenge for 

researchers and engineers. 

• Chapter 3: Machine Vision Systems of UAS 

Computer vision applied to UAS covers a wide range of fields. A clear example is vision-based 

navigation systems, image stabilization, or object tracking. These systems are multidisciplinary 

because they require in-depth knowledge of navigation theories, physics of motion, and 

computer vision systems. Although the current fashion in vision systems is to focus on deep 

learning, it is important to consider the classical approaches based on physical camera models, 

since they allow traceability of results, unlike the black box models of ANNs. Both approaches 

are complementary and can exploit each other's potential to solve specific problems. Among 

the various vision problems presented in the introduction, physical modeling and camera 

calibration, image stabilization, and object detection and tracking were highlighted. The 

problems of object detection and tracking in images will continue to be studied as a 

continuation and future work. These problems present interesting challenges where classical 

approaches are surpassed by systems capable of maintaining short to long term temporal 

trends or understanding context. However, it is important to remain cautious and continue 

their study beyond the demonstration of results. 

• Chapter 4: Error Reduction in Vision-Based Multirotor Landing System 

Although the chapter itself has a section on specific conclusions, here we focus on key 

points. First, it is important to emphasize how contextual information helps navigation 

systems improve accuracy. Vision systems are shown to be powerful sources of information 

that, in order to be used efficiently, require a process of adaptation so that the results at the 

output of the preprocessing are consistent with the rest of the subsystems in which it is 

desired to integrate. On the other hand, the error sources of the sensors and their integrations 

are propagated throughout the ecosystem, so a study of their behavior is essential for proper 

operation. The propagation of these errors, together with a high sampling frequency, 

produces an unwanted spin effect in the navigation system, which can be mitigated by 

rigorous study of the same and new landing strategies without the need to modify the flight 

controller. In future work, the systematic error of the vision system can be corrected by 

estimating the system bias, including the application of novel estimation strategies such as 

mismatch estimation. Another interesting area of study is the problem of landing surface 

detection and tracking in the face of resolution changes caused by altitude variations or 

environmental conditions. In addition, modeling the error of the vision system may help in 

future research on minimum time search systems applied to precision and emergency 

landings. 
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Part II: Deep Learning, forecasting, and filtering. 

• Chapter 5: Artificial Neural Networks. 

Artificial Neural Networks is an amazing field of study with exciting advances at the present 

time. This is continually expanding its application domain and major advances are being made 

on a daily basis. However, this poses an enormous challenge for researchers who wish to keep 

up with the state of the art. The selection of sections that make up this chapter has been 

carefully made to strike a balance between fundamentals and state of the art in a generalized 

manner. One of the conclusions we can draw from this chapter is that not always the 

architecture that is fashionable at the moment is the best solution to all problems. A constant 

critical vision is required without being blinded by the enthusiasm of the results. It is very 

important to keep an open mind in this field since approaches or ideas with modest results 

can be revolutionary in different contexts. There is undoubtedly much work to be done, for 

example, unveiling the internal dynamics of black box models can open up their application 

to critical systems. 

• Chapter 6: An approach to forecasting and filtering noise in dynamic systems using 

LSTM architectures. 

Understanding the prediction and filtering processes of Kalman filters along with their 

limitations is part of this work. This motivates the application of neural networks, specifically 

the LSTM models of the RNN. This is done based on the hypothesis that a LSTM is able to 

extract the temporal behavior of the data being able to model a dynamic system and the 

filtering of measurements. The results provided by the regression architecture, which we have 

named “neuro-estimator”, presents results comparable to the Kalman filter. However, for a 

linear system, when the filter reaches its steady state, the Kalman filter shows its potential as 

an optimal estimator. The behavior of the neuro-estimator is shown to be that of a filter, since 

it reduces the error of the measurements and is able to estimate future instants with past 

measurements or estimates.  The initialization of these systems by overlapping sliding 

windows allows the networks to initialize their hidden states while maintaining their bounded 

space. When few prior measurements are available and measurements are lost, the Kalman 

system is susceptible to decoupling, while the results of the neuro-estimator remain bounded. 

This work shows the potential of networks in the prediction and filtering process, thus 

motivating the study on nonlinear systems where the estimation theory needs to be 

approximated. 

• Chapter 7: Forecasting nonlinear systems with LSTM: Analysis and comparison with 

EKF. 
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Extending and relating the regression formulation to the forecasting and filtering 

formulation is one of the contributions of this work. Exploring the potential of neuro-

estimators requires a strict definition of the estimation and filtering problem from the 

different approaches. A rigorous definition of neural architectures, the performance of hidden 

states and their comparison with Kalman filters is highlighted in this work. One of the main 

conclusions of this work focuses on the flexibility of the neuro-estimator models with respect 

to Kalman filters. When the system is purely linear, Kalman is optimal in the long run, but 

when the system starts to become nonlinear, the EKF is outperformed by the neuro-

estimators, especially in terms of measurement loss. In addition, it is proposed to evaluate 

how robust the systems are when the measurements correspond to different models for 

which they have been designed. The error model of the Kalman filter gives it a proper flexibility 

when estimating slightly different dynamics than those for which it was designed, but the 

LSTMs are able to understand the trends of the measurements. This evaluation shows that 

Kalman filters quickly leave the filtering region, while neuro-estimators are able to continue 

filtering measurements even with large model variations. This work, together with the 

previous one, opens up a number of possible research. Among them is to go deeper into the 

Cramér-Rao quantile, or to evaluate its inference over time for possible embedded 

applications. 

• Chapter 8: LSTM vs CNN in real Ship trajectory classification 

This chapter is the result of exploring the potential of neural networks in the face of 

different machine learning challenges. The difference between the implementation of a 

regression problem and a classification problem is very small. Basically, the difference lies in 

the choice of the output layer and the learning cost function. Exploring the difficulties with 

real data is the purpose of this paper. In this work, we address the learning problem with 

highly imbalanced data sets. This motivates the proposal to compare different data balancing 

strategies with a strategy focused on learning balancing. In addition, two of the most widely 

used validation methods, Holdout and K-Fold, are applied to two of the predominant 

architectures in the literature, LSTM and CNN. The result of all these strategies and 

methodologies is a set of 32 classifiers, compactly presented in a table and a figure. The 

presentation of the results using two metrics provides an information-rich two-dimensional 

solution space. Among the most salient and duly extended conclusions in this chapter is that 

CNNs are less sensitive to information bias than LSTMs. On the other hand, the application of 

the proposed cross-entropy weighting in the learning process has shown significant results. 

Note that in all cases, the goal is to minimize the error defined by a cost function. 

The next step in this line of work may be multiple classification. Moreover, the application 

on the UAS domain is immediate, bringing new opportunities in the generalization of a safety 
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flying space. On the other hand, the SoftMax output layer provides the probability of 

belonging to the different classes, this quality taken to the field of tracking with Interacting 

Multiple Model (IMM) filters can be of great interest where the model selection can be 

defined by the classification of the measurements. 

In summary, error reduction is the common framework of all the researchers in this 

thesis, where the definition of error and how to deal with it is the difference between all of 

them. 

Thesis Objectives Conclusions  

The principal objectives of this thesis have been accomplished in an outstanding manner, 

not only with the publications that are part of the thesis, but also with those that are in 

production, pending publication, under review, or under study. In order to justify this 

conclusion, the following is a detailed description of where each of the principal and 

secondary objectives have been developed: 

1) Define and prototype data fusion-based navigation systems: Chapter 2 focuses on 

fusion-based navigation systems. This knowledge is applied in Contribution three. In 

addition, the fine tuning of navigation systems using evolutionary and data analysis 

strategies is addressed in the proof-of-concept project, in the work under review 

“Tuning process noise in INS/GNSS fusion for drone navigation based on evolutionary 

algorithms” and in the book currently in production. 

2) Define and prototype video analysis subsystems: During chapter 3, vision systems are 

explored, and the study culminates in chapter 4. In addition, in the book that is 

currently in production9., an example of object tracking with a vision-based drone and 

another of obstacle avoidance with monocular vision using occupancy maps are 

developed. On the other hand, it participates in the HADA project which focuses on 

the development of new automatic video segmentation systems. In parallel, it has 

supervised several works of national and international students related to computer 

vision systems.  

 

9 https://giaa.uc3m.es/giaa_drone_lab/ 
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3) Design and prototype interpretation/reasoning subsystems: The systems in charge of 

interpreting and reasoning are intelligent systems that are shown in all the work 

carried out during the thesis. Specifically in Chapters 4, 5, 7 and 8. 

4) Design and prototype deep learning methodologies for estimation and filtering: Two 

of the three reference articles of this thesis, focus on this objective by providing new 

approaches to the state of the art of estimation and filtering systems. 

Related to secondary objectives: 

I. Study indoor-outdoor UAV navigation techniques and mission planning: Chapter 1, 

2 and 3. 

II. To review in the literature problems associated with modeling dynamic systems with 

deep learning approaches. Part II. 

III. To study estimation and filtering techniques. Chapter 2 

IV. Explore advanced classification techniques with real data. Conference paper and 

extension journal paper in production, Chapter 8. 

V. Explore hyper-realistic Software/Hardware In The Loop (SITL/HITL) simulation 

environments for experimentation with UAVs. Part I, proof of concept project 

SIMBAT, Book. 

VI. Define models and systems that allow extracting information from the flight context. 

Chapter 4, 6 and 7 

VII. To study sensor fusion and new deep learning architectures. Chapter 2, 6 and 7. 

Thanks to the rigorous scientific methodology, the objectives of the thesis have been 

achieved and a small contribution in the field of support technologies for drone operations 

has been made. 
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