Skip to main content

Quantum-Hybrid Neural Vector Quantization – A Mathematical Approach

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12854))

Included in the following conference series:

Abstract

The paper demonstrates how to realize neural vector quantizers by means of quantum computing approaches. Particularly, we consider self-organizing maps and the neural gas vector quantizer for unsupervised learning as well as generalized learning vector quantization for classification learning. We show how quantum computing concepts can be adopted for these algorithms. The respective mathematical framework is explained in detail.

A. E. is supported by an ESF PhD grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aïmeur, E., Brassard, Gr., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th International Conference on Machine Learning, vol. 518, pp. 1–8 (2007)

    Google Scholar 

  2. Aïmeur, E., Gr. Brassard, and S. Gambs. Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Google Scholar 

  3. Bausch, J.: Recurrent quantum neural networks. In: Advances in Neural Information Processing Systems 33 (NIPS 2020), pp. 1–11. Curran Associates Inc. (2020)

    Google Scholar 

  4. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdisciplinary Rev. Cogn. Sci. 2, 92–111 (2016)

    Article  Google Scholar 

  5. Clopper, C., Pearson, E.S.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, S. 404—413 (1934). https://doi.org/10.1093/biomet/26.4.404

  6. Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117(130501), 1–6 (2016)

    MathSciNet  Google Scholar 

  7. Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: ordering, convergence properties and energy functions. Biol. Cyb. 67(1), 47–55 (1992)

    Article  Google Scholar 

  8. Feynman, R.P.: Quantum mechanical computers. Optics News 11(2), 11–20 (1985)

    Google Scholar 

  9. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  Google Scholar 

  10. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  11. Horn, D., Gottlieb, A.: Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88(1), 1–4 (2002)

    Google Scholar 

  12. Kerenidis, I., Landman, J., Luongo, A., Prakash, A.: q-means: a quantum algorithm for unsupervised machine learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32 (NIPS 2019), pp. 4134–4144. Curran Associates Inc. (2019)

    Google Scholar 

  13. Kohonen, T.: Learning Vector Quantization. Neural Networks 1(Supplement 1), 303 (1988)

    Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Berlin, Heidelberg (1995)

    Google Scholar 

  15. LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Physical Review A (2020)

    Google Scholar 

  16. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: “Neural-gas’’ network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  18. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2(78), 1–20 (2018)

    Google Scholar 

  19. Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: Quantum Hopfield neural network. Phys. Rev. A 98(042308), 1–11 (2018)

    Google Scholar 

  20. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machines for big data classification. Physical Review Letters 113(13050), 1–5 (2014)

    Google Scholar 

  21. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. In: Proceedings of the 1995 Conference, pp. 423–9. MIT Press, Cambridge (1996)

    Google Scholar 

  22. Scherer, W.: Mathematics of Quantum Computing. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12358-1_9

    Book  MATH  Google Scholar 

  23. Schuld, M.: Machine learning in quantum spaces. Nature 567, 179–181 (2019)

    Article  Google Scholar 

  24. Schuld, M.: Quantum machine learning models are kernel methods. arXiv, 2101.11020v1:1–26 (2021)

    Google Scholar 

  25. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(040504), 1–6 (2019)

    Google Scholar 

  26. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. QST, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96424-9_9

  27. Steinwart, I., Christmann, A.: Support Vector Machines. Information Science and Statistics. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  28. Villmann, A., Kaden, M., Saralajew, S., Villmann, T.: probabilistic learning vector quantization with cross-entropy for probabilistic class assignments in classification learning. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 724–735. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_67

  29. Villmann, T.: Quantum-inspired learning vector quantization - basic concepts and beyond. Machine Learning Reports, 14(MLR-02-2020):29–32 (2020). ISSN:1865–3960. www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_02_2020.pdf

  30. Villmann, T., Engelsberger, A., Ravichandran, J., Villmann, A., Kaden, M.: Quantum-inspired learning vector quantizers for prototype-based classification. Neural Comput. Appl., 1–10 (2020). https://doi.org/10.1007/s00521-020-05517-y

  31. Wilson, E.B.: Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927)

    Article  Google Scholar 

  32. Xiao-Yan, Z., Xing-Xing, A., Wen-Jie, L., Fu-Gao, J.: Quantum k-means algorithm based on the minimum distance. J. Chinese Comput. Sci. 38(5), 1059–1062 (2017)

    Google Scholar 

Download references

Acknowledgement

A.E. was supported by a grant of the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villmann, T., Engelsberger, A. (2021). Quantum-Hybrid Neural Vector Quantization – A Mathematical Approach. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12854. Springer, Cham. https://doi.org/10.1007/978-3-030-87986-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87986-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87985-3

  • Online ISBN: 978-3-030-87986-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics