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Abstract. Embedded systems acquire information about the real world
from sensors and process it to make decisions and/or for transmission.
In some situations, the relationship between the data and the decision is
complex and/or the amount of data to transmit is large (e.g. in biolog-
gers). Artificial Neural Networks (ANNs) can efficiently detect patterns
in the input data which makes them suitable for decision making or com-
pression of information for data transmission. However, ANNs require
a substantial amount of energy which reduces the lifetime of battery-
powered devices. Therefore, the use of Spiking Neural Networks can im-
prove such systems by providing a way to efficiently process sensory
data without being too energy-consuming. In this work, we introduce a
low-powered neuron model called Integrate-and-Fire which exploits the
charge and discharge properties of the capacitor. Using parallel and se-
ries RC circuits, we developed a trainable neuron model that can be
expressed in a recurrent form. Finally, we trained its simulation with
an artificially generated dataset of dog postures and implemented it as
hardware that showed promising energetic properties.

Keywords: Remote System · Spiking Neural Networks · Integrate-And-
Fire · Neuromorphic hardware

1 Introduction

Embedded systems acquire physical measurements of the real world from sen-
sors before performing simple computations [13]. From signal acquisition, these
systems often require a transformation of the data to make decisions or compress
the information for transmission. Pattern recognition is an important area in the
emergence of intelligent systems the classification of patterns from sensory in-
formation into categories is necessary to achieve a goal [13]. For example, recent
years have seen the development of new animal-attached devices called Biolog-
gers which are used to monitor the environment, track locations and quantify
the behaviour of certain species [1]. These devices sometimes use transmission
technologies such as Very High Frequency (VHF), acoustic telemetry or, more
recently, orbiting satellites to monitor certain species over a long period. How-
ever, data transmission has a high cost not only financially, but also in terms of
energy. This can be problematic on battery-powered devices. Thus, to optimise
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the lifetime of remote devices, the number of transmissions must be minimized.
As some sensors often run at a high sampling frequency – typically between
10Hz and 1000hz for inertial sensors – the amount of collected data becomes so
large that transmission becomes difficult without any compression or process-
ing. To reduce this amount of data, embedded classifiers can directly process
the sensor values, which significantly reduces the information to transmit. For
example, some methods have been used on biologgers to classify animal activ-
ities from inertial data using machine learning approaches, especially Artificial
Neural Networks [7,11,17]

Artificial Neural Networks (ANNs) are one of the most powerful methods
to solve classification problems. ANNs try to mimic the behaviour of biological
neurons to find complex relationships between input signals and desired out-
puts. However, the computation of these artificial neurons is computationally
expensive due to complex operations that require substantial amounts of energy
or sometimes the use of Graphics Processing Units (GPUs) which makes them
unsuitable for battery-powered devices [15]. Contrary to the abstracted models
used in Deep Learning, Spiking Neural Networks (SNN) are biologically plausible
artificial neuron models [8] that transmit information through discrete electrical
signals called spike trains [8,15]. Spiking neurons integrate synaptic events only
when they occur and fire action potentials when the membrane potential reaches
a defined threshold [8]. This event integration property makes them relatively
easy to simulate and can also be implemented as energy-efficient dedicated hard-
ware (called neuromorphic chips) [2,3,5,6]. To the best of our knowledge, there
is no hardware implementation of SNNs embedded in small remote devices such
as biologgers – mainly because of the size of the current neuromorphic hard-
ware. Therefore, it is necessary to bring new simple and non-energy-consuming
solutions for embedded pattern recognition in remote systems.

In this paper, we present a simple neuron circuit that can be used for basic
pattern recognition in remote systems. This model developed is the Integrate
and Fire (IF) which is easily implementable as energy-efficient hardware with
low-cost components. It integrates successive currents during different amounts
of time – according to the inputs – and exploits the charge and discharge capabil-
ities of capacitors to create a trainable and electronically implementable neuron.
The model has both excitatory and inhibitory synapses and we introduce it as a
recurrent form which makes it suitable for gradient descent optimisations. This
model has been chosen for the simplicity of its hardware implementation and
its simulation. To validate it, we trained three neurons to classify dog postures
using inclination vectors (calculated from inertial data) and implemented them
with electronic components to compare the hardware and its simulation.

2 Results

The capacitor is an electronic passive component that creates a potential dif-
ference between two conductive plates, analogous to the difference of electric
potential of the biological neuron membrane created by ions that flow in and
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out of the cell. Therefore, the capacitor is often used in computational models of
spiking neural networks to reproduce membrane potentials of the biological neu-
rons. Connected in series or parallel with a resistance, the capacitor forms two
circuits with distinct charge and discharge properties respectively called series
and parallel Resistor-Capacitor circuits (RC). Thus, the IF neuron is mainly
composed of passive components: a capacitor that reproduces the membrane
potential and resistors that charge (excite) or discharge (inhibit) the neuron.

2.1 Series RC circuit for excitatory stimulations

Vin

Re

C

Fig. 1. Electric diagram of the series Resistor-Capacitor (RC) circuit. The circuit is
composed of a voltage supplier Vin, a resistor Re that is analog to the excitatory
synapses of the neuron and a capacitor C that reproduces the membrane potential.

The series RC circuit is defined by a successive resistor Re which represents
the excitatory synapses of the biological neuron and a capacitor C which repro-
duces the membrane potential – see Figure 1. Taking into consideration Ohm’s
law (I = V

R ), the fact that the current IRe flowing through the resistor Re is
equal to the current IC flowing through the capacitor C (IRe = IC) and that the
capacitor component theoretically does not produce any resistance, the current
flowing through the circuit depends only on the input voltage Vin and the exci-
tatory resistor Re. Thus, the resistor can be seen as a weight defined as w = 1

Re
which scales the input value Vin such as IRe = wVin. Consequently, the higher
the value of the resistor, the lower the current will flow through the capacitor
and vice versa. Knowing that the total voltage Vin of the circuit is defined as the
sum of the voltages VR and VC respectively across the resistor and the capacitor
(Vin = VR + VC), and the Ohm’s law, we can define the following equation:

Vin = ReIRe + VC

⇔ IRe =
Vin − VC

Re

(1)

Equation 1 shows that the current flows through the excitatory resistor does
not only depend on the input voltage and the resistance but also depends on
the voltage across the capacitor. Therefore, the higher the voltage across the
capacitor, the lower the current flowing in the circuit will be. To describe the
dynamic of the capacitor, the instantaneous rate of voltage change dV

dt of the
capacitor is introduced as the current I flowing through the capacitor divided
by the capacitance C (dV

dt = I
C ). Equation 1 can be reformulated as:

τe
dVC
dt

= Vin − VC (2)
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where τe = ReC is the time constant of the series RC circuit which represents the
number of seconds needed to reach approximately 63.2% of the input voltage Vin
– this value is explained below. For a constant input voltage and a given initial
voltage VC(t) at time t, the capacitor voltage VC(t+∆t) after an amount of time
∆t can be found by integrating equation 2:

VC(t+∆t) = Vin − (Vin − VC(t))e−
∆t
τe (3)

The fact that the time constant τe represents the amount of time to reach a
voltage of approximately 63.2% of the input voltage is due to of the exponential
property of equation 3. Indeed, with an initial voltage of 0, the voltage VC(τe)
reached by the capacitor after a stimulation of τe seconds with an input voltage
Vin is Vin(1− e−1) where 1− e−1 ≈ 0.632.

2.2 Parallel RC circuit for inhibition

C

Vin

Ri

Fig. 2. Electric diagram of the parallel Resistor-Capacitor (RC) circuit controlled by
a N-Channel MOSFET transistor.

Inhibitory neurons represent 10% to 20% of brain population and their ac-
tivity plays a major role in cognition [16]. By producing stop signals of exci-
tation and therefore decreasing the membrane potentials of neurons receiving
inhibitory stimulus, inhibitory neurons can be seen as regulators of firing rates
by maintaining neurons to sub-threshold regimes. In the IF neuron, an inhibitory
connection is implementable with a controlled leakage – similar to the leak of the
leaky-integrate-and-fire neuron (LIF). As Figure 2 shows, the parallel Resistor-
Capacitor (RC) of the LIF neuron circuit can be improved with an N-Channel
MOSFET transistor to control the current flowing out of the capacitor. In the
parallel RC circuit, the current IC flowing through the capacitor is equal to the
current IRi :

IC = IRi =
VC
Ri

(4)

Kirchhoff’s voltage law states that the voltage of the capacitor is equal to the
voltage drop across the resistor Ri – and the transistor – is equivalent to the
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voltage VC of the capacitor:

VRi + VC = 0

⇔ IRiRi = −VC
⇔ ICRi = −VC

(5)

Finally, as mentioned in section 2.1, the instantaneous rate of voltage change
dVC
dt of the capacitor can replace the capacitor’s current term in the previous

equation:

τi
dVC
dt

= −VC (6)

As for the series RC circuit, the time constant τi = RiC is introduced which also
represents the time required by the discharged capacitor to lose approximately
63.2% of its voltage. Thus, the previous equation can be integrated to obtain
the capacitor’s voltage VC(t+∆t) after a stimulation time ∆t:

VC(t+∆t) = VC(t)e
−∆t
τi (7)

2.3 Integrate-and-Fire neuron

Biological neurons receive several stimuli (excitatory and inhibitory) at their
dendrites and having multiple inputs is a necessary condition to allow the IF
model to compute separations of multi-dimensional spaces. Both excitatory and
inhibitory can be combined to obtain several inputs. In some specific situations,
no excitation is provided by inputs and, for this reason, a bias connection –
i.e. a connection always set to 1, as in rate-based models – is introduced to
provide a constant stimulation. This allows a permanent charge of the capacitor
and the neuron can become excited even if no pattern is provided. In such
configuration, the total resistance of parallel resistors is not a simple sum of all
the resistances but the inverse of the total resistance is the sum of all inverted
resistances ( 1

Rtotal
=
∑n

i
1
Ri

). For this reason, computation of the IF model can
become complex due to the differences of input stimulation times. For a lack
of simplicity, inputs are stimulated one by one and as the capacitor must be
charged to allow inhibition of the membrane potential inhibitory stimulations
must follow excitatory ones. Therefore, the inference of the IF model becomes
sequential and can be represented under a recurrent form where synapses are
stimulated independently.

2.4 Integrate-and-Fire neuron as a recurrent model

Sequential data are sequences with chronological order. In the deep learning field,
this type of data is processed using recurrent units which are feedforward neural
networks augmented with the inclusion of internal states of units, introducing a
time dimension to the model [10]. At each step t of the inference of a recurrent
neural network, the states at t−1 of the neurons are integrated into the compu-
tation. Intrinsically, the integration of stimulus in the IF model depends on the
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Fig. 3. Recurrent representation of the inference of the integrate and fire model. Green
states represent excitatory stimulations and red states represent inhibition.

capacitor voltage – see equations 3 and 7 – and can be expressed as a recurrent
form where each step is a precise synapse stimulation. As presented in Figure
3, each step represents the stimulation of a synapse (excitatory ones first) and
the hidden state is the potential of the neuron at time t− 1 with an initial volt-
age of 0 – i.e. fully discharged capacitor. Thus, the final hidden state represents
the membrane potential of the inferred neuron that can be compared with the
voltage threshold to determine if the unit must release a spike or not – this step
is achieved by the micro-controller controlling the circuit. The IF model defined
as a recurrent form is a continuous and differentiable function which makes it
suitable for the gradient descent algorithm. Therefore, some particular set of
resistance values makes the IF neuron reach sub-threshold or super-threshold
regimes for specific input and this behavior is exploited to achieve classification
of patterns. To find the right combinations of resistances, optimisation algo-
rithms can be used such as the well known gradient descent [9]. The loss of the
model can be defined as the Mean Squared Error (MSE) between output mem-
brane potentials and target potentials and the gradient used in the algorithm is
computed with respect to resistance values.

2.5 Dataset, network architecture and training

To demonstrate our model, we generated an artificial dataset of dog postures
and trained a network of three IF neuron on it. It has been generated by using
the average inclination vector for each class – i.e. we determined the average tilt
of the device for each class – and created many samples by augmenting these
vectors with random noise. The tilt of the device can be computed using both
accelerometer and gyroscope data from inertial sensors [14] which gives a three-
dimension vector (pitch, roll and yaw). In this work, three distinct classes of dog
postures have been used: stand, sit and lay on the side. The average tilt vectors
of each class can be determined by only the pitch and roll axis as following:(
0 0
)

for stand,
(
0 0.25

)
for sit and

(
0.5 0

)
for lying – the maximum value for

each axis is 1. The yaw axis is ignored because it corresponds to the horizontal
angle of the device and is irrelevant in this case. From these average tilt vectors,
we can generate new input samples with a normally distributed random noise
ε ∼ N (0, 0.042).

The model has been implemented as a 3 neuron network – one per class
– with both excitatory and inhibitory connections for every input to allow the
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model to have both types of connection and be flexible enough to achieve correct
separations of the input space. The chosen capacitance value for the capacitors
is 1e−6 which is small enough to have a low charging time, but high enough
to have fine control of the charge, to limit noise and voltage dissipation when
implemented as hardware. The maximum stimulation time per input is defined
as 50 milliseconds – e.g. an input of value 1.0 will stimulate the corresponding
synapse during 50 milliseconds and an input of 0.5 during 25 milliseconds. Fi-
nally, the output class is determined by the unit with the highest membrane
potential using an argmax operator and the model has been trained using the
gradient descent algorithm with a learning rate α = 5e−4.

During the training, the algorithm did not converge properly due to the
scale of resistance values (between 103 and 106) which produces exceedingly
large gradients. As the resistances are large and computed into gradients, the
scale of gradients also becomes large. This very well known problem is known
as exploding gradient in machine learning [12]. Many solutions exist to solve the
exploding gradient problem such as gradient clipping [12]. However, the gradient
clipping method makes gradients too small to converge in an acceptable amount
of time – again due to the large scale of resistance values in the model. Another
solution has been found to solve the issue: reduce the scale of resistances (between
1−3 and 1) and compensate with the capacitance value C of the unit. As the
charge and discharge are driven by RC time constants τ = RC, decreasing the
resistance R can be balanced by increasing the capacitance C. Thus, by scaling
down the resistance value, calculated gradients become small enough to obtain
stable learning.

2.6 Weights selection and hardware validation

Table 1. Resistance values (weights) of stand, lie and sit units. Excit. is for Excitatory
and Inhib. is for Inhibitory. All values are given in kilohms (kΩ).

Output neuron Excit. x Excit. y Excit. bias Inhib. x Inhib. y Inhib. bias

Stand 20.33 101.47 1.53 9.77 6.65 1000.00
Lie 7.61 1000.00 1000.00 1000.00 22.44 1000.00
Sit 1000.00 5.42 1000.00 19.57 1000.00 1000.00

Table 1 presents the weights of the model after training. In the IF neuron, a
low resistance gives high weight to the input because it lets more current flow in
or out of the capacitor and thus has a high contribution in its charge or discharge.
Therefore, the contribution of very high resistances is insignificant and can be
ignored. For this reason, all resistance values that converged to the maximum
resistance (1000kΩ) can be ignored in the trained model presented in Table 1
and consequently only 9 synapses remain out of the 18.

After a weight selection (i.e. removing weights that converged to the maxi-
mum value), the three IF units for dog posture classification have been imple-
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Fig. 4. Diagram of the experimental setup. The micro-controller collects the raw ac-
celerometry and gyroscopic data from the inertial sensor, pre-process it to obtain tilt
vectors that are sent to a network of IF neuron implemented as hardware. The class
inferred by the network can be read by the micro-controller before being sent to the
serial display (or a transmitter in real situations of remote systems).

mented as hardware to validate the training. The microcontroller used in this
work is an ATmega328P on an Arduino Uno to ease its programming. An inertial
unit (MPU-6050) is used to obtain accelerometry and gyroscopic data. Therefore
the accelerometry data is used by the microcontroller to determine the gravity
vector and the gyroscope data is integrated and combined with the previously
computed vector to obtain the precise orientation of the device. Then, the micro-
controller stimulates the synapses one by one during variable times depending on
the pitch and roll of the device. The synapses charge (excitatory) then discharge
(inhibitory) the capacitors using the digital pins. Finally, the microcontroller
can read the membrane potential of each neuron by reading the voltage of the
capacitors. See Figure 4 for a diagram of the setup.

The model has been validated by sending all the possible inputs to the sim-
ulation and the hardware and comparing their responses. To achieve this, the
hardware has not been tested using the inertial sensor but stimulated with the
same tilt vectors as used in the simulation. Therefore, a mapping of the units’
responses for both the simulation and the hardware has been generated – see
Figure 5. It appears that the behaviour of the electronic implementation is close
to the simulation and the slight variations in voltage are due to noise and round-
ing of resistance values – e.g. a resistance of 3230Ω in the simulation is rounded
to 3000Ω in the electronic implementation. Once the hardware is implemented
and the model accuracy is validated, the power consumption of the device can
be measured and compared to the use of simulated artificial neural networks.

2.7 Power consumption analysis

To measure the power efficiency of the hardware, the current consumed by the de-
vice (i.e. the micro-controller, inertial sensors and IF circuits together) has been
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Fig. 5. Comparison of neural responses between simulated and electronic IF neurons.
Each simulated unit (i.e. Stand, Sit and Lie) is compared with its corresponding elec-
tronic implementation by measuring the capacitor voltage for all possible inputs (pitch
and roll). The hardware implementation of the model is very close to the simulation
behavior and only varies due to electric noise and rounded resistance values.

Table 2. Comparison of average power consumptions of the micro-controller only, a Lo-
gistic Regression model running on the micro-controller and the micro-controller with
the designed IF neurons. The values are given with and without the micro-controller
power consumption to ease understanding.

Setup Average power consumption Average power consumption
with the micro-controller without the micro-controller

(in Watt) (in Watt)

Micro-controller only 0.2155 -

Logistic Regression 0.2265 0.011
on the micro-controller

Micro-controller + IF circuits 0.218 0.0025
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recorded while performing real-time classification of dog postures. The measures
were done using a power analyzer and power supply (Otii ARC) and performed
on the micro-controller running alone, on the micro-controller classifying pos-
tures with the IF neurons implemented as hardware and on the micro-controller
classifying postures with logistic regression. The following average power con-
sumptions have been determined and written in Table 2. Most of the power
consumed by the device is due to the micro-controller, but the results show
that the use of the IF circuit for embedded classification consumes less than a
simple logistic regression performed on the micro-controller. If the power con-
sumption of the micro-controller is ignored, the implemented hardware consumes
4.4 times less than the logistic regression method, which is significant. Therefore,
the designed circuit is faithful to its simulation and able to recognize patterns
in presented inputs with less energy demand than simulated ANNs.

3 Discussion

In this work, the Integrate-and-Fire model has been simulated and trained to
achieve dog posture classification and showed promising results with relatively
low energy expenditure when implemented with electronic components compared
to the use of embedded logistic regression. The designed model implemented
as hardware can be integrated into remote systems for embedded and energy-
efficient pattern recognition, reducing the amount of data to transmit and thus
reducing the number of transmissions, leading to low energy consumption. The
simulation of the IF neuron is faithful to the electronic implementation which
makes it possible to train using the gradient descent algorithm. Once trained,
the resistances that do not contribute to the pattern detection – i.e. those that
converge to the highest value – are removed from the final circuit and the remain-
ing are implemented with the final hardware. This hardware implementation has
been done with only a few passive components (resistors, diodes and capacitors)
and one active component (N-MOSFET transistors) which all have low costs.
It has been implemented using prototyping boards but can be miniaturised on
Printed Circuit Boards (PCBs) with Surface Mount Technology (SMT) that pro-
vides miniature components to produce a version of the hardware small enough
to be integrated into small devices.

In terms of power, the measured consumptions are almost identical due to the
power demand of the micro-controller. However, the lifetime of battery-powered
devices is very important and no aspect of the entire device should be overlooked,
including the power usage of data processing. Therefore, by disregarding con-
sumption of the micro-controller, the IF model consumes four times less when
it is electronically implemented than a trained logistic regression running on the
micro-controller. With this setup, the battery life-time is improved by 3.75%,
but it can be enhanced even more by using a low-powered micro-controller.
Moreover, an implementation of the model with spike trains should significantly
reduce energy consumption. Therefore, it would be wise to rethink the way of
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communicating features given to the model using spike trains to further reduce
the power consumption of the circuit.

One main issue of the IF approach is the time dependence of the inference.
As the stimulation time of synapses varies according to the input values, the
inference time is also variable. Thus, the higher the inputs, the longer the infer-
ence time will be. This maximum inference time can be calculated by summing
the maximum stimulation time of inputs or can be compensated by varying
the capacitance value of units. Another issue of the IF model is that the leak
channel, specific to the LIF neuron, has been removed and the time dimension
disappeared. This model is thus no longer able to process animal dynamics to
infer its activity and only the posture – i.e. static patterns – can be classified.
To achieve this task, the LIF model should be used which involves transforming
features into spike trains. However, due to the non-continuity of spike trains
in spiking neural networks, algorithms based on differentiation – such as the
gradient descent algorithm used in this work – cannot be applied for training.

4 Future work

In future works, the time capabilities of the Leaky Integrate-and-Fire model must
be exploited to classify time-series patterns using spike trains. As the gradient
descent algorithm is not suitable to train such models, other training algorithms
must be explored to find new ways to classify patterns or compress sensory
data into a spike code generated by a spiking neural network. Recent advances
in neurosciences permitted the development of unsupervised learning algorithms
such as Spike Time Dependent Plasticity (STDP) which is a biologically plausible
Hebbian learning rule that adjusts the strength of connections between neurons
in the brain [2,4,8]. Based on the timing of pre and post-synaptic spikes, STDP
allows neurons to learn time-dependent correlations in spike trains and thus
a relevant representation of input features [2,4,8]. Therefore, such algorithms
may be able to find correlations between some sensory inputs and achieve a
compression of recorded data.
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