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Abstract. We initiate the study of the verification power of AfAs as
part of Arthur-Merlin (AM) proof systems. We show that every unary
language is verified by a real-valued AfA verifier. Then, we focus on the
verifiers restricted to have only integer-valued or rational-valued tran-
sitions. We observe that rational-valued verifiers can be simulated by
integer-valued verifiers, and, their protocols can be simulated in non-
deterministic polynomial time. We show that this bound tight by pre-
senting an AfA verifier for NP-complete problem SUBSETSUM. We also
show that AfAs can verify certain non-affine and non-stochastic unary
languages.

Keywords: affine automata · interactive proof systems · Arthur-Merlin
games · unary languages · subset-sum problem · NP.

1 Introduction

Affine finite automata (AfAs) are quantum-like generalization of probabilistic fi-
nite automata (PFAs) mimicking quantum interference and having the capability
of “making measurement” based on ℓ1-norm (called weighting). The computa-
tion of an AfA is linear, but the weighting operators may be non-linear.

AfAs was formally defined in [7], and it was shown that they are more
powerful than PFAs and quantum finite automata (QFAs) in bounded-error
and unbounded-error settings, but their nondeterministic version is equivalent
to nondeterministic QFAs. Since then, AfAs and their different generalizations
(e.g., OBDDs and using counters) have been investigated in a series of work
[28,14,22,17,29,15,16].

In this paper, we initiate the study of the verification power of AfAs as part
of Arthur-Merlin (AM) proof systems. We show that every unary language is
verified by a real-valued AfA verifier. Then, we focus on the verifiers restricted to
have only integer-valued or rational-valued transitions. We observe that rational-
valued verifiers can be simulated by integer-valued verifiers, and, their protocols
can be simulated in nondeterministic polynomial time. We show that this bound
tight by presenting an AfA verifier for NP-complete problem SUBSETSUM. We also
show that AfAs can verify certain non-affine and non-stochastic unary languages.
In our protocols, we use similar verification strategies and encoding techniques
previously used for two-way QFAs in [33,30,26].

http://arxiv.org/abs/2104.11192v1
https://qworld.net
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In the rest of this section, we provide a quick literature review related to
our results. We give the notation and definitions in Section 2, and we review
some basic computation techniques by integer-valued affine states and operators
used in our proofs in Section 3. We present our main result on unary languages
in Section 4, and our results on rational- or integer-valued AfAs are given in
Section 5. We close the paper by summarizing our results with previously known
related results based on complexity classes in Section 6.

1.1 The computational power of AfAs compared to PFAs and QFAs

We review the previously known results comparing AfAs with PFAs and QFAs.

Bounded-error PFAs and QFAs recognize all and only regular languages
[24,20,21,2]. But, bounded-error AfAs can recognize some nonregular languages
such as UPAL = {anbn | n > 0} and PAL = {w ∈ {a, b}∗ | w = wr} [7]. More-
over, AfAs can be very succinct compared to PFAs and QFAs [28,29], i.e., they
can recognize a family of regular languages with bounded-error by using only
two states, but the number of states of bounded-error PFAs or QFAs cannot be
bounded for this family.

The class of languages recognized by PFAs with cutpoints is called stochastic
languages [24]. QFAs recognize all and only stochastic languages with cutpoints
[31,34]. Similar to bounded-error case, AfAs are more powerful than both, and
they can recognize some non-stochastic languages [7]. On the other hand, in the
nondeterministic setting (when the cutpoint is fixed to zero), QFAs and AfAs
have the same computational power [7].

Regarding the limitations on the computational power of AfAs, we know that
[27,32,29,16]:

– (one-sided or two-sided) bounded-error rational-valued and integer-valued
AfAs have the same computational power;

– one-sided bounded-error rational-valued AfAs cannot recognize any nonreg-
ular unary language;

– algebraic-valued AfAs cannot recognize certain non-stochastic unary lan-
guages in L even with unbounded-error (with cutpoints); and,

– the class of languages recognized by bounded-error rational-valued AfAs is
a proper subset of L.

One open problem is whether bounded-error rational-valued AfAs can rec-
ognize any nonregular unary language, and, one untouched direction is the com-
putational capabilities of real-valued AfAs.

1.2 The verification power of PFAs and QFAs

Interactive proof systems (IPSs) [12] with PFA verifiers [9] can verify some non-
regular languages such as TWIN = {wcw | w ∈ {a, b}∗} with bounded error. The
same result is valid for IPS with QFA verifiers communicating with the prover
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classically.4 IPSs are also called private-coin systems since a verifier can hide its
probabilistic decisions from the prover. In this way, the verifier can use stronger
verification strategies as a part of the protocol (between the verifier and prover)
since the prover may not guess the exact configuration of the verifier, and so it
may not easily mislead the verifier when it is not honest.

When the computation of a verifier is fully seen by the prover, the system is
called public-coin or AM system [3,5]. AM system with PFA verifiers [6] cannot
recognize any nonregular languages with bounded error, and we do not know
whether AM systems with QFA verifiers can recognize any nonregular language
with bounded-error.

When considering the known results for AfAs (Section 1.1), there are two
natural questions about the verification power of AM systems with rational-
valued AfA verifiers:

1. whether we can go beyond L and, if so, how far, and,
2. whether some nonregular unary languages can be verified or not.

We answer both questions positively, and we obtain NP as the tight upper bound
for non-unary languages.

1.3 Two-way PFAs and QFAs

As mentioned above, AfAs can recognize nonregular languages UPAL and PAL

with bounded-error without interacting with any prover. Similar results can be
obtained for PFAs and QFAs when reading the input many times by using a
two-way head [10,1]. We review basic facts about bounded-error two-way PFAs
and QFAs to have a better picture for our results on AfAs.

The language UPAL is recognized by bounded-error two-way QFAs [1] in poly-
nomial expected time and as well as by two-way PFAs [10] but only in exponential
expected time [13].

The language PAL can be recognized by bounded-error two-way QFAs in ex-
ponential expected time [1], but it cannot be recognized in polynomial expected
time even if two-way QFAs augmented with logarithmic amount of space [25].
On the other hand, AM systems with two-way PFA verifiers cannot verify PAL

with bounded error even if augmented with logarithmic space [9]. Besides, two-
way bounded-error PFAs can recognize only regular languages in polynomial
expected time [8], and it is open whether AM systems with two-way PFAs can
verify any nonregular languages in polynomial time.

Regarding unary languages, bounded-error two-way PFAs cannot recognize
any nonregular language [18], and it is open whether any unary nonregular lan-
guage is verified by a bounded-error AM system with two-way PFA verifier [6]. It
is also open whether bounded-error two-way QFAs can recognize any nonregular
unary language.

4 When the proof system is fully quantum, we know little [23]: the restricted QFA
model defined in [20] can verify only regular languages with bounded-error.
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The class of languages verified by AM systems with two-way rational-valued
PFA verifiers is a proper subset of P [5]. Therefore, the verification power of
AfAs can go beyond the verification power of two-way PFAs.

On the other hand, AM systems with two-way QFAs are very powerful [30,26].
Two-way QFAs can verify every unary language in exponential expected time,
and so their their verification power is equivalent to that of AfAs on unary
languages. On non-unary languages, rational-valued two-way QFAs can verify
every language in PSPACE and some NEXP-complete languages. Therefore, AM
systems with rational-valued AfAs are weaker than AM systems with rational-
valued two-way QFAs. Here, we should note that AfA verifiers read the input
once, but two-way QFAs may run in exponential or double-exponential expected
time.

2 Preliminaries

Throughout the paper, |·| refers to the ℓ1-norm;Σ denotes the input alphabet not
containing symbols ¢ and $, respectively called the left and right end-markers; Σ̃
is the set Σ ∪ {¢, $}; Σ∗ denotes the set of all strings defined on the alphabet Σ
including the empty string denoted ε; and, for a given string w ∈ Σ∗, w̃ denotes
the string ¢w$. Moreover, for any string w, |w| is the length of w, |w|σ is the
number of occurrences of symbol σ in w, and, whenever |w| > 0, wi represents
the i-th symbol of w, where 1 ≤ i ≤ |w|. For an automaton M , fM (w) represents
the accepting probability of M on the input w ∈ Σ∗.

A realtime automaton reads the given input symbol by symbol and from the
left to the right. On each symbol, a realtime automaton can stay a fixed amount
of steps. If there is no waiting steps, then it is called strict realtime. In this paper,
we focus on only the strict realtime models. For every given input w, it is fed
as w̃ so that the automaton can make pre-processing and post-processing while
reading the symbols ¢ and $.

An m-state affine system is represented by Rm, and affine state of this system
is represented by m-dimensional vector:

v =







α1

...
αm






∈ Rm

satisfying that
∑n

j=1 αj = 1, where αj , similar to the amplitudes in quantum
systems, is the value of the system being in state ej .

Any affine operator of this system is a linear operator represented by an
(m×m)-dimensional matrix:

A =







a1,1 · · · a1,m
...

. . .
...

am,1 · · · am,m






∈ Rm×m
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satisfying that
∑n

j=1 aj,i = 1 for each column i (the column summation is 1).
When the operator M is applied to the affine state v, the new state is v′ = M ·v.

To retrieve information from the affine system, similar to the measurement
operators of quantum system, we apply a weighting operator. When the affine
state v is weighted, the i-th state is observed with probability

|αi|
|v| =

|αi|
|α1|+ · · ·+ |αm| .

If the system is restricted to have only the non-negative real numbers, then
it turns out to be a probabilistic system.

2.1 Finite automata with deterministic and affine states

Similar to finite automata with quantum and classical states (QCFA) [1], a finite
automaton with deterministic and affine states (ADfA) is an n-state determin-
istic finite automaton having an m-state affine register, where m,n > 0. Let
S = {s1, . . . , sn} be the deterministic states and E = {e1, . . . , em} be the affine
states, where ei is the standard basis in Rm with all zeros except the i-th entry
which is 1.

The computation is governed classically. During the computation, each tran-
sition of an ADfA has two parts: affine and classical parts.

1. Affine transition: For each pair of deterministic state and reading symbol,
say (s, σ), either an affine operator or a weighting operator is applied to the
affine register.

2. Classical transition can be two types:
(a) If an affine operator is applied, then the next classical state is determined

based on (s, σ).
(b) If a weighting operator is applied, then the next classical state is deter-

mined based on (s, σ, e), where e ∈ E is the measured affine state.

In this paper, we apply the weighting operator only after reading the whole
input, and so, we keep the formal definition of the models simpler: a single
transition updates both the classical and affine parts at the same time.

Formally, a ADfA M with n classical and m affine states is a 8-tuple

M = (S,E,Σ, δ, sI , eI , sa, Ea),

where

– S and E are the set of states as specified above;
– δ is the transition function described below;
– sI ∈ S and eI ∈ E are the deterministic and affine initial states, respectively;

and,
– sa ∈ S is the deterministic accepting state;
– Ea ⊆ E is the set of affine accepting state(s).
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Let w ∈ Σ∗ be the given input of length l. The ADfA reads the input as
w̃ = ¢w$ from the left to the right and symbol by symbol. The computation of
M is traced by a pair (s, v) called a configuration, where s ∈ S is the classic
state and v ∈ Rn×n is the affine state. At the beginning of the computation, M
is in (sI , v0), where the affine state v0 = eI .

The transition function is defined as δ : S×Σ̃ → S×Rm×m. Let (s, vj) be the

configuration after the j-th step and σ = w̃j ∈ Σ̃. Then the new configuration
is (s′, vj+1), where δ(s, σ) = (s′, A) and vj+1 = Avj .

After reading $ symbol, if the final classical state is not sa, then the input is
rejected deterministically:

fM (w) = 0.

Otherwise, a weighting operator is applied and the input is accepted if an affine
accepting state is observed. We denote the final state as vf = v|w̃|. Then, the
accepting probability by the affine part is

fM (w) =

∑

ei∈Ea
|vf [i]|

|vf |
∈ [0, 1].

We remark that the ADfA M defined here can be exactly simulated by the
original model defined in [7] with (m · n) affine states.

2.2 Affine automata verifiers

In this paper, we study only Arthur-Merlin type of interactive proof systems
where the verifiers are affine automata. In [6], Arthur-Merlin systems with prob-
abilistic finite automata verifier is defined as an automata having both nondeter-
ministic and probabilistic states. We follow the same framework here. We indeed
give the ability of making nondeterministic transitions to ADfA models.

A finite automaton with nondeterministic and affine states (ANfA) with n
classical and m affine states is formally a 8 tuples

N = (S,E,Σ, δ, sI , eI , sa, Ea),

where all elements are the same as ADfA except the transition function. For the
pair (s, σ) ∈ S × Σ̃, it can have one or more transitions:

δ(s, σ) → {(s′1, A1), . . . , (s
′
k, Ak)},

where each pair (s, σ) can have a different k > 0 value. When having more than
one transition, N picks each of them nondeterministically by creating a new
path. In this way, N forms a computation tree, where the root is the starting
configuration. Remark that the computation in each path is the same as that
of ADfAs and each path may have a different accepting probability. Each path
here refers to the communication with a different prover.
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2.3 Language recognition and verification

A language L ⊆ Σ∗ is said to be recognized by an ADfA M with error bound
ǫ < 1

2 , if

– for every w ∈ L, fM (w) ≥ 1− ǫ, and
– for every w /∈ L, fM (w) ≤ ǫ.

Shortly, we can also say that L is recognized by M with bounded error or L is
recognized by a bounded-error ADfA.

A language L ⊆ Σ∗ is said to be verified by an ANfA V with error bound
ǫ < 1

2 , if

– for every w ∈ L, there is path on which fV (w) ≥ 1− ǫ, and
– for every w /∈ L, fV (w) ≤ ǫ on each path.

Shortly, we can also say that L is verified by V with bounded error or L is
verified by a bounded-error ANfA.

2.4 Language classes

We define AM(AfA) as the class of languages verifiable by bounded-error Arthur-
Merlin system having realtime affine finite verifiers. Any language verifiable by
a bounded-error ANfA is in this class, and we obtain all results in this paper by
ANfAs. Remark that a model of

realtime affine finite verifiers is more general than ANfA as applying weight-
ing operators more than once and the outcomes can also be processed classically.

If the verifier is a PFA, QFA, two-way PFA, or two-way QFA, then the
related class is AM(PFA), AM(QFA), AM(2PFA), or AM(2QCFA), respectively,
where 2QCFA is the two-way QFA model defined in [1].

We denote an AM class where the verifiers are restricted to have rational-
valued or integer-valued components by using subscript Q or Z: AMQ(·) or
AMZ(·).

Here is the list of standard complexity classes mentioned in the paper:

REG : regular languages
L : logarithmic space
P : polynomial time
NP : nondeterministic polynomial time
SPACE(n) : linear space
PSPACE : polynomial space
NEXP : nondeterministic exponential space
ALL : all languages

Lastly, for a given complexity class C, UC denotes its unary version.

3 Basic computation with integer-valued operators

In this section, we review some basic computation techniques by integer-valued
affine states and operators, which are later used in our proofs. We use the in-
duction to verify the correctness of encoding techniques.
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3.1 Binary encoding

We read a binary string w ∈ {0, 1}∗ and encode its numeric value as the value
of an affine state.

We use three affine states. We start in the affine state v0 = (1 0 0)T , and,
after reading w, the affine state is set to





1
val(w)
−val(w)



 ,

where val(w) is the numeric value of w encoded in the value of e2. For symbol
σ ∈ {0, 1}, we use the affine operator Aσ as described below:

A0 =





1 0 0
0 2 0
0 −1 1



 and A1 =





1 0 0
1 2 0

−1 −1 1



 .

Basis step: If the first symbol is 0, the new affine state is

v1 = A0v0 =





1 0 0
0 2 0
0 −1 1









1
0
0



 =





1
0
0



 ,

where the values of e2 and e3 are 0. If the first symbol is 1, the new affine state
is

v1 = A1v0 =





1 0 0
1 2 0

−1 −1 1









1
0
0



 =





1
1

−1



 ,

where the values of e2 and e3 are 1 and −1, respectively.
Induction step: After reading the j-th symbol, we assume that the affine state

is

vj =





1
x
−x



 ,

where x is numeric value of w1w2 · · ·wj . If the (j + 1)-th symbol is 0, the new
affine state is

vj+1 = A0vj =





1 0 0
0 2 0
0 −1 1









1
x

−x



 =





1
2x
−2x



 ,

where we can observe that 2x = val(w1 · · ·wj0). Similarly, if the (j + 1)-th
symbol is 1, the new affine state is

vj+1 = A0vj =





1 0 0
1 2 0

−1 −1 1









1
x

−x



 =





1
2x+ 1
−2x− 1



 ,

where we can observe that 2x+ 1 = val(w1 · · ·wj1).
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3.2 Linear counting

We read the string 0l and encode l as the value of an affine state. We present
two different methods.

Method 1: We start in the affine state v0 = (1 0 0)T , and, for each symbol
0, we apply the affine operator

A =





1 0 0
1 1 0

−1 0 1



 .

After reading l symbols, the affine state is

vl =





1
l

−l



 ,

where l is encoded in the value of e2.
Basis step: After reading one symbol:

v1 = Av0 =





1
1

−1



 ,

where the value of e2 is 1.
Induction step: When in vi, we calculate vi+1:

vi+1 =





1 0 0
1 1 0

−1 0 1









1
i

−i



 =





1
i+ 1

−(i+ 1)



 ,

where the value of e2 is i+ 1.

Method 2: We start in the affine state v0 =

(

1
0

)

, and, for each symbol 0,

we apply the following operator:

B =

(

0 − 1
1 2

)

After reading l symbols, the affine state is

vl =

(

1− l
l

)

,

where l is encoded in the value of e2.
Basis step: After reading one symbol:

v1 = Bv0 =

(

0
1

)

,
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where the value of e2 is 1.
Induction step: When in vi, we calculate vi+1:

vi+1 =

(

0 − 1
1 2

)(

1− i
i

)

=

(

−i
1 + i

)

=

(

1− (i + 1)
i+ 1

)

,

where the value of e2 is i+ 1.

3.3 Calculating x
2

We read the string 0l and encode l2 as the value of an affine state. This can be
done in many different ways.

One trivial solution is directly using the methods in Section 3.2. For example,
we know that

vl = Bv0 =

(

0 − 1
1 2

)l (

1
0

)

=

(

1− l
l

)

.

If we use tensor the affine part with itself, we obtain l2 as the value of e4 :

v′l = (vl ⊗ vl) = (B ⊗B)l(v0 ⊗ v0) =

(

1− l
l

)

⊗
(

1− l
l

)

=









(1 − l)2

(1− l)l
(1− l)l

l2









.

If we use the first method in Section 3.2, then the dimension of the new affine
vector is 9.

An alternative method is using binomial expansions, i.e., (i+ 1)2 is a linear
combination of i2, i, 1 such that (i+1)2 = i2 +2i+1. Thus, by using 1, i, i2, we
can calculate (i + 1)2 by a linear operator.

There are different ways of implementing this idea. The first one is that the
affine state is of the form

vi =









1
i
i2

−i− i2









after reading l 0s, and then the corresponding affine operator (for symbol 0) is









1 0 0 0
1 1 0 0
1 2 1 0

−2 −2 0 1









.

Here v0 = (1 0 0 0)T , and we can check the induction step as









1
1 + i

1 + 2i+ i2

−2− 2i− i− i2









=









1 0 0 0
1 1 0 0
1 2 1 0

−2 −2 0 1

















1
i
i2

−i− i2









,
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which is equivalent to








1
i+ 1

(i + 1)2

(−1− i) + (−1− 2i− i2)









=









1
i+ 1

(i + 1)2

−(i+ 1)− (i + 1)2









.

One may also use the following forms of vi’s:

vi =









1
2i
i2

−2i− i2









or vi =





1− i− i2

i
i2



 .

In the latter form, 1 is eliminated, which is always obtained as the summation
of the vector. The corresponding affine operators are accordingly:









1 0 0 0
2 1 0 0
1 1 1 0

−3 −1 0 1









or





−1 −4 −2
1 2 1
1 3 2



 .

We present the induction step for the latter form. The initial vector is v0 =
(1 0 0)T , and the vector after (i+ 1)-th step is

vi+1 =





−1 −4 −2
1 2 1
1 3 2









1− i− i2

i
i2



 =





−i2 − 3i− 1
i+ 1

i2 + 2i+ 1



 ,

which is, after the re-arrangement of the first entry,

vi+1 =





1− (i+ 1)− (i + 1)2

i+ 1
i2 + 2i+ 1



 .

3.4 Calculating polynomials

Now, we generalize the method given in Section 3.3 using binomial expansions.
Let P (x) be a polynomial with degree d. Then, the set of variables is {x0 =
1, x, x2, . . . , xd}. Our aim is to have P (l) as the value of an affine state after
applying the same affine operator l times.

We read the string 0l and encode P (l) as the value of an affine state as
follows:

vl =























1
l
l2

...
ld

P (l)
1























,
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where 1 is a variable making the column sum equal to 1.
We know that (i + 1)j is a linear combination of 1, i, . . . , ij , and P (l) is a

linear combination of 1, l, . . . , ld. We define the affine operator for symbol 0 as
a combination of two affine operators. The first affine operator updates the first
(d + 1) entries by using binomial coefficients, and, the second affine operator
calculates the value of polynomial by using the coefficients of the polynomial:























1
i
i2

...
id

P (i)
1























→























1
(i+ 1)
(i + 1)2

...
(i+ 1)d

P (i)
1























→























1
(i+ 1)
(i+ 1)2

...
(i + 1)d

P (i+ 1)
1























.

4 Verification of every unary language

Let L ⊆ Σ∗ be an arbitrary unary language, where Σ = {a}. We define a real
number to encode the whole membership information of L as follows:

αL =

∞
∑

i=0

bi
32i+1

=
b0
32

+
b1
322

+
b2
323

+ · · · ,

where

– bi = 1 if ai ∈ L and
– bi = 0 if ai /∈ L.

In binary form: bin(αL) = 0.0000b00000b1 · · · 0000bi · · · . Moreover, we define

αL[j] =
bj
32

+
bj+1

322
+

bj+2

323
+ · · · ,

where j ≥ 0.
We observe a few basic facts about αL and αL[j], which we will use in our

proofs.

1. For any αL[j], there is a unary language L
′

such that αL[j] = αL
′ .

2. The values of αL and so αL[j] are bounded:

0 ≤ αL ≤ 1

31
and 0 ≤ αL[j] ≤

1

31
.

3. The values of αL[j + 1] and αL[j] can be related:
– If bj = 0, then

αL[j + 1] = 32 · αL[j].

– If bj = 1, then
αL[j + 1] = 32 · αL[j]− 1.
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By using αL, we design a bounded-error ANfA for language L. The main idea
of the protocol is that each bi is nondeterministically guessed and the verification
is done by subtracting the guessed bi and the actual value bi encoded in αL. As
long as the nondeterministic choices are correct, the result of such subtractions
will be zero. Otherwise, it will not be zero, based on which we reject the input.
The details are given in the proof below.

Theorem 1. Every unary language L ⊆ {a}∗ is verified by an ANfA V with

error bound 0.155.

Proof. The verifier V has two classical states and three affine states, where s2 is
the classical accepting state and e1 is the only affine accepting state. The initial
affine state is v0 = (1 0 0)

T
.

Let w = al be the given input for l ≥ 0. Until reading $, V makes two
nondeterministic transitions for each symbol: for w̃i (i ∈ {1, . . . , l+1}), V guesses
the value of bi−1, say gi−1. If gi−1 = 0, then classical state is set to s1, and if
gi−1 = 1, then classical state is set to s2. The affine operators are described
below.

On symbol ¢, a combination of two affine operators is applied. In the first
part, the affine state is set as





1
αL

−αL



 =





1 0 0
αL 1 0

−αL 0 1









1
0
0



 .

In the second part, the affine operator Ag0 is applied, where

A0 =





1 − 31 − 31
0 32 0
0 0 32



 and A1 =





1 − 31 − 31
−1 32 0
1 0 32



 .

On each symbol a, the second part for symbol ¢ is repeated: the affine operator
Agi is applied on the path where gi is picked.

If b0 is guessed correctly, then affine state becomes




1
αL[1]
−αL[1]



 = Ab0





1
αL[0]
−αL[0]



 .

It is sufficient to check the value of e2:

– If b0 = 0, after applying A0, the value of second entry becomes 32 · αL[0],
which is equal to αL[1].

– If b0 = 1, after applying A1, the value of second entry becomes 32 ·αL[0]−1,
which is equal to αL[1].

Similarly, as long as the nondeterministic guesses are correct, the affine part
evolves as given below:





1
αL[1]
−αL[1]





1st a−−−−→





1
αL[2]
−αL[2]





2nd a−−−−−→ · · · lth a−−−−→





1
αL[l + 1]
−αL[l + 1]



 .
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Now, we examine the case in which at least one nondeterministic guess is
wrong. Assume that gi 6= bi is the first wrong guess (for symbol w̃i+1). The
value of e2 is αL[i] before this guess, and it becomes

1 + αL[i+ 1] or αL[i+ 1]− 1

after the guess. Thus, the absolute value of e2 is bounded below by 1− 1
31 = 30

31 ,
which is at least 30 times greater than any αL[j]. If there is another symbol a
to be read, then the value of e2 is multiplied by 32 followed by subtraction of 0
or -1. That means the integer part of the absolute of new value of e2 becomes
greater than 30, and so the absolute value of e2 is at least 900 times greater
than any αL[j]. For each new symbol of a, this factor (i.e., 30 and 900) will be
multiplied by 30.

On symbol $, V does not change the classical state and applies the following
operator to the affine state:

A$(k) =





1 1− k 1− k
0 k 0
0 0 k



 ,

where k = 31
2
√
30
, which gives the minimum error when maximizing the accepting

probability for members and minimizing the same for the non-members.
If w ∈ L, the path following the correct nondeterministic guesses ends in

classical state s2 and affine state (1 k · αL[l + 1] − k · αL[l + 1])T . Remember
that 0 ≤ αL[l + 1] ≤ 1

31 . Thus, the input is accepted with probability

1

1 + 2kαL[l + 1]
≥ 1

1 + 2k
31

=
1

1 + 1√
30

=

√
30

1 +
√
30

= 1− 1

1 +
√
30

> 0.845.

If w /∈ L, then we have different cases. (1) If bl is guessed correctly (gl = 0),
then the input is rejected deterministically. (2) If each guess is correct except bl
(gl = 1), then affine state is





1
k(αL[l + 1]− 1)
−k(αL[l + 1]− 1)



 ,

and so, the accepting probability is

1

1 + 2k(1− αL[l + 1])
≤ 1

1 + 2k(3031 )
=

1

1 +
√
30

< 0.155.

In other words, the rejecting probability is at least 1− 0.155 = 0.845. (3) If the
guess gi for i < l is wrong, then, as we described above, the absolute values of
e2 and e3 are at least 30 times bigger than that of the case (2), and so is the
rejecting probability. ⊓⊔

When defining αL, the denominators can be some numbers greater than 32,
and, in this way we can obtain better error bounds, i.e., arbitrarily close to 0.

Corollary 1. Every unary language L ⊆ {a}∗ is verified by ANfAs with arbi-

trarily small error bounds.
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5 AMZ(AfA)

Recently, it was shown [16] that any language recognized by a rational-valued
ADfA with error bound ǫ is recognized by an integer-valued ADfAs with error
bound ǫ′, where 0 ≤ ǫ ≤ ǫ′ < 1

2 . The latter automaton is constructed by modi-
fying the components of the former automaton so that, on the same input, the
accepting probability of the latter one can differ insignificantly from the accept-
ing probability of the former one, i.e., the difference is at most ǫ′ − ǫ. Thus, on
the same input, the accepting probabilities for the same nondeterministic path
will differ insignificantly, and so the error bound increases but still less than 1

2 .

Theorem 2. AMQ(AfA) = AMZ(AfA).

It is known that AM(PFA) = REG [6]. We do not know whether AM(QFA)
contains any non-regular language. On the other hand, ADfAs can recognize
some non-regular languages with bounded-error such as PAL requiring at least
logarithmic space for bounded-error probabilistic computation [11]. A natural
question is whether AM(AfA) goes beyond L.

Theorem 3. AMQ(AfA) ⊆ NP ∩ SPACE(n).

Proof. Let L ∈ AMQ(AfA) be a language. Then, there is an ANfA V verifying L
with error bound ǫ ∈ Q ∩ [0, 12 ).

The descriptions of V and the error bound are finite, which can be wired into
the description of Turing Machines (TMs). For any given input, the computation
on each path of V can be traced by vector and matrix multiplications. As the
length of each sequence is linear, all computation including weighting, calculating
the accepting probability, and comparing it with the error bound can be done
in polynomial time and linear space (i.e., the size of affine state vector is fixed,
the precision of each entry can be at most linear, and each new entry is a linear
combination of these entries).

In the case of nondeterministic TM simulation, the TM implements the non-
deterministic choices of V directly. In the case of linear-space TM simulation,
the TM use a linear counter to check all nondeterministic strategies one-by-one.
Even though the overall simulation runs in exponential expected time, the space
usage can be bounded linearly. ⊓⊔

We show that integer-valued ANfAs can verify some NP-complete prob-
lems. For this purpose, we use the following language version of the Knapsack
problem (Page 491 of [19]): SUBSETSUM is the language of strings of the form
S#B1# · · ·#Bk, where

– S,B1, . . . , Bk ∈ {0, 1}∗ are binary numbers and
– there exists a subset of {B1, . . . , Bk} that adds up to precisely S, i.e.,

∃I ⊆ {1, . . . , k} such that S =
∑

i∈I

Bi.

Remark that we do not use any non-negative integer, and it is still NP-Complete.
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Theorem 4. SUBSETSUM is verified by an integer-valued ANfA V (t) such that

every member is accepted with probability 1 and every non-member is accepted

with probability at most 1
2t+1 for some t ∈ Z+.

Proof. Let w ∈ Σ∗, where Σ = {0, 1,#}. The verifier V (t), shortly V , classically
checks w has at least one #. Otherwise, the input is rejected deterministically.

In the remaining part, we assume that w is of the form S#B1# · · ·#Bk for
some k > 0. Remark that the binary value of empty string is zero (whenever
S = ε or any Bi = ε). The protocol has the following steps:

1. V starts with encoding S into the value of affine state e2.

2. V nodeterministically picks some Bi’s (1 ≤ i ≤ k). Such decision is made
when reading symbols #.

(a) If Bi is not picked, then affine state does not changed.

(b) Otherwise, V encodes Bi into the value of the affine state e3, and then,
it is subtracted from the value of e2 and the value of e3 is set to zero.

3. At the end of the computation, the decision is made based on the fact that
the value of e2 is zero for the members and non-zero integer for the non-
members. The error is reduced by using certain tricks before the weighting
operator.

The affine part has four states {e1, . . . , e4} and e1 is the only accepting state.
The initial affine state is (1 0 0 0)T , and it does not change when reading ¢.
For encoding binary string, we use the technique described in Section 3.1. The
value of S is encoded by using the affine operators {Aσ | σ ∈ {0, 1}}:

A0 =









1 0 0 0
0 2 0 0
0 0 1 0
0 −1 0 1









and A1 =









1 0 0 0
1 2 0 0
0 0 1 0

−1 −1 0 1









,

where the value of e3 is not changed. The value of each picked Bi is encoded by
the affine operators {A′

σ | σ ∈ {0, 1}}:

A′
0 =









1 0 0 0
0 1 0 0
0 0 2 0
0 0 −1 1









and A′
1 =









1 0 0 0
0 1 0 0
1 0 2 0

−1 0 −1 1









,

where the value of e2 is not changed. With the following operator, the value of
e3 is subtracted from the value of e2 and set to 0:

D =









1 0 0 0
0 1 −1 0
0 0 0 0
0 0 2 1









.
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For a picked subset I ⊆ {1, . . . , k}, let SI =
∑

i∈I Bi. Before weighting
operator, for some t ∈ Z+, we apply the following operator to decrease the error
bound for the non-members:

E(t) =









1 0 0 0
0 t 0 0
0 1− t 1 1− t
0 0 0 t









.

On the path where I is followed, just before applying E(t), the affine state is









1
S − SI

0
SI − S









,

and it is








1
t(S − SI)

0
t(SI − S)









after applying E(t). It is easy to see that if S = SI , then the final affine state
is (1 0 0 0)T and so the input is accepted with probability 1. If S 6= SI , then
|S − SI | ∈ Z+, and so the values of e2 and e4 are not zero and the accepting

probability can be at most
1

2t+ 1
.

Therefore, if w ∈ SUBSETSUM, then there exists a subset I satisfying the
membership condition and it is picked on a path where the input is accepted with
probability 1. If w /∈ SUBSETSUM, there is no subset satisfying the membership

condition, and so the input is accepted with probability at most
1

2t+ 1
in each

path. The error bound can be arbitrarily small when t → ∞. ⊓⊔

It is not known that whether there is a NP-Complete unary language or not.
It was shown that if there is such a language, then P = NP [4]. Regarding the
verification power of rational-valued ANfAs, we use some non-stochastic unary
languages.

For a given non-linear polynomial with non-negative integer coefficients P (x),
we define a unary language as UPOLY(P) = {aP (i) | i ∈ N}. Turakainen [27]
showed that such languages are not stochastic. Recently, it was shown that [16]
they are not algebraic affine languages, too, i.e., they cannot be recognized by
algebraic-valued ADfAs with cutpoints.

Now, we show that ANfAs can verify any UPOLY(P) language with bounded

error. We start with a very simple case: USQUARE = {ai2 | i ∈ N}.

Theorem 5. Language USQUARE is verified by an ANfA V (t) with any error

bound 1
2t+1 , where t ∈ Z+.
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Proof. We use the parameter t at the end of the proof, and we represent V (t)
shortly as V . The verifier V uses 4 affine states, and e1 is the single accepting
affine state. Let w = 0l be the given input. If w = ε, then it is accepted classically.
We assume that w 6= ε in the rest of the proof.

The protocol of V is as follows: V nondeterministically picks a positive integer
j ≥ l and then checks whether j2 = l. If w ∈ USQUARE, then there exists such
j =

√
l and so this comparison is made successfully in one of the nondeterministic

paths. If w /∈ USQUARE, there is no such j and so there is no successful comparison
in any nondeterministic path.

The verifier follows (l + 1) different paths during its computation:

path0, path1, . . . , pathl,

where the main one is path0. We use the encoding techniques given in Section 3.2
and 3.3. When reading the i-th symbol of w, path0 continues with path0 or
creates pathi.

On path0, V is in the following affine states after reading wi and wl:

v0,i+1 =









1
i
i2

1









and v0,l+1 =









1
l
l2

1









,

respectively. After reading wi, V creates pathi, on which it is in the affine state

vi,i+1 =









1
i
i2

1









.

For the rest of the computation, V continues with counting the number of sym-
bols on e2 but it does not change the value of e3 until reading $. The affine state
on pathi (i > 0) after reading wl is

vi,l+1 =









1
l
i2

1









.

On path0, the input rejected is classically. On pathi, after reading $, V enters
the classical accepting state, and it sets the affine state as









1
t(l − i2)
t(i2 − l)

0









.

If w ∈ L, then on path√
l, the final affine state is e1 and so w is accepted

with probability 1.
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If w /∈ L, then on pathi, the absolute value of e2 or e3 is |t(l − i2)|, which is
at least t. Thus, the input is accepted with probability at most ǫ = 1

2t+1 ≤ 1
3 . It

is clear that ǫ → 0 when t → ∞. ⊓⊔
Theorem 6. Language UPOLY(P) is verified by an ANfA V (t) with any error

bound 1
2t+1 , where t ∈ Z+.

Proof. The proof is identical to the proof of Theorem 5 after modify the encoding
part (we use the techniques in Section 3.2 and 3.4). First note that P (i) ≥ i since
the coefficients of P are non-negative. So, for any 0l ∈ UPOLY(P), there exists j ≤ l
such that l = P (j). Second, on pathi, P (i) is calculated and then the verifier
checks whether P (i) = l or not.

If 0l is in UPOLY(P), then it is accepted with probability 1 in one of the
nondeterministic path. If it is not in UPOLY(P), then the accepting probability
on any path can be at most 1

2t+1 . ⊓⊔

6 Summary

On unary languages, for the real-valued verifiers, we show that AfAs and 2QCFAs
have the same verification power:

UALL = UAM(2QCFA) = UAM(AfA),

where AfA verifiers are realtime machines but 2QCFAs run in exponential ex-
pected time.

On unary languages, for the rational-valued verifiers, we know that

UREG = UAMQ(PFA) ⊆
UAMQ(QFA) ⊆ UAM(QFA)
UAMQ(2PFA) ⊆ UAM(2PFA)

,

where it is open if the inclusions are strict, and we show that UPOLY(P) ∈
UAMQ(AfA) and so we have

UREG ( UAMQ(AfA).

On non-unary languages, for the rational-valued verifiers, we give an upper
bound for AMQ(AfA), and so we have

AMQ(AfA) = AMZ(AfA) ⊆ NP ∩ SPACE(n) ( AMQ(2QCFA),

where 2QCFAs run in double-exponential expected time. Our bound is tight
since we show that

SUBSETSUM ∈ AMZ(AfA).
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17. Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-free affine, unitary,
and probabilistic OBDDs. In: Descriptional Complexity of Formal Systems. LNCS,
vol. 10952, pp. 175–187. Springer (2018), arXiv:1703.07184

18. Kaņeps, J.: Regularity of one-letter languages acceptable by 2-way finite proba-
bilistic automata. In: Proceedings of the 8th International Symposium on Funda-
mentals of Computation Theory. pp. 287–296 (1991)
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