Skip to main content

Attentive Contrast Learning Network for Fine-Grained Classification

  • Conference paper
  • First Online:
Book cover Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

Abstract

Fine-grained visual classification is challenging due to subtle differences between sub-categories. Current popular methods usually leverage a single image and are designed by two main perspectives: feature representation learning and discriminative parts localization, while a few methods utilize pairwise images as input. However, it is difficult to learn representations discriminatively both across the images and across the categories, as well as to guarantee for accurate location of discriminative parts. In this paper, different from the existing methods, we argue to solve these difficulties from the perspective of contrastive learning and propose a novel Attentive Contrast Learning Network (ACLN). The network aims to attract the representation of positive pairs, which are from the same category, and repulse the representation of negative pairs, which are from different categories. A contrastive learning module, equipped with two contrastive losses, is proposed to achieve this. Specifically, the attention maps, generated by the attention generator, are bounded with the original CNN feature as positive pair, while the attention maps of different images form the negative pairs. Besides, the final classification results are obtained by a synergic learning module, utilizing both the original feature and the attention maps. Comprehensive experiments are conducted on four benchmark datasets, on which our ACLN outperforms all the existing SOTA approaches. For reproducible scientific research https://github.com/mpskex/AttentiveContrastiveLearningNetwork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

  2. Chen, Y., Bai, Y., Zhang, W., Mei, T.: Destruction and construction learning for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5157–5166 (2019)

    Google Scholar 

  3. Cui, Y., Zhou, F., Wang, J., Liu, X., Lin, Y., Belongie, S.: Kernel pooling for convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2930 (2017)

    Google Scholar 

  4. Ding, Y., Zhou, Y., Zhu, Y., Ye, Q., Jiao, J.: Selective sparse sampling for fine-grained image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6599–6608 (2019)

    Google Scholar 

  5. Dubey, A., Gupta, O., Guo, P., Raskar, R., Farrell, R., Naik, N.: Pairwise confusion for fine-grained visual classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 70–86 (2018)

    Google Scholar 

  6. Gao, Y., Han, X., Wang, X., Huang, W., Scott, M.: Channel interaction networks for fine-grained image categorization. In: AAAI, pp. 10818–10825 (2020)

    Google Scholar 

  7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  8. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: Proceedings of the CVPR Workshop on Fine-Grained Visual Categorization (FGVC), vol. 2 (2011)

    Google Scholar 

  9. Lin, D., Shen, X., Lu, C., Jia, J.: Deep lac: Deep localization, alignment and classification for fine-grained recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1666–1674 (2015)

    Google Scholar 

  10. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  11. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  12. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505. IEEE (2012)

    Google Scholar 

  13. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849 (2019)

  14. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  15. Wang, Z., Wang, S., Zhang, P., Li, H., Zhong, W., Li, J.: Weakly supervised fine-grained image classification via correlation-guided discriminative learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1851–1860 (2019)

    Google Scholar 

  16. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  17. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for fine-grained classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 420–435 (2018)

    Google Scholar 

  18. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)

  19. Yu, C., Zhao, X., Zheng, Q., Zhang, P., You, X.: Hierarchical bilinear pooling for fine-grained visual recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 574–589 (2018)

    Google Scholar 

  20. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)

    Google Scholar 

  21. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: AAAI, pp. 13130–13137 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Liu, Z., Liu, Z. (2021). Attentive Contrast Learning Network for Fine-Grained Classification. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics