Skip to main content

Adaptive Anomaly Detection Network for Unseen Scene Without Fine-Tuning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13020))

Included in the following conference series:

Abstract

Anomaly detection in video is a challenging task with great application value. Most existing approaches formulate anomaly detection as a reconstruction/prediction problem established on the encoder-decoder structure. However, they suffer from the poor generalization performance when the model is directly applied to an unseen scene. To solve this problem, in this paper, we propose an Adaptive Anomaly Detection Network (AADNet) to realize few-shot scene-adaptive anomaly detection. Our core idea is to learn an adaptive model, which can identify abnormal events without fine-tuning when transferred to a new scene. To this end, in AADNet, a Segments Similarity Measurement (SSM) module is utilized to calculate the cosine distance of different input video segments, based on which the normal segments will be gathered. Meanwhile, to further exploit the information of normal events, we design a novel Relational Scene Awareness (RSA) module to capture the pixel-to-pixel relationship between different segments. By combining the SSM module with RSA, the proposed AADNet becomes much more generative. Extensive experiments on four datasets demonstrate our method can adapt to a new scene effectively without fine-tuning and achieve the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive anomaly detection. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_3

    Chapter  Google Scholar 

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  3. Chang, Y., Tu, Z., Xie, W., Yuan, J.: Clustering driven deep autoencoder for video anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 329–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_20

    Chapter  Google Scholar 

  4. Fan, Q., Zhuo, W., Tang, C.K., Tai, Y.W.: Few-shot object detection with attention-RPN and multi-relation detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4013–4022 (2020)

    Google Scholar 

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  7. Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43

    Chapter  Google Scholar 

  8. Hu, Y., et al.: NAS-count: counting-by-density with neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 747–766. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_45

    Chapter  Google Scholar 

  9. Karlinsky, L., et al.: Repmet: representative-based metric learning for classification and few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2019)

    Google Scholar 

  10. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

    Google Scholar 

  11. Lu, Y., Kumar, K.M., shahabeddin Nabavi, S., Wang, Y.: Future frame prediction using convolutional VRNN for anomaly detection. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8. IEEE (2019)

    Google Scholar 

  12. Lu, Y., Yu, F., Reddy, M.K.K., Wang, Y.: Few-shot scene-adaptive anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 125–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_8

    Chapter  Google Scholar 

  13. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–444. IEEE (2017)

    Google Scholar 

  14. Medel, J.R., Savakis, A.: Anomaly detection in video using predictive convolutional long short-term memory networks. arXiv preprint arXiv:1612.00390 (2016)

  15. Munkhdalai, T., Yu, H.: Meta networks. In: International Conference on Machine Learning, pp. 2554–2563. PMLR (2017)

    Google Scholar 

  16. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999, vol. 2, no. 2, p. 1 (2018)

  17. Pang, G., Yan, C., Shen, C., Hengel, A.V.D., Bai, X.: Self-trained deep ordinal regression for end-to-end video anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12173–12182 (2020)

    Google Scholar 

  18. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14372–14381 (2020)

    Google Scholar 

  19. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850. PMLR (2016)

    Google Scholar 

  22. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  24. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  25. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  26. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Acknowledgment

This paper was supported by the National Natural Science Foundation of China (NSFC) under grant No. U1833117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Huang, X., Luo, X. (2021). Adaptive Anomaly Detection Network for Unseen Scene Without Fine-Tuning. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13020. Springer, Cham. https://doi.org/10.1007/978-3-030-88007-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88007-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88006-4

  • Online ISBN: 978-3-030-88007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics