Skip to main content

Non-local Network Routing for Perceptual Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

In this paper, we propose a non-local network routingĀ (NNR) approach for perceptual image super-resolution. Unlike conventional methods which generate visually-faked textures due to exiting hand-designed losses, our approach aims to globally optimize both procedures of learning an optimal perceptual loss and routing a spatial-adaptive network architecture in a unified reinforcement learning framework. To this end, we introduce a reward function to teach our objective to pay more attention on the visual quality of the super-resolved image. Moreover, we carefully design an offset operation inside the neural architecture search space, which typically deforms the receptive field on boundary refinement in a non-local manner. Experimentally, our proposed method surpasses the perceptual performance over state-of-the-art methods on several widely-evaluated benchmark datasets.

This is a student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/pytorch/pytorch.

References

  1. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC, pp. 1ā€“10 (2012)

    Google ScholarĀ 

  2. Chen, R., Xie, Y., Luo, X., Qu, Y., Li, C.: Joint-attention discriminator for accurate super-resolution via adversarial training. In: ACM MM, pp. 711ā€“719 (2019)

    Google ScholarĀ 

  3. Chen, Y., Gao, C., Robb, E., Huang, J.: NAS-DIP: learning deep image prior with neural architecture search. ECCV. 12363, 442ā€“459 (2020)

    Google ScholarĀ 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: ECCV, vol. 8692, pp. 184ā€“199 (2014)

    Google ScholarĀ 

  5. Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197ā€“5206 (2015)

    Google ScholarĀ 

  6. Irani, M., Peleg, S.: Improving resolution by image registration. Graph. Models Image Process. 53(3), 231ā€“239 (1991)

    ArticleĀ  Google ScholarĀ 

  7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV, vol. 9906, pp. 694ā€“711 (2016)

    Google ScholarĀ 

  8. Kouame, D., Ploquin, M.: Super-resolution in medical imaging: an illustrative approach through ultrasound. In: ISBI, pp. 249ā€“252 (2009)

    Google ScholarĀ 

  9. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 105ā€“114 (2017)

    Google ScholarĀ 

  10. Lee, R., Dudziak, L., Abdelfattah, M.S., Venieris, S.I., Kim, H., Wen, H., Lane, N.D.: Journey towards tiny perceptual super-resolution. In: ECCV, vol. 12371, pp. 85ā€“102 (2020)

    Google ScholarĀ 

  11. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPRW, pp. 1132ā€“1140 (2017)

    Google ScholarĀ 

  12. Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Super-resolved faces for improved face recognition from surveillance video. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1ā€“10. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_1

    ChapterĀ  Google ScholarĀ 

  13. Lin, T., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: ICCV (2015)

    Google ScholarĀ 

  14. Liu, C., et al.: Auto-deeplab: hierarchical neural architecture search for semantic image segmentation. In: CVPR, pp. 82ā€“92 (2019)

    Google ScholarĀ 

  15. Loop, C.T., Schaefer, S.: Approximating catmull-clark subdivision surfaces with bicubic patches. ACM Trans. Graph. 27(1), 8:1ā€“8:11 (2008)

    Google ScholarĀ 

  16. Mao, X., Shen, C., Yang, Y.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: NIPS, pp. 2802ā€“2810 (2016)

    Google ScholarĀ 

  17. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, pp. 416ā€“425 (2001)

    Google ScholarĀ 

  18. Mei, Y., Fan, Y., Zhou, Y., Huang, L., Huang, T.S., Shi, H.: Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In: CVPR, pp. 5689ā€“5698 (2020)

    Google ScholarĀ 

  19. Patti, A.J., Sezan, M.I., Tekalp, A.M.: Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6(8), 1064ā€“1076 (1997)

    ArticleĀ  Google ScholarĀ 

  20. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. In: ICML, vol. 70, pp. 2902ā€“2911 (2017)

    Google ScholarĀ 

  21. Soh, J.W., Park, G.Y., Jo, J., Cho, N.I.: Natural and realistic single image super-resolution with explicit natural manifold discrimination. In: CVPR, pp. 8122ā€“8131 (2019)

    Google ScholarĀ 

  22. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV, pp. 4809ā€“4817 (2017)

    Google ScholarĀ 

  23. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Deep image prior. In: CVPR (2018)

    Google ScholarĀ 

  24. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR, pp. 606ā€“615 (2018)

    Google ScholarĀ 

  25. Wang, X., et al.: SRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW, vol. 11133, pp. 63ā€“79 (2018)

    Google ScholarĀ 

  26. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229ā€“256 (1992)

    MATHĀ  Google ScholarĀ 

  27. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: CVPR, pp. 5790ā€“5799 (2020)

    Google ScholarĀ 

  28. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. Curves Surf. 6920, 711ā€“730 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  29. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Sig. Process. 90(3), 848ā€“859 (2010)

    ArticleĀ  Google ScholarĀ 

  30. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586ā€“595 (2018)

    Google ScholarĀ 

  31. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: ECCV, vol. 11211, pp. 294ā€“310 (2018)

    Google ScholarĀ 

  32. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets V2: more deformable, better results. In: CVPR, pp. 9308ā€“9316 (2019)

    Google ScholarĀ 

  33. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google ScholarĀ 

  34. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR, pp. 8697ā€“8710 (2018)

    Google ScholarĀ 

Download references

Acknowledgement

This work was supported in part by the National Science Foundation of China under Grant 61806104 and 62076142, in part by the West Light Talent Program of the Chinese Academy of Sciences under Grant XAB2018AW05, and in part by the Youth Science and Technology Talents Enrollment Projects of Ningxia under Grant TJGC2018028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, Z., Dong, X., Li, Z., Yu, Z., Liu, H. (2021). Non-local Network Routing for Perceptual Image Super-Resolution. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics