Skip to main content

Early Diagnosis of Alzheimer's Disease Using 3D Residual Attention Network Based on Hippocampal Multi-indices Feature Fusion

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

Alzheimer's disease (AD) is one of the most common causes of dementia in older individuals. Convergence evidence has confirmed that hippocampal atrophy is one of the most robust neuroimaging biomarkers of AD. However, most previous studies only independently consider the hippocampal volume or other morphological indicators, which cannot reflect the abnormal pattern of the hippocampus comprehensively and objectively. The primary aim of this study is to develop a classification model of AD based on a hippocampal multi-indices features fusion framework. The multi-indices features included 1) hippocampal gray volume block; 2) probability matrix obtained from the hippocampal segmentation; 3) hippocampal radiomics features. The 3D convolutional neural network based on the multi-indices feature fusion framework showed an ACC = 90.3% (AUC = 0.93) in classifying AD (N = 282) from NC (N = 603). The results suggested that the hippocampal multi-indices features are robust neuroimaging biomarkers in the early diagnosis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Querfurth, H.W., et al.: Alzheimer’s disease. New England J. Med. 362(4), 329 (2010)

    Article  Google Scholar 

  2. Nakamura, A., et al.: High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554(7691), 249–254 (2018)

    Article  Google Scholar 

  3. Rathore, S., et al.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage 155, 530–548 (2017)

    Article  Google Scholar 

  4. Karas, G., et al.: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 49(12), 967–976 (2007)

    Article  Google Scholar 

  5. Braak, H., et al.: Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16(3), 271–278 (1995)

    Article  Google Scholar 

  6. Ezzati, A., et al.: Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults. Neuropsychologia 93, 380–385 (2016)

    Article  Google Scholar 

  7. Pasquini, L., et al.: Link between hippocampus’ raised local and eased global intrinsic connectivity in AD. Alzheimer’s Dement. 11(5), 475–484 (2015)

    Article  Google Scholar 

  8. Lin, W., et al.: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front. Neurosci. 12, 777 (2018)

    Article  Google Scholar 

  9. Liu, M., et al.: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. NeuroImage 208, 116459 (2020)

    Google Scholar 

  10. Zhao, K., et al.: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis. Sci. Bull. 65(13), 1103–1113 (2020)

    Article  Google Scholar 

  11. Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Article  Google Scholar 

  12. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  14. Jin, D., et al.: Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease. Adv. Sci. 7(14), 2000675 (2020)

    Article  Google Scholar 

  15. Wu, C., et al.: Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks. Quant. Imaging Med. Surg. 8(10), 992–1003 (2018)

    Article  Google Scholar 

  16. Pan, D., et al.: Early detection of Alzheimer’s Disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front. Neurosci. 14 (2020)

    Google Scholar 

  17. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3156–3164.(2017).

    Google Scholar 

  18. Jin, D., et al.: Attention-based 3D Convolutional Network for Alzheimer's Disease Diagnosis and Biomarkers Exploration. In: IEEE International Symposium on Biomedical Imaging.(2019).

    Google Scholar 

  19. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778.(2016).

    Google Scholar 

  20. He, T., et al.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 558–567.(2019).

    Google Scholar 

  21. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  22. Zheng, Q., et al.: Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation. Front. Neuroinform. 12, 69 (2018)

    Article  Google Scholar 

  23. Zhang, J., et al.: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 35(12), 2524–2533 (2016)

    Article  Google Scholar 

  24. Cao, P., et al.: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures. Comput. Biol. Med. 91, 21–37 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61802330, 61802331, 61801415), Natural Science Foundation of Shandong Province (ZR2018BF008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2021). Early Diagnosis of Alzheimer's Disease Using 3D Residual Attention Network Based on Hippocampal Multi-indices Feature Fusion. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics