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Abstract. Multimodal neuroimage can provide complementary infor-
mation about the dementia, but small size of complete multimodal data
limits the ability in representation learning. Moreover, the data dis-
tribution inconsistency from different modalities may lead to ineffec-
tive fusion, which fails to sufficiently explore the intra-modal and inter-
modal interactions and compromises the disease diagnosis performance.
To solve these problems, we proposed a novel multimodal representation
learning and adversarial hypergraph fusion (MRL-AHF) framework for
Alzheimer’s disease diagnosis using complete trimodal images. First, ad-
versarial strategy and pre-trained model are incorporated into the MRL
to extract latent representations from multimodal data. Then two hyper-
graphs are constructed from the latent representations and the adversar-
ial network based on graph convolution is employed to narrow the distri-
bution difference of hyperedge features. Finally, the hyperedge-invariant
features are fused for disease prediction by hyperedge convolution. Exper-
iments on the public Alzheimer’s Disease Neuroimaging Initiative(ADNI)
database demonstrate that our model achieves superior performance on
Alzheimer’s disease detection compared with other related models and
provides a possible way to understand the underlying mechanisms of
disorder’s progression by analyzing the abnormal brain connections.

Keywords: Multimodal representation · Adversarial hypergraph fusion
· Alzheimer’s disease · Graph convolutional networks.

1 Introduction

Alzheimer’s disease(AD) is a severe neurodegenerative diseases among the old
people and the pathological changes are reflected on the symptoms including
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memory decline, aphasia and other decreased brain functions [1]. Since there
is no effective medicine for AD, much attention has been attracted on its pro-
dromal stage, that is, mild cognition impairment(MCI) [2], so that intervention
can be implemented to slow down or stop the progression of the disease. With
the success of deep learning on medical images analysis [3,4,5,6,7] and other
fields [8,9], non-invasive magnetic imaging technology becomes an effective tool
for detecting dementia at early disease stages, and different modalities carry
complementary disease-related information. For example, abnormal functional
and structural connectivity between brain regions has been discovered in the
resting-state functional magnetic resonance imaging(fMRI) [10] and diffusion
tensor imaging(DTI) [11] modality, respectively; and the T1-weighted magnetic
resonance imaging(MRI) [12] data contains the information of volume changes
in different brain regions. Many researchers [13,14,15,16,17] have achieved good
performance in brain disease prediction by fusing either two of the above modal-
ities. Therefore, we take all the three modalities as the input of our model to
conduct representations learning and fusion for disease diagnosis.

Considering the number of subjects with complete three modalities is limit,
it is necessary to make full use of the input data for learning latent repre-
sentations. The input data can be used to estimate additional distribution,
which is prior information for training a much more discriminative and ro-
bust model. To make use of additional distribution, the Generative Adversarial
Networks(GAN) [18] provides an appropriate way for representation learning
of the graph data by matching the distribution consistency in representation
space. The basic principle is variational inference [19,20,21] which maximizes
the entropy of the probability distribution. It has been applied successfully in
medical image analysis [22,23,24,25] and citation network [26,27]. Besides, Con-
volution Neural Network(CNN) has great power in recognizing disease-related
images [28,29,30,32,33], which can be utilized to extract features of MRI in data
space by a model pre-trained from a great many of unimodal images [31,34].
Therefore, we designed a Distribution-based Graph GAN (D-GraphGAN) and
a CNN-based Graph AutoEncoder(CNN-GraphAE) to extract latent represen-
tations from fMRI&DTI and MRI&DTI, respectively.

After the representations extraction, direct fusion of representations concate-
nation may lead to bad performance in exploring cross-modal interactions, since
the data distributions in representation space may be heterogeneous [35]. Adver-
sarial strategy is suitable for translating modality distribution [36]. As traditional
graph with pairwise regions interaction is not sufficient to characterize the brain
network connectivity and fail to encode high-order intra-modal correlations, a
hypergraph [37] beyond pairwise connections is more suitable to describe the
complex brain activities behind dementia. It is found that Hypergraph Neural
Networks(HGNN) achieve better performance than Graph Convolutional Net-
works(GCN) in citation networks [38]. Motivated by this, we develop an adver-
sarial hyperedge network to boost multimodal representation fusion performance
for AD diagnosis.
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In this paper, we propose a Multimodal Representation Learning and Ad-
versarial Hypergraph Fusion(MRL-AHF) to make use of inter-modal comple-
mentary and intra-modal correlation information to improve the performance
of Alzheimer’s disease detection. The estimated additional distribution and pre-
trained model are incorporated to improve the ability of representation learn-
ing. A hypergraph fusion strategy is adopted to narrow distribution difference
in hyperedge space for efficiently fusion by adversarial training. Our MRL-AHN
approach is able to enhance the ability of representation learning and boost the
multimodal fusing performance. Experiments on the Alzheimer’s Disease Neu-
roimging Initiative(ADNI) database show that our approach achieves superior
performance on MCI detection compared with other related works.

2 Method

An overview of MRL-AHF is given in Fig. 1. Our framework is comprised of
two stages: a representation space learning stage and a adversarial hypergraph
fusion stage. The first stage learns the latent representations from fMRI&DTI
and MRI&DTI by distribution-based GraphGAN and CNN-based GraphAE, re-
spectively. The second stage utilizes the representations output by encoders G
and S to conduct hypergraph fusion via adversarial training. The symbol mean-
ings are given bellow: A and A′ represent the structural connection(SC) and
reconstructed SC matrix, respectively. X and X ′ denote the functional time-
series(FT) at each brain Region-of-Interest(ROI), the reconstructed FT feature,
respectively. V and V ′ are the feature vector(FV) and reconstructed FV. Ẑ and
R are features in representation space.

2.1 Distribution-based GraphGAN

Graph construction. Suppose an indirect graph G(V, E) is formed with N
brain Regions of Interest(ROIs) based on anatomical atlas, V = {ν1, ν2, ..., νN}
and E = {ε1, ε2, ..., εN} are a set of nodes and edges, respectively. Specifically,
X = {x1, x2, ..., xN} ∈ RN×d denotes the node feature matrix of brain functional
activities derived from fMRI time series, and A ∈ RN×N represents the physical
connections matrix reflecting the brain structural information. The element in
adjacent matrix A is represented with Aij = 1 if there exists connection between
ith and jth region, otherwise Aij = 0.

Additional distribution estimation. Normal distribution N(0, 1) cannot rep-
resent the graph properly, and an appropriate Pz can boost the ability in learn-
ing discriminative representations in adversarial network. In terms of no other
known information except for the give graph data A and X, we introduce a non-
parametric estimation method, Kernel Density Estimation(KDE), to exstimate
Pz(Z|X) that approximates to Pz(Z|X,A) by combining both anatomical and
nueroimaging information. Specifically, based on some certain disease-related
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Fig. 1. Overall framework of the proposed MRL-AHF for AD diagnosis using fMRI,
DTI and MRI data.

ROIs, we can obtain a set of nodes U ⊆ V by applying Determinant Point Pro-
cess(DPP) [39] method on matrix A, and the corresponding node features are
selected to form features matrix XU ∈ Rm×d with m = |U | nodes, followed with
dimension reduction by Principal Component Analysis(PCA) to get ZU ∈ Rm×q.
q is the dimension in latent representation space. Assuming Zi is a latent repre-
sentation of each node, Pz(Z) can be defined by

Pz(Z) ≈ 1

mb

m∑
i=1

K(
Z − Zi
b

) (1)

Where K(·) is a multi-dimensional Gaussian Kernel function, b denotes the band-
width that determines the smoothness of the distribution

GraphGAN. The encoder G encodes A and X as latent representations Ẑ,
which are sent to the discriminator DZ as negative samples. The positive samples
Z are estimated from the additional distribution Pz(Z|X,A). The adversarial
loss function is defined as follows

£DZ
= −EA∼PA,X∼PX

[DZ(G(A,X))] + EZ∼PZ
[DZ(Z)] (2)

£G = EA∼PA,X∼PX
[DZ(G(A,X))] (3)
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Besides, the reconstruction loss and the classification loss are given bellow:

£Rec1 = EA∼PA,X∼PX
[f(X,X ′)] + EA∼PA,X∼PX

[f(A,A′)] (4)

£Cls1 = EA∼PA,X∼PX
[y · logy′] (5)

Where, X ′ = G′(A, Ẑ), Ẑ = G(A,X) and A′ = σ(ẐẐT ) are the reconstructed
graph data, f(a, b) = a · logb+(1−a) · log(1−b) is binary cross entropy function,
y′ = C1(Ẑ) is the predicted labels. C1 is a two-layer perception. G and G′ are
two-layer GCN, specifically.

2.2 CNN-based GraphAE

A dense convolutional network with 4 blocks is trained on large number of labeled
images and then used to extract a feature vector V for each MRI using the last
fully connected layer. In order to deploy CNN feature on the ROIs, we equally
distribute the feature V ∈ R1×128 on the ROIs, and the SC is used to guide
the feature to flow between two connected nodes. The latent representations
R is obtained by a two-layer GCN Encoder S, followed with a decoder S′ to
reconstruct features. The reconstruct loss and classification loss are defined as

£Rec2 = EV∼PV
[f(V, V ′)] (6)

£Cls2 = EV∼PV
[y · logy′′] (7)

Where, V ′ = S′(R) = S′(S(V )), y is the truth one-hot label, y′′ = C1(R) =
C1(S(V )) is the predicted label.

2.3 Adversarial Hypergraph Fusion

Hypergraph construction. By denoting a hyperedge E connecting multiple
nodes, we can construct a hyperedge for each node centered. Specifically, we use
K-NearestNeighbor(KNN) method to select the nodes for each hyperedge based
on the Euclidean distance. At last, we can get an incident matrix H1 and H2

from the learned representations Ẑ and R, respectively. The formula is given as
follows:

H(V, E) = {0,if ν∈E
1,if ν /∈E (8)

Adversarial Hypergraph Learning. In order to narrow the gap between the
representations, we adopt the adversarial training strategy to make the distribu-
tion from different modalities the same. The hypergraph convolution is spitted
into convex convolution and hyperedge convolution. The hyperedge feature of
ẐH is computed by Vertex aggregation is sent to the discriminator DH as a
positive sample, the negative sample RH is obtained by Vertex convolution of
hypergraph R, the formula is illustrated as follows:

ẐH = D
−1/2
1e HT

1 D
−1/2
1e Ẑ (9)
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RH = D
−1/2
2e HT

2 D
−1/2
2e RΘ (10)

Where, D1e and D2e are the edge degree of H1 and H2, respectively; Θ is the
weighting parameters. Both ẐH and RH are sent to the discrminatr DH for ad-
versarial training.Then, we fuse the hyperedge features by using edge aggregation
to get vertex feature matrix F as follows

F = D
−1/2
1v H1D

−1/2
1v ẐH +D

−1/2
2v H2D

−1/2
2v RH (11)

Finally, the fused features is used to construct connectivity matrix by bilinear
pooling and then sent to the classifier for task learning. The adversarial and
classification loss are given below

£AHF = £DH
+ 0.1£V er + £Cls3

= EA∼PA,Z∼PZ
[DH(ẐH)]− 0.1 · EV∼PV

[DH(RH)]

+ EA∼PA,Z∼PZ ,V∼PV
[y · logy′′′]

(12)

Here, D1v and D2v are the node degree of H1 and H2, respectively; and y′′′ =
C2(σ(FFT )) is the predicted label.

2.4 Training strategy

In Conclusion, the total loss of the proposed frame is:

£MRLAHF = £G + 0.1£DZ
+ £Rec1 + £Rec2 + £Cls1 + £Cls2 + γ£AHF (13)

Where γ is a hyper-parameter that determines the relative importance of feature
fusion loss items.

During the training process, firstly, we update the generators, encoders and
decoders with the loss backpropogation of £Rec1, £Rec2 and £G; next, we use
the £DZ

to update the discriminator to improve the discriminator ability of joint
and marginal distribution; then, £Cls1 and £Cls2 are utilized to update encoders
and classifier to boost the performance of task learning. After the discriminative
representations have been extracted, £DH

and £V er are performed to update
the parameters in vertex convolution and discriminator DH alternatively; finally,
£Cls3 updates the classifier C2 to get a discrminative decision on the fused
features.

3 Experiments

3.1 Data

A total of 300 subjects from ADNI database are used for this study with complete
three modalities: fMRI, DTI and T1-weighted MRI, including 64 AD patients
(39 male and 25 female, mean age 74.7, standard deviation 7.6), 76 late MCI
patients (43 male and 33 female, mean age 75.8, standard deviation 6.4), 82
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early MCI patients (40 male and 42 female, mean age 75.9, standard deviation
7.5), and 78 normal controls (39 male and 39 female, mean age 76.0, standard
deviation 8.0).

For T1-weighted MRI data, we follow the standard proprocessing steps, in-
cluding strip non-brain tissue of the whole head, image reorientation, resampling
into a voxel size of 91x109x91 in Neuroimaging Informatics Technology Initia-
tive(NIFTI) file format and extracting a 128-dimensional feature vector FV by
a pre-trained densnet model. The fMRI data is preprocessed using GRETNA
toolbox to obtain node features FT with a size of 90x187, the main steps in-
clude magnetization equilibrium, head-motion artifacts, spatial normalization,
spatial filter with 0.01-0.08Hz, regression of local time-series, warping automated
anatomical labeling(AAL90) atlas and removing the first 10 timepoints. The DTI
data preprocessing operation is performed using PANDA toolbox to get 90x90
matrix SC. The detailed procedures are skull stripping, resolution resampling,
eddy currents correction, fiber tracking. The generated structural connectivity
is input to our model as graph structure.

3.2 Experimental settings

In this study, we use three kinds of binary classification task, i.e., (1)EMCI
vs. NC; (2)LMCI vs. NC; (3)AD vs. NC. 10-fold cross validation is selected
for task learning. In order to demonstrate the superiority of our proposed model
compared with other models, we introduce previous methods for comparison. (1)
Support Vector Machine(SVM) [40]; (2) two layers of the diffusion convolutional
neural networks(DCNN) [41]; (3) our method with only fMRI and DTI; (4)
our method with complete three modalities. For convenient viewing, the above
methods using fMRI and DTI are denoted SVM(F-D), DCNN(F-D) and Ours(F-
D).

In the experiments, we set the model parameters as follows:N = 90, m = 10,
q = 32, γ = 0.5, tanh and sigmoid activation function for generators and de-
coders, respectively. The disease-related ROIs are selected according to previous
studies [2,15,16]. C1 is a two-layer perception with 16-neuron and 2-neuron in
the hidden and output layers. C1 is a two-layer perception with 90-neuron and
2-neuron in the hidden and output layers. G and G′ are two-layer GCN, specif-
ically, the hidden and output layers of G is 64-neuron and 32-neuron, while the
hidden and output layers of G′ is 64-neuron and 187-neuron. The hidden and
output layers of S is 64-neuron and 32-neuron, the hidden and output layers of
S′ is 64-neuron and 128-neuron. For the discriminator DZ , the hidden layer con-
tains 1 filter with the size 32x1, the output layer contains 1 filters with the size
90x1. For the discriminator DH , the filter size of hidden layer is 1x90, the filter
size of output layer is 90x1. To balance the adversarial training, we choose 0.001
learning rate for the generators, encoders, decoders, and classifiers, 0.0001 learn-
ing rate for the discriminators. In the training process, 100 epochs are employed
on representation learning, followed with 200 epochs for adversarial hypergraph
fusion.
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3.3 Results

Table 1 summarizes the results of different methods in three binary classification
tasks using 10-fold cross validation. As can be seen that our proposed model has
the best accuracy of 95.07%, 91.56%, and 87.50% in the tasks of AD vs. NC,
LMCI vs. NC, EMCI vs. NC, respectively. Our method behaves better than other
methods. It is found that introducing more modal images is beneficial to improve
model detection performance. In addition, comparisons between ours(F-D) and
DCNN(F-D) indicate that adding distribution-guided GraphGAN can improve
detection accuracy. What’s more, when compared with other related algorithms
as illustrated in table 2, the proposed method has achieved superior performance
for MCI detection. It ourperforms the literature by 2.08%. Note that, methods
using fMRI and DTI are denoted F-D, and Ours mean the proposed model using
three complete modalities.

Table 1. Mean detection performance of the proposed and related methods.(%)

Method
AD vs. NC LMCI vs. NC EMCI vs. NC

Acc Sen Spec Auc Acc Sen Spec Auc Acc Sen Spec Auc

SVM(F-D) 76.05 70.31 80.76 83.16 69.48 64.47 74.35 78.23 65.62 54.87 76.92 71.46

DCNN(F-D) 84.51 87.50 82.05 89.40 79.87 77.63 82.05 84.29 76.25 76.83 75.64 82.68

Ours(F-D) 88.73 84.37 92.31 97.48 84.42 84.21 84.62 94.01 82.50 82.93 82.05 91.65

Ours 95.07 93.75 96.15 98.20 91.56 94.74 88.89 94.64 87.50 86.59 88.46 93.05

Table 2. Algorithm comparison with the related works.(%)

Method Modality subject
MCI vs. NC

Acc Sen Spec Auc

Xing et al. [14] fMRI&MRI 368 79.73 86.49 72.97 -

Yu et al. [15] fMRI&DTI 184 85.42 86.57 84.42 89.98

Zhu et al. [42] MRI&PET&CSF 152 83.54 95.00 62.86 78.15

Ours MRI&fMRI&DTI 160 87.50 86.59 88.86 93.05

We further investigate the classification performance of our model by t-SNE
analysis. Fig. 2 shows the projection of features of three methods on the two
dimensional plane in different task learning. Our model has slim and easily di-
visible plane compared with SVM and DCNN, indicating that the feature ob-
tained from our method is more discriminative than that of SVM or DCNN.
This investigation explains in detail why our model performs better than others
in task learning.
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Fig. 2. Visualization of features of SVM, DCNN and our method using t-SNE tools
for EMCI vs. NC. F-D means the three methods are input with fMRI and DTI.

Since the interactions among multiple regions are beneficial for characteriz-
ing disease-related brain activities, we construct connectivity matrix using the
fused features by bilinear pooling. As is displayed in Fig. 3, we mean the con-
nectivity matrices of each group for each binary classification task and then
subtract patients connectivity matrix from NC connectivity matrix to obtain
the change of brain network connections. It gives the following information: the
connections gradually reduce as the disease worsens, while the increased connec-
tions rise up in early stages and drop to a low level when deteriorated to AD.
This phenomenon may be explained by compensatory mechanism generation
and weakening in the progression of MCI to AD [43,44,45].

4 Conclusion

In this paper, we proposed a novel Multimodal-Representaion-Learning and
Adversarial-Hypergraph-Fusion frame work for Alzheimer’s disease diagnosis.
Specifically, features in representations space are extracted by distribution-based
GraphGAN and CNN-based GraphAE, respectively. And an adversarial strategy
in modal fusion is utilized for AD detection. Results on ADNI dataset demon-
strate that prior information can help to enhance discrimination of representa-
tion learning and adding more modalities can boost the detection performance.
Furthermore, The study on multimodal fusion gives a possible way to under-
stand the disorder’s underlying mechanisms by analyzing the abnormal brain
connections. In our future work, we will focus the abnormal connections among
some certain ROIs and extend this work to multitask classification.
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