Skip to main content

Small Leaks Sink a Great Ship: An Evaluation of Key Reuse Resilience of PQC Third Round Finalist NTRU-HRSS

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12919))

Abstract

NTRU is regarded as an appealing finalist due to its long history against all known attacks and relatively high efficiency. In the third round of NIST competition, the submitted NTRU cryptosystem is the merger of NTRU-HPS and NTRU-HRSS. In 2019, Ding et al. have analyzed the case when the public key is reused for the original NTRU scheme. However, NTRU-HRSS selects coefficients in an arbitrary way, instead of fixed-weight sample spaces in the original NTRU and NTRU-HPS. Therefore, their method cannot be applied to NTRU-HRSS. To address this problem, we propose a full key mismatch attack on NTRU-HRSS. Firstly, we find a longest chain which helps us in recovering the following coefficients. Next, the most influential interference factors are eliminated by increasing the weight of targeted coefficients. In this step, we adaptively select the weights according to the feedbacks of the oracle to avoid errors. Finally, experiments show that we succeed in recovering all coefficients of the secret key in NTRU-HRSS with a success rate of \(93.6\%\). Furthermore, we illustrate the trade-off among the success rate, average number of queries, and average time. Particularly, we show that when the success rate is 93.6%, it has the minimum number of queries at the same time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/ntruhrss701_key_mismatch_attack.

References

  1. Alagic, G., et al.: Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process. US Department of Commerce, National Institute of Standards and Technology (2020)

    Google Scholar 

  2. Alkim, E., et al.: Newhope. Submission to the NIST Post-Quantum Cryptography standardization project, Round 2 (2019)

    Google Scholar 

  3. Avanzi, R., et al.: Algorithm specifications and supporting documentation, version 2.0, nist pqc round 2. Tech. rep. (2019)

    Google Scholar 

  4. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Misuse attacks on post-quantum cryptosystems. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 747–776. Springer (2019)

    Google Scholar 

  5. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse resilience of NewHope. Topics in Cryptology – CT-RSA 2019 , pp. 272–292 (2019). https://doi.org/10.1007/978-3-030-12612-4_14

  6. Chen, C, et al.: NTRU: algorithm specifications and supporting documentation (2019)

    Google Scholar 

  7. Chen, L., et al.: Report on Post-quantum Cryptography. US Department of Commerce, National Institute of Standards and Technology (2016)

    Google Scholar 

  8. Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal function with reused keys in RLWE key exchange. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)

    Google Scholar 

  9. Ding, J., Deaton, J., Schmidt, K., Vishakha, Zhang, Z.: A simple and efficient key reuse attack on NTRU cryptosystem (2019)

    Google Scholar 

  10. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused keys, without signal leakage. In: Australasian Conference on Information Security and Privacy, pp. 467–486. Springer (2018)

    Google Scholar 

  11. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning with errors problem. IACR Cryptol. EPrint Arch. 2012, 688 (2012)

    Google Scholar 

  12. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Mod-LWR based KEM (round 2 submission). Tech. Rep. (2019)

    Google Scholar 

  13. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse. IACR Cryptol. ePrint Arch. (2016)

    Google Scholar 

  14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  15. Greuet, A., Montoya, S., Renault, G.: Attack on LAC key exchange in misuse situation. IACR Cryptol. ePrint Arch. 2020, 63 (2020)

    Google Scholar 

  16. Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019)

    Google Scholar 

  17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  18. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-HRSS-KEM: algorithm specifications and supporting documentation (2017)

    Google Scholar 

  19. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Failure is not an option: standardization issues for post-quantum key agreement. In: Workshop on Cybersecurity in a Post-Quantum World, p. 21 (2015)

    Google Scholar 

  20. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Designs, Codes and Cryptography 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Cryptology - EUROCRYPT, pp. 1–23 (2010)

    Google Scholar 

  22. Moody, D.: Post-quantum cryptography standardization: announcement and outline of NIST’s call for submissions (2016)

    Google Scholar 

  23. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on newhope with fewer queries. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 505–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_26

    Chapter  Google Scholar 

  24. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack on NIST candidate newhope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_24

    Chapter  Google Scholar 

  25. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST second round candidate kyber. IACR Cryptol. ePrint Arch. 2019, 1343 (2019)

    Google Scholar 

  26. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A Systematic Approach and Analysis of Key Mismatch Attacks on CPA-Secure Lattice-Based NIST Candidate KEMs. Cryptology ePrint Archive, Report 2021/123 (2021)

    Google Scholar 

  27. Ravi, P., Ezerman, M.F., Bhasin, S., Chattopadhyay, A., Roy, S.S.: Generic Side-Channel Assisted Chosen-Ciphertext Attacks on Streamlined NTRU Prime. Cryptology ePrint Archive, Report 2021/718 (2021)

    Google Scholar 

  28. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs. In:IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 307–335 (2020)

    Google Scholar 

  29. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. Tech. rep. (2018)

    Google Scholar 

  30. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Google Scholar 

Download references

Acknowledgments

The research in this paper was partially supported by the National Natural Science Foundation of China (NSFC) under Grant no. 61672029, and Guangxi Key Laboratory of Trusted Software (no. KX202038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Cheng, C., Ding, R. (2021). Small Leaks Sink a Great Ship: An Evaluation of Key Reuse Resilience of PQC Third Round Finalist NTRU-HRSS. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds) Information and Communications Security. ICICS 2021. Lecture Notes in Computer Science(), vol 12919. Springer, Cham. https://doi.org/10.1007/978-3-030-88052-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88052-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88051-4

  • Online ISBN: 978-3-030-88052-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics