Skip to main content

Periodic Distributed Delivery Routes Planning Subject to Uncertainty of Travel Parameters

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12876))

Abstract

In the Periodic Vehicle Routing Problem (PVRP), in which scheduling of the fleet of vehicles is based on constituting the timetable for the passage of individual vehicles along the planned routes, the imprecise nature of transport/service operation times implies the need to take into account the fact that the accumulating uncertainty of previously performed operations results in increased uncertainty of timely execution of subsequent operations. In the article, the authors pose the question as to the method of avoiding additional uncertainty introduced during aggregating uncertain operation execution deadlines. Due to the above fact, an algebraic model for calculating fuzzy schedules for individual vehicles, and for planning time buffers enabling the adjustment of the currently calculated fuzzy schedules is developed. The model uses Ordered Fuzzy Numbers (OFNs) to conduct the uncertainty of times. The advantage of using the OFNs formalism for algebraic operations is non-expanding of fuzzy number support. However, the possibility of carrying out algebraic operations is limited to selected domains of computability of these supports. Due to this fact a constraint satisfaction problem framework has been adapted. The conducted research demonstrated that the proposed approach allows to develop conditions following the calculability of arithmetic operations of OFNs and guarantee interpretability of results obtained.

Supported by organization x.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bansal, S., Goel, R., Katiyar, V.: A novel method to handle route failure in fuzzy vehicle routing problem with hard time windows and uncertain demand. Int. J. Adv. Oper. Manag. 9(3), 169–187 (2017). https://doi.org/10.1504/IJAOM.2017.088243

    Article  Google Scholar 

  2. Bocewicz, G., Banaszak, Z., Rudnik, K., Witczak, M., Smutnicki, C., Wikarek, J.: Milk-run routing and scheduling subject to fuzzy pickup and delivery time constraints: an ordered fuzzy numbers approach (2020). https://doi.org/10.1109/FUZZ48607.2020.9177733

  3. Bocewicz, G., Nielsen, I., Banaszak, Z.: Production flows scheduling subject to fuzzy processing time constraints. Int. J. Comput. Integr. Manuf. 29(10), 1105–1127 (2016). https://doi.org/10.1080/0951192X.2016.1145739

    Article  Google Scholar 

  4. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016). https://doi.org/10.1016/j.cie.2015.12.007

    Article  Google Scholar 

  5. Ghannadpour, S., Simak, N., Reza, T., Keivan, G.: A multi-objective dynamic vehicle routing problem with fuzzy time windows: model, solution and application. Appl. Soft Comput. 14, 504–527 (2014). https://doi.org/10.1016/j.asoc.2013.08.015

    Article  Google Scholar 

  6. Hanshar, F., Ombuki-Berman, B.: Dynamic vehicle routing using genetic algorithms. Appl. Intell. 27(1), 89–99 (2009). https://doi.org/10.1007/s10489-006-0033-z

    Article  MATH  Google Scholar 

  7. Holborn, P.: Heuristics for dynamic vehicle routing problems with pickups and deliveries and time windows. Cardiff University, School of Mathematics, School of Mathematics (2013)

    Google Scholar 

  8. Khairuddin, S., Hasan, M., Hashmani, A., Azam, M.: Generating clustering-based interval fuzzy type-2 triangular and trapezoidal membership functions: a structured literature review. Symmetry 13(2) (2021). https://doi.org/10.3390/sym13020239

  9. Khosiawan, Y., Scherer, S., Nielsen, I.: Toward delay-tolerant multiple-unmanned aerial vehicle scheduling system using multi-strategy coevolution algorithm. Adv. Mech. Eng. 10(12) (2018). https://doi.org/10.1177/1687814018815235

  10. Kilic, H., Durmusoglu, M., Baskak, M.: Classification and modeling for in-plant milk-run distribution systems. Int. J. Adv. Manuf. Technol. 62(9), 1135–1146 (2012). https://doi.org/10.1007/s00170-011-3875-4

    Article  Google Scholar 

  11. Kosinski, W., Prokopowicz, P., Slezak, D.: On algebraic operations on fuzzy numbers. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol. 22. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-36562-4_37

  12. Liu, C., Huang, F.: Hybrid heuristics for vehicle routing problem with fuzzy demands. In: Third International Joint Conference on Computational Sciences and Optimization (CSO 2010), Huangshan (2010)

    Google Scholar 

  13. Meyer, A.: Milk run design (definitions, concepts and solution approaches). Ph.D. thesis, Institute of Technology. Fakultät für Mas-chinenbau, KIT Scientific Publishing (2015)

    Google Scholar 

  14. Mor, A., Speranza, M.G.: Vehicle routing problems over time: a survey. 4OR 18(1), 44–61 (2020). https://doi.org/10.1007/s10288-020-00433-2

  15. Nucci, F.: Multi-shift single-vehicle routing problem under fuzzy uncertainty. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 1620–1627. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_189

    Chapter  Google Scholar 

  16. Okulewicz, M., Mańdziuk, J.: A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space. Swarm Evol. Comput. 48, 44–61 (2019). https://doi.org/10.1016/j.swevo.2019.03.008

    Article  Google Scholar 

  17. Pavone, M., Bisnik, N., Frazzoli, E., Isler, V.: A stochastic and dynamic vehicle routing problem with time windows and customer impatience. Mobile Netw. Appl. 14(3) (2008). https://doi.org/10.1007/s11036-008-0101-1

  18. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013). https://doi.org/10.1016/j.ejor.2012.08.015

    Article  MathSciNet  MATH  Google Scholar 

  19. Polak-Sopinska, A.: Incorporating human factors in in-plant milk run system planning models. In: Ahram, T., Karwowski, W., Taiar, R. (eds.) IHSED 2018. AISC, vol. 876, pp. 160–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02053-8_26

    Chapter  Google Scholar 

  20. Prokopowicz, P., Ślȩzak, D.: Ordered fuzzy numbers: definitions and operations. In: Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł, Ślȩzak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. SFSC, vol. 356, pp. 57–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59614-3_4

    Chapter  MATH  Google Scholar 

  21. Sung, I., Nielsen, P.: Zoning a service area of unmanned aerial vehicles for package delivery services. J. Intell. Robot. Syst. 97(3) (2020). https://doi.org/10.1007/s10846-019-01045-7

  22. Sáez, D., Cortés, C., Núñez, A.: Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Comput. Oper. Res. 35(11), 3412–3438 (2008). https://doi.org/10.1016/j.cor.2007.01.025

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Bocewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rudnik, K., Bocewicz, G., Smutnicki, C., Pempera, J., Banaszczak, Z. (2021). Periodic Distributed Delivery Routes Planning Subject to Uncertainty of Travel Parameters. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics