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Abstract. State-of-the-art search-based approaches for test case gener-
ation work at test case level, where tests are represented as sequences of
statements. These approaches make use of genetic operators (i.e., mu-
tation and crossover) that create test variants by adding, altering, and
removing statements from existing tests. While this encoding schema has
been shown to be very effective for many-objective test case generation,
the standard crossover operator (single-point) only alters the structure
of the test cases but not the input data. In this paper, we argue that
changing both the test case structure and the input data is necessary
to increase the genetic variation and improve the search process. Hence,
we propose a hybrid multi-level crossover (HMX) operator that com-
bines the traditional test-level crossover with data-level recombination.
The former evolves and alters the test case structures, while the latter
evolves the input data using numeric and string-based recombinational
operators. We evaluate our new crossover operator by performing an em-
pirical study on more than 100 classes selected from open-source Java
libraries for numerical operations and string manipulation. We compare
HMX with the single-point crossover that is used in EvoSuite w.r.t.
structural coverage and fault detection capability. Our results show that
HMX achieves a statistically significant increase in 30 % of the classes
up to 19 % in structural coverage compared to the single-point crossover.
Moreover, the fault detection capability improved up to 12 % measured
using strong mutation score.

Keywords: search-based software testing · test case generation · crossover
operator · empirical software engineering

1 Introduction

Genetic operators are a fundamental component of evolutionary search-based
test case generation algorithms. These operators create variation in the test
cases to help the search process explore new possible paths. The main genetic
operators are mutation, which makes changes to a single test case, and crossover,
which exchanges information between two test cases.
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Over the years, related work has used three types of encoding schemata
to represent test cases for search algorithms, namely data-level, test case-level,
and test suite-level. These schemata typically implement genetic operators at the
same level as the encoding. For example, the crossover operator at the data-level
exchanges data between two input vectors [12]. The test case-level crossover ex-
changes statements between two parent test cases [19]. Lastly, the test suite-level
crossover swaps test cases within two test suites [10]. Recent studies have shown
that the test case-level schema combined with many-objective (MO) search is
the most effective at generating test cases with high coverage [6, 15].

The current many-objective approaches use the single-point crossover to re-
combine groups of statements within test cases. Test cases consist of both test
structures (method sequences) and test data [19]. Hence, the crossover operator
only changes the test structure and simply copies over the corresponding input
data. Therefore, input data has to be altered by the mutation operator, usually
with a small probability.

In this paper, we argue that better genetic variation can be obtained by
designing a crossover operator that alters the structure of the test cases and also
the input data by creating new data that is in the neighborhood of the parents’
data. To validate this hypothesis, we propose a new operator, called Hybrid
Multi-level Crossover (HMX), that combines different crossover operators on
multiple levels. We implement HMX within EvoSuite [10], the state-of-the-art
unit-test generation tool for Java.

To evaluate the effectiveness of our operator, we performed an empirical study
where we compare HMX with the single-point crossover used in EvoSuite, a
state-of-the-art test case generation tool for Java, w.r.t. structural coverage and
fault detection capability. To this aim, we build a benchmark with 116 classes
from the Apache Commons and Lucene Stemmer projects, which include classes
for numerical operations and string manipulation.

Our results show that HMX achieves higher structural coverage for ~30 % of
the classes in the benchmark. On average, HMX , covered 6.4 % and 7.2 % more
branches and lines than our baseline, respectively (with a max improvement
of 19.1 % and 19.4 %). Additionally, the proposed operator improved the fault
detection capability in ~25 % of the classes with an average improvement of 3.9 %
(max. 14 %) and 2.1 % (max. 12.1 %) for weak and strong mutation, respectively.

In summary, we make the following contributions:

1. A novel crossover that works at both test case and input data-level to in-
crease genetic variation in the search process. The data-level recombination
combines multiple different techniques depending on the data type.

2. An open-source implementation of our operator in EvoSuite.
3. A full replication package containing the results and the analysis scripts [13].

The outline for the remainder of this paper is as follows. Section 2 explains the
fundamental concepts used in the paper. Section 3 introduces our new crossover
operator, called HMX , and breaks down how it works. Section 4 sets out our
research questions and describes the setup of our empirical study. Section 5
details our results and highlights our findings. Section 6 discusses the threats
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to validity and Section 7 draws conclusions and identifies possible directions for
future work.

2 Background and Related Work

Search-based unit test generation. Prior studies introduced search-based
software test generation (SBST) approaches utilizing meta-heuristics (e.g., ge-
netic algorithm) to automate test generation for different testing levels [12], such
as unit [10], integration [9], and system-level testing [3]. Search-based unit-test
generation is one of the widely studied topics in this field, where a search pro-
cess generates tests fulfilling various criteria (e.g., structural coverage, mutation
score) for a given class under test (CUT). Studies have shown that these tech-
niques are effective at achieving high code coverage [6,16] and fault detection [1].

Single-objective unit test generation. Single-objective techniques spec-
ify one or more fitness functions to guide the search process towards covering
the search targets according to the desired criteria. Rojas et al. [18] proposed an
approach that aggregates all of the fitness functions for each criterion using a
weighted sum scalarization and performs a single-objective optimization to gen-
erate tests. Additionally, Gay [11] empirically showed that combining different
criteria in a single-objective leads to detect more faults compared to using each
criterion separately.

Dynamic many-objective sorting algorithm (DynaMOSA). In con-
trast with single-objective unit test generation, Panichella et al. have proposed a
many-objective evolutionary-based approach, called DynaMOSA [15]. This ap-
proach considers each coverage targets from multiple criteria as an independent
search objective. DynaMOSA utilizes the hierarchy of dependencies between dif-
ferent coverage targets (e.g., line, branch, mutants) to select the search objectives
during the search dynamically. Moreover, recent work [17] introduced a multi-
criteria variant of DynaMOSA that extends the idea of dynamic selection of
the targets, based on an enhanced hierarchical dependency analysis. This re-
cent study showed that this multi-criteria variant outperforms single-objective
search-based unit test generation w.r.t. structural and mutation coverage and,
therefore, can achieve a higher fault detection rate. These results have also been
confirmed independently by Campos et al. [6]. Consequently, DynaMOSA is cur-
rently used as the default algorithm in EvoSuite.

Crossover operator. Like any other evolutionary-based algorithms, all vari-
ations of DynaMOSA need crossover and mutation operators for evolving the
individuals in the current population to generate the next population. Since Dy-
naMOSA encodes tests at a test case-level, the mutation operator alters state-
ments in a selected test case according to a given mutation probability. This
search algorithm uses the single-point crossover to recombine two selected indi-
viduals (parents) into new tests (offspring) for the next generation. This crossover
operator randomly selects two positions in the selected parents and split them
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Algorithm 1: HMX : hybrid multi-level crossover
Input: Two parent test cases P1 and P2
Output: Two offspring test cases O1 and O2

1 begin
2 O1, O2 ← SINGLE-POINT-CROSSOVER(P1, P2)

// Constructor data store
3 C1 ← Map<signature, constructor[ ]> // For P1
4 C2 ← Map<signature, constructor[ ]> // For P2

// Method data store
5 M1 ← Map<signature, method[ ]> // For P1
6 M2 ← Map<signature, method[ ]> // For P2
7 forall (S1, S2), in S1 ∈ O1 and S2 ∈ O2 do
8 if SIGNATURE(S1) == SIGNATURE(S2) then
9 if S1 is constructor then

10 C1[SIGNATURE(S1)].add(S1)
11 C2[SIGNATURE(S2)].add(S2)
12 else if S1 is method then
13 M1[SIGNATURE(S1)].add(S1)
14 M2[SIGNATURE(S2)].add(S2)

15 foreach SIG ∈ C1.keys ∪ C2.keys do
// choose random constructor with same signature

16 S1 ← random.choice(C1[SIG])
17 S2 ← random.choice(C2[SIG])
18 O1, O2 ← DATA-CROSSOVER(O1, O2, PARAMS(S1), PARAMS(S2))
19 foreach SIG ∈M1.keys ∪M2.keys do

// choose random method with same signature
20 S1 ← random.choice(M1[SIG])
21 S2 ← random.choice(M2[SIG])
22 O1, O2 ← DATA-CROSSOVER(O1, O2, PARAMS(S1), PARAMS(S2))
23 return O1, O2

into two parts. Then, it remerges each part with the opposing part from the other
parent. A more detailed explanation of this operator is available in Section 3.

While the single-point crossover brings diversity to the structure of the gen-
erated test cases, it does not work at the data-level (i.e.,crossover between the
test inputs). Hence, this study introduces a hybrid multi-level crossover, called
HMX , for the state-of-the-art in search-based unit test generation.

3 Approach

This section details our new crossover operator, called Hybrid Multi-level Crossover
(HMX). This operator combines the traditional single-point test case-level crossover
with multiple data-level crossovers.
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Algorithm 1 outlines the pseudo-code of our crossover operator. HMX first
performs the traditional single-point crossover at line 2. The single-point crossover
is chosen for the test case-level operator as previous studies have shown that it is
effective in producing a variation in the population over time [19]. It is also the
default crossover operator used in the state-of-the-art test case generation tool
EvoSuite [19]. This operator takes two parent test cases as input and selects a
random point among the statements within the parents test cases. The parents
are then split at this point, and their resulting parts are then recombined with
its opposing part of the other parent to produce two new offspring test cases.
Since these offspring test cases use a random crossover point, they might con-
tain incomplete sequences of statements (e.g., missing variable definition) and,
therefore, will not compile. To make the crossover more effective, these broken
references are fixed by introducing new random variable definitions that match
the type of the broken reference [10]. Lines 3-22 contain the selection logic of the
data-level crossover. Unlike the test case-level crossover, the data-level crossover
can not be applied to every combination of input data. Performing the crossover
on input data with different types (e.g., strings and numbers) would not produce
any meaningful output as there is no logical way to combine these dissimilar
types. Furthermore, we should not perform a crossover on two identical data
types from different methods. If the data-level crossover would be applied to
parameters of the same type that belong to different methods, it could produce
offspring that are farther from the desired objective than the original. Hence, the
algorithm has to select which combinations of input data are compatible. HMX
achieves this by selecting compatible functions (i.e., constructors and methods
calls) and applying the crossover pairwise to the function’s parameters.

In lines 3-6, two pairs of maps are created that store the compatible functions
for each parent for both constructors and methods. Each map stores a list of
functions that share the same signature; The signature is the key of the map,
and the functions are the values. The signature of the function is a string derived
from the class name, function name, parameters types, and return type using
the following format:

CLASS_NAME|FUNCTION_NAME(PARAM1_TYPE, PARAM2_TYPE, ...)RETURN_TYPE

In lines 7-14, HMX loops over all combinations of statements S1 and S2 in
the offspring produced by the single-point crossover. For each combination, it
checks if the signatures of the two functions match (line 8). If both statements
are either constructors or methods, they are stored in their corresponding map
with the signature as a key in lines 10-11 and 13-14, respectively. Note that if the
test case contains constructor or method calls for other classes than the CUT,
these are also considered by the selection of compatible functions. For example,
additional objects (e.g., strings, lists) might be needed as an input argument to
one of the CUT’s functions.

When all possible matching functions have been found, the operator loops
through the signatures of the two function types separately in lines 15-18 and
19-22. For each signature, HMX selects a random function instance matching the
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signature from each parent. The operator then performs the data-level crossover
on the parameters of these two randomly selected functions in lines 18 and 22.
For each signature in the map, HMX only selects one function instance per
parent to proceed with the genetic recombination.

The data-level recombination pairwise traverses the parameters of the two
compatible functions selected in lines 16-17 (for constructors) and 20-21 (for
methods). For each pair of parameters, Algorithm 1 checks their types and de-
termines if they are numbers or strings, the two supported types of HMX . If the
two parameters are numbers (i.e., byte, short, int, long, float, double, boolean,
and char), the operator applies the Simulated Binary Crossover (SBX), which
is described in Section 3.1. If the parameters are strings, it applies the string
crossover described in Section 3.2. Lastly, in line 23, HMX returns the produced
offspring.

Listing 1.1: Parent 1
1 @Test
2 public void test1 () {
3 Fraction f0 = new Fraction (2, 3);
4 Fraction f1 = new Fraction (2, -1);
5 f0. divideBy (f1);
6 f0.add( Fraction .ZERO );
7 }

Listing 1.2: Parent 2
1 @Test
2 public void test2 () {
3 Fraction f0 = new Fraction (3, 1);
4 Fraction f1 = new Fraction (1, 3);
5 f0.add(f1);
6 f0.pow (2.0);
7 }

To provide a practical example, let us consider the two parent test cases
in Listings 1.1 and 1.2. Both parent 1 and parent 2 contain two invocations of
the Fraction constructor. Since these constructors share the same signature:
Fraction|<init>(int, int)Fraction; they are compatible. Similarly, the method
add of the Fraction class is present in both parents, with the same signature:
Fraction|add(Fraction)V; and are compatible, as well. In contrast, for example,
method divideBy, in parent 1, and method add, in parent 2, are not compatible
since their signatures are different.

3.1 Simulated Binary Crossover

The Simulated Binary Crossover (SBX) is a recombination operator commonly
used in numerical problems with numerical decision variables and fixed-length
chromosomes. It has been shown that Evolutionary Algorithms (EAs) that use
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this crossover operator produce better results compared to traditional numerical
crossover operators [8]. The equation below outlines the algorithm of SBX :

u = randu (1)

β =


2 · u1/(ηc+1) if u < 0.5
1 if u = 0.5

0.5
1.0−u

1/(ηc+1) if u > 0.5
(2)

b = randb (3)

v =
{

((v1 − v2) · 0.5)− (β · 0.5 · |v1 − v2|) if b = true

((v1 − v2) · 0.5) + (β · 0.5 · |v1 − v2|) if b = false
(4)

where v (Eq. (4)) is the new value of parameter v1, v1 is the original value of the
parameter, and v2 is the value of the opposing parameter (the corresponding pa-
rameter from the matched function). ηc is the distribution index and it measures
how close the new values should be to original values (proximity). For HMX ,
this variable is set to 2.5 as this is within the recommended range [2;5] [8]. SBX
first creates a random uniform variable u (Eq. (1)), which is used to select one
of three strategies for β. This scaling variable β (Eq. (2)), is used to scale an
offset. This offset is either subtracted or added depending on the random boolean
variable b. In general, SBX generates new values centered around the original
parents, either in between the parents’ values (contracting) or outside this range
(expending) depending on the value of u. The algorithm is performed on both
matching parameters, and the resulting new values are used as a replacement of
the original values.

As an example, consider the two compatible constructors Fraction(2,3)
(line 3 in Listing 1.1) and Fraction(1,3) (line 4 in Listing 1.2). The SBX
recombination operator is applied for the following pairwise combinations: (2,
1) and (3, 3). To calculate the new value of the first element of the first pair,
v1 = 2 and v2 = 1. Similarly, the second element can be calculated by switching
the values of v1 and v2. The same procedure can be applied to calculate the new
values of the second pair.

3.2 String Crossover

The single-point string crossover is used to exchange information between two
string parameters of matching functions [12]. By recombining parts of each
string, it makes it possible for promising substrings to collect together. The
operator achieves this by picking two random numbers, 0 ≤ xi < length(x) and
0 ≤ yi < length(y) for both strings, respectively. It then recombines the two
strings by concatenating the substrings in the following way: x = x[: xi] || y[yi :]
and y = y[: yi] || x[xi :].

For example, given the following string x = ”lorem” and y = ”ipsum” and
the random variables xi = 1 and yi = 3, the new values will be: x = ”lom” and
y = ”ipsurem”.
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Table 1: Projects in our empirical study. # indicates the number of CUTs. cc
indicates the cyclomatic complexity of CUTs. σ indicates the standard deviation.
min and max indicate the minimum and maximum value of the metric, respec-
tively. Also, str-par and nr-par are the average number of string and number
input parameters for the selected CUTs.

Project # CCN String parameter Number parameter
cc σ min max str-par σ min max nr-par σ min max

CLI 4 1.7 0.9 3.0 1.1 14.5 14.2 34.0 4.0 8.5 13.7 29.0 1.0
Geometry 13 1.8 0.4 2.5 1.2 3.4 5.5 21.0 1.0 10.2 6.7 21.0 1.0
Lang 34 3.0 1.6 7.4 1.1 17.4 36.7 209.0 1.0 26.6 48.3 249.0 1.0
Logging 1 3.0 - 3.0 3.0 6.0 - 6.0 6.0 3.0 - 3.0 3.0
Math 27 2.9 1.6 7.7 1.1 2.5 1.8 9.0 1.0 10.0 10.5 45.0 1.0
Numbers 5 2.8 1.1 4.5 1.6 1.4 0.9 3.0 1.0 31.6 33.5 89.0 4.0
RNG 4 3.3 1.4 5.0 1.7 2.2 2.5 6.0 1.0 2.0 1.4 4.0 1.0
Stemmer 16 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 Empirical Study

To assess the impact of HMX on search-based unit test generation, we perform
an empirical evaluation to answer the following research questions:

RQ1 To what extent does HMX improve structural coverage compared to the
single-point crossover?

RQ2 How does HMX impact the fault-detection capability of the generated tests?

Benchmark. For this study, we selected the CUTs from the Apache Com-
mons and Snowball Stemmer libraries. The former is a commonly-used project
containing reusable Java components for several applications 1. The latter is a
well-known library for stemming strings, which is part of the Apache Lucene
2. As described in Section 3, HMX brings more advantages for search-based test
generation in projects that utilize strings and numbers. Hence, to show the ef-
fect of this new crossover operator, we selected 100 classes from 9 components in
Apache Commons that have numeric and string input data: (i) Math a library
of lightweight, self-contained mathematics and statistics components; (ii) Num-
bers includes utilities for working with complex numbers; (iii) Geometry pro-
vides utilities for geometric processing; (iv) RNG a library of Java implementa-
tions of pseudo-random generators; (v) Statistics a project containing tools for
statistics; (vi) CLI an API processing and validating a command line interface;
(vii) Text a library focused on algorithms working on strings; (viii) Lang con-
tains extra functionality for classes in java.lang; and (ix) Logging an adapter
allowing configurable bridging to other logging systems.
1 https://commons.apache.org
2 https://github.com/weavejester/snowball-stemmer

https://commons.apache.org
https://github.com/weavejester/snowball-stemmer
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In addition, we added the main 16 classes in Snowball Stemmer to the
benchmark, as these focus on string manipulation and were previously used in
former search-based unit test generation studies [14].

Due to the large number of classes in the selected Apache Commons com-
ponents, we used CK [2], a tool that calculates the method-level and class-level
code metrics in Java projects using static analysis. We collect the Cyclomatic
Complexity (CC) and type of input parameters for each method in the selected
9 components. Using the collected information, we filter out the classes that do
not have methods accepting strings or numbers (integer, double, long, or float)
as input parameters. Then, we sort the remaining classes according to their av-
erage CC and pick the top 100 cases for our benchmark. Table 1 reports CC,
number of string, and number arguments for each project used in this study. By
doing a preliminary run of EvoSuite on the 116 selected classes, we noticed
that this tool fails to start the search process in 9 of the CUTs. These failures
stem from an issue in the underlying test generation tool EvoSuite. The tool
fails to gather a critical statistic (i.e., TOTAL_GOALS) for these runs in both
the baseline and HMX . We also encountered 4 classes that did not produce any
coverage for both the baseline and our approach. Consequently, we filtered out
these classes from the experiment and performed the final evaluation on 103
remaining classes.

Implementation. We implemented HMX in EvoSuite [10], which is the
state-of-the-art tool for search-based unit test generation in Java. By default,
this tool uses the single-point crossover for test generation. We have defined a
new parameter multi_level_crossover to enable HMX . Our Implementation
is openly available as an artifact [13].

Preliminary Study. We performed a preliminary study to see how the
probability of applying our data-level crossover influences the result. The single-
point test case-level crossover is applied with a predefined probability. We ex-
perimented with how often the data-level crossover should be applied whenever
the test case-level crossover was applied. From the probabilities we tried (i.e.,
0.25, 0.50, 0.75, 1.00), we found out that always applying the data-level crossover
when the test case-level crossover produced the best results according to statis-
tical analysis.

Parameter Settings. We run each search process with EvoSuite’s default
parameter values. As confirmed by prior studies [5], despite the impact of param-
eter tuning on the search performance, the default parameters provide acceptable
results. Hence, we run each search process with a two-minute search budget and
set the population size to 50 individuals. Moreover, we use mutation with a prob-
ability of 1/n (n = length of the generated test). For both crossover operators
that we used in this study (single-point crossover for the baseline and our novel
HMX), the crossover probability is 0.75. For the Simulated Binary Crossover
(SBX), we used the distribution index ηc = 2.5 [8]. The search algorithm is the
multi-criteria DynaMOSA [17], which is the default one in EvoSuite v1.1.0.
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Fig. 1: Boxplot of structural coverage comparing HMX to the baseline SPX. The
diamond point indicates the mean coverage of the benchmark.

Experimental Protocol. We apply both default EvoSuite with single-
point crossover and EvoSuite + HMX to each of the selected CUTs in the
benchmark. To address the random nature of search-based test generation tools,
we repeat each execution 100 times, with a different random seed, for a total
number of 23 200 independent executions. We run our evaluation on a system
with an AMD EPYC™ 7H12 using 240 cores running at 2.6 GHz. With each
execution taking 5 minutes on average (i.e., search, minimalization, and assertion
generation), the total running time is 80.6 days of sequential execution.

For our analysis, we report the average (median) results across the 100 re-
peated runs. To determine if the results (i.e., structural code coverage and fault
detection capability) of the two crossover operator are statistically significant,
we use the unpaired Wilcoxon rank-sum test [7] with a threshold of 0.05. The
Wilcoxon test is a non-parametric statistical test that determines if two data
distributions are significantly different. Additionally, we use the Vargha-Delaney
statistic [20] to measure the magnitude of the result, which determines how large
the difference between the two operators is.

5 Results

This section discusses the results of our study with the aim of answering the re-
search questions formulated in Section 4. All differences in results in this section
are presented in absolute differences (percentage points).

5.1 Result for RQ1: Structural Coverage
Fig. 1 shows the structural coverage achieved by our approach, HMX , compared
to the baseline, SPX, on the benchmark. In particular, Fig. 1a shows branch cov-
erage and Fig. 1b shows line coverage. The boxplots show the median, quartiles,
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Table 2: Statistical results of HMX vs. SPX on structural coverage. #Win in-
dicates the number of times that HMX is statistically better than SPX. #Lose
indicates the opposite. #No diff. indicates that there is no statistical difference.
Negl., Small, Medium, and Large denote the Â12 effect size.

Metric #Win #Lose #No diff.
Negl. Small Medium Large Negl. Small Medium Large

Branch 2 5 3 22 0 1 0 0 70
Line 3 1 3 19 0 1 0 0 76

variability in the results, and the outliers for all classes together. The diamond
point indicates the mean of the results.

Fig. 1a and Fig. 1b show that, on average, HMX has higher 1st quartile,
median, mean, and 3rd quartile values than the baseline, SPX, for both test
metrics. On average, HMX improves the branch coverage by +2.0 % and the
line coverage by +1.9 %. The largest differences are visible for the lower whisker
and for the first quartile (25th percentile). In particular, the differences for the
lower whisker are around +20% branch and line coverage when using HMX ; the
improvements in the first quartile are around +10% and +8% for branch and line
coverage, respectively. These results indicate that HMX improves both line and
branch coverage for some of the CUTs in our benchmark. Finally, as we can see in
both of the plots in Fig. 1, the variation in the results for HMX , measured by the
Interquartile Range (IQR), is smaller than for SPX. This observation shows that
HMX helps EvoSuite to generate tests with a more stable structural coverage.

Table 2 shows the results of the statistical comparison between HMX and
the baseline, SPX, based on a p-value ≤ 0.05. #Win indicates the number of
times that HMX has a statistically significant improvement over SPX. #Equal
indicates the number of times that there is no statistical difference in the results
between the two operators; #Lose indicates the number of times that HMX has
statistically worse results than SPX. The #Win and #Lose columns also include
the magnitude of the difference through the Â12 effect size, classified in Small,
Medium, Large, and Negligible.

From Table 2, we can see that HMX has a statistically significant non-
negligible improvement in 30 and 23 classes for branch and line coverage, respec-
tively. For the branch coverage metric, HMX improves with a large magnitude
for 22 classes, medium for 3 classes, and small for 5 classes. For line coverage,
HMX improves with a large magnitude for 19 classes, medium for 3 classes, and
small for 1 class. HMX only loses in one case in comparison to the baseline for
both branch and line coverage: StrSubstitutor from the Lang project. However,
in this case, the effect size is small (magnitude).

For branch coverage, we observe a maximum increase in coverage of +19.1 %
for the finnishStemmer class from the Stemmer project. For line coverage, the
class with the maximum increase in coverage is hungarianStemmer (also from
Stemmer) with an average improvement of +19.4 %. Compared to the baseline,
all classes in the Snowball Stemmer string manipulation library improve
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Fig. 2: Boxplot of structural coverage comparing HMX to the baseline SPX.

Table 3: Statistical results of HMX vs. SPX for fault-detection capability.
Metric #Win #Lose #No diff.

Negl. Small Medium Large Negl. Small Medium Large

Weak mutation 3 3 3 21 0 1 0 0 72
Strong mutation 0 8 0 15 0 3 0 0 77

based on branch and line coverage with an average improvement of +11.4 % and
+11.0 %, respectively. For the Apache Commons library, HMX significantly
improves the branch and line coverage in 16 (9 string-related and 7 number-
related) and 10 (6 string-related and 4 number-related) classes, respectively.

In summary, the proposed HMX crossover operator achieves significantly
higher (~30 % of the cases) or equal structural code coverage for unit test
case generation compared to the baseline SPX.

5.2 Result for RQ2: Fault Detection Capability

Fig. 2 shows the fault detection capability of HMX compared to SPX measured
through the mutation score. Fig. 2a shows the weak mutation score and Fig. 2b
shows the strong mutation score. The boxplots show the median, quartiles, vari-
ability in the results, and the outliers for all classes in the benchmark together.
The diamond point indicates the mean of the results. From Fig. 2a, we can see
that, on average, HMX improves the weak mutation score by +1.2 % compared
to SPX. However, from Fig. 2b we can see that overall, the strong mutation
scores only show marginal improvements (+0.5 %).

Table 3 shows the statistical comparison between HMX and SPX, based on
a p-value ≤ 0.05. Similarly to Table 2, #Win indicates the number of times that
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HMX has a statistically significant improvement over SPX, #Equal indicates
the number of times that there is no statistical difference in the results of the
two operators, and #Lose indicates the number of times that HMX has statisti-
cally worse results than SPX. The #Win and #Lose columns additionally also
indicate the magnitude of the difference through the Â12 effect size. From Ta-
ble 3, we can see that HMX has a statistically significant non-negligible improve-
ment in 27 and 23 cases for weak and strong mutation, respectively. For weak
mutation, HMX improves with a large magnitude for 21 classes, medium for 3
classes, and small for 3 classes. For strong mutation, HMX improves with a large
magnitude for 15 classes and a small magnitude for 8 classes. HMX performes
worse in one case (Fraction from the Lang project) for weak mutation and
three cases (AdaptiveStepsizeFieldIntegrator and MultistepIntegrator
from the Math project, and SphericalCoordinates from the Geometry project)
for strong mutation, all with a small effect size.

We observe a maximum increase in weak mutation score of +14.0 % for the
hungarianStemmer class (Stemmer) and +12.2 % for the ExtendedMessageFormat
class (Text) on strong mutation score. Among the classes that improve on weak
and strong mutation score, 27 and 20, respectively, also improve w.r.t. branch
coverage. Interestingly, four classes among both mutation scores improve w.r.t.
mutation score without improving the structural coverage.

In summary, HMX achieves significantly higher (~25 % of the cases) or equal
fault detection capability compared to SPX and is outperformed in one and
three classes for weak and strong mutation, respectively.

6 Threats to Validity

This section discusses the potential threats to the validity of our study.
Construct validity: Threats to construct validity stem from how well the

chosen evaluation metrics measure the intended purpose of the study. Our study
relies on well-established evaluation metrics in software testing to compare the
proposed hybrid multi-level crossover with the current state-of-the-art, namely
structural coverage (i.e., branch and line) and fault detection capability (i.e.,
weak and strong mutation). As the stopping condition of the search process, we
used a time-based budget rather than a budget based on the number of test
evaluations or generations. A time-based budget provides a fairer measure since
the two crossover operators have a different overhead and execution time and
might otherwise provide an unfair advantage to our operator.

Internal validity: Threats to internal validity stem from the influence of
other factors onto our results. The only difference between the two approaches in
our study is the crossover operator. Therefore, any improvement or diminishment
in the results must be attributed to the difference in the two crossover operators.

External validity: Threats to external validity stem from the generalizabil-
ity of our study. We selected 116 classes from popular open-source projects based
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on their cyclomatic complexity and type of input parameters to create a rep-
resentative benchmark. These classes have previously been used in the related
literature on test case generation [14,15].

Conclusion validity: Threats to conclusion validity stem from the deduc-
tion of the conclusion from the results. To minimize the risk of the randomized
nature of EAs, we performed 100 iterations of the experiment in our study with
different random seeds. We have followed the recommended guidelines for run-
ning empirical experiments with randomized algorithms using sound statistical
analysis as recommend in the literature [4]. We used the unpaired Wilcoxon rank-
sum test and the Vargha-Delaney Â12 effect size to determine the significance
and magnitude of our results.

7 Conclusions and Future Work

In this paper, we have proposed a novel crossover operator, called HMX , that
combines different crossover operators on both a test case-level and a data-level
for generating unit-level test cases. By implementing such a hybrid multi-level
crossover operator, we can create genetic variation in not only the test statements
but also the test data. We implemented HMX in EvoSuite, a state-of-the-art
Java unit test case generation tool. Our approach was evaluated on a bench-
mark of 116 classes from two popular open-source projects. The results show
that HMX significantly improves the structural coverage and fault detection ca-
pability of the generated test cases compared to the standard crossover operator
used in EvoSuite (i.e., single-point). Based on these promising results, there
are multiple potential directions for future work to explore. In this paper, we
detailed the crossover operator for two types of primitive test data inputs (i.e.,
numbers and strings). In future work, we are planning to extend this with addi-
tional operators for arrays, lists, and maps. Additionally, we want to experiment
with alternative crossover operators for numbers (e.g., parent-centric crossover,
arithmetic crossover) and strings (e.g., multi-point crossover).
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