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Foreword by Martin Ester

Machine learning (ML) has achieved spectacular breakthroughs in many real-life
applications, including image classification, machine translation, and robotics. Deep
neural networks have been particularly successful, due to their great capacity to
approximate extremely complex, non-linear functions. Neural networks achieve this
capacity through increasingly diverse and complex network architectures. However,
the great potential comes at a hefty price: the development of machine learning
models does not only require suitable training datasets and knowledge of the
application domain but also deep knowledge of the machine learning methods to
actually leverage their full potential.

Automated machine learning (AutoML) is a research direction that has recently
emerged in response to the ever-increasing complexity of ML models and their
development, aiming to automate the development process as much as possible.
Goals are, in particular, to automatically tune the many hyperparameters, e.g., the
number and size of layers, and to determine the most appropriate architecture of a
neural network, e.g., a convolutional network for feature extraction combined with
a fully connected network for classification. A related goal is meta-learning, i.e.,
learning to learn, which promises to reduce the effort of model development by
transferring a model from a source domain to a target domain. While AutoML is
still a fairly young research area, neural networks developed through AutoML have
already achieved performance comparable to that of neural networks handcrafted
by data scientists in some applications. Since 2015, the research community has
organized the AutoML Challenge, which has provided a benchmark and much
stimulation to the field. Several ML development tools, including RapidMiner and
Microsoft Azure, have already implemented the features of AutoML. In conclusion,
AutoML is a promising direction in ML that is expected to mature in the years to
come.

This timely book by two experts in the field introduces the state-of-the-art in
AutoML with a focus on it for multimedia data. Wenwu Zhu is a Professor at the
Department of Computer Science at Tsinghua University and is widely recognized
for his research in the areas of multimedia networking and computing as well as
multimedia big data. Xin Wang is an Assistant Professor at the Department of
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Computer Science at Tsinghua University. Multimedia data, including image, video,
audio, and text data, is much more complex in nature than structured data such as
records stored in a relational database, and multimedia has been the domain where
deep neural networks have had the greatest impact. In addition to being unstructured,
multimedia data is typically very large and multimodal, i.e., combines various types
of multimedia data, e.g., images and text. Finally, multimedia data is often served
in a streaming fashion, i.e., large amounts of data arrive rapidly and have to be
processed online. I highly recommend this book to anyone who wants to understand
the state-of-the-art in AutoML, in particular the special challenges and methods for
multimedia data.

Professor, Simon Fraser University Martin Ester
Burnaby, BC, Canada



Foreword by Steven C.H. Hoi

As a fundamental subset of Al techniques, machine learning has drawn popular
attention from both academia and industry and made significant impact in real-
world applications. This book covers two important and closely related subfields of
machine learning, automated machine learning (AutoML) and meta-learning, which
have been actively studied in recent years.

AutoML aims to automate the task of applying machine learning to solve
a real-world problem. For example, one popular technique in AutoML is
hyper-parameter optimization (HPO), which aims to automatically choose
optimal hyperparameters for a learning algorithm. Another well-known AutoML
technique is neural architecture search (NAS) for deep learning or deep
neural network (DNN), which aims to automate the design of deep learning
architectures.

Meta-learning, also known as learning to learn, aims to design a model that can
learn new skills or adapt to new environments rapidly with limited training data.
Meta-learning can be applied to tackle the AutoML tasks, such as HPO and NAS.
In addition, meta-learning can be used for several other kinds of machine learning
tasks and real-world applications, such as cold-start recommendation in multimedia
and few-shot learning in computer vision and NLP.

This book provides a comprehensive understanding of AutoML and meta-
learning methods and their applications. It is organized into two parts. Part I
covers the subjects on the fundamentals of AutoML and meta-learning method-
ologies, including basics of some popular algorithms and recent advances in
machine learning. Part II covers the subjects on applying AutoML and meta-
learning techniques for a range of application domains, such as computer vision,
natural language processing, multimedia, data mining, and recommender sys-
tems.

The authors are established Al experts and researchers with extensive experi-
ences in investigating machine learning techniques for real-world applications. This
book is strongly recommended for Al researchers, engineers, graduate students, and
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any readers who are interested in learning advanced machine learning subjects in
AutoML and meta-learning.

Managing Director, Salesforce Research Asia Steven C.H. Hoi
Professor, Singapore Management University
Singapore



Foreword by Tong Zhang

I have known professor Wenwu Zhu for many years, and we have collaborated on a
number of problems. Professor Zhu is a highly regarded scientist in multimedia and
big data research. He has not only published many influential scientific papers but
also worked on practical problems in the industrial setting.

Both automated machine learning and meta-learning are emerging topics in
machine learning, which have drawn significant attention in recent years due to
their many practical applications. This book presents a comprehensive overview
of the recent advances in these subjects as well as their applications. The book
contains two parts. Part I presents a unified view of basic concepts and many recently
proposed algorithms that are scattered in the literature. This helps the readers to
quickly grasp the basic concepts and algorithmic foundations. Part II contains case
studies and applications that help the readers to understand how these methods
can be applied to real-world problems. Although examples in this book focused
on multimedia applications, the material should greatly benefit all researchers and
practitioners who want to learn these advanced machine learning methods through
practical examples.

Chair Professor Tong Zhang

The Hong Kong University of Science and Technology
Hong Kong, China
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Preface

This book is to disseminate and promote the recent research progress and frontier
development in AutoML and meta-learning as well as their applications in computer
vision, natural language processing, multimedia, and data mining-related fields,
which are exciting and fast-growing research directions in the general field of
machine learning. We will advocate novel, high-quality research findings and
innovative solutions to the challenging problems in AutoML and meta-learning.
This topic is at the core of the scope of artificial intelligence and is attractive to
audience from both academia and industry.

Our efforts in writing this book is motivated by the following reasons. First
of all, the topics on meta-learning and AutoML are very new emerging topics,
which urgently requires a well-organized monograph on these topics. Second,
several current viewpoints may treat neural architecture search (NAS) and Bayesian
optimization (BO), two important techniques in AutoML, as components in meta-
learning. Our book differs from them by regarding AutoML and meta-learning as
two parallel tools that can enhance each other. Third, in this book, we will discuss
more recent advances in AutoML and meta-learning, such as continual learning,
hardware-aware architecture search, and automated graph learning. Last but not the
least, this book also focuses on the applications of AutoML and meta-learning in
many research fields, such as computer vision, natural language processing, and
multimedia etc.

Therefore, we deeply hope that this book can benefit interested readers from both
academy and industry, covering the needs from junior starters in research to senior
practitioners in IT companies.

Beijing, China Wenwu Zhu

Beijing, China Xin Wang
June, 2021
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