Skip to main content

Data-Driven EEG Informed Functional MRI Combined with Network Analysis Successfully Identifies the Seizure Onset Zone

  • Conference paper
  • First Online:
Bioengineering and Biomedical Signal and Image Processing (BIOMESIP 2021)

Abstract

A data-driven network analysis strategy was developed to apply EEG-informed functional MRI to identify the seizure onset zone in the presurgical work-up of epilepsy patients (nā€‰=ā€‰10). Instead of voxel-wise general linear model analysis the time series of independent components were correlated with the interictal epileptic discharges density function, yielding the so-called epileptic network. We used eigenvector centrality mapping and a symmetry index to detect the epileptic independent component (ICE) out of the epileptic network. The location of the ICE was for 9 of the 10 patients studied concordant with the clinical hypothesis. Moreover, the clinical evaluation including the outcome of surgery indicated successful localization of the ICE for 6 out of 8 patients who had a resection. The robustness of the methods used to identify the ICE was demonstrated by evaluating the results of the patient study against the results of similar network analysis procedures applied to the functional MRI sequences of 10 healthy controls. In conclusion, the data-driven network analysis strategy successfully identifies the ICE. The concordance of the ICE with the clinical information, including outcome of the resection of the patients, is in support of the usefulness of EEG-fMRI as initial diagnostic tool in the presurgical work-up of epilepsy patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zijlmans, M., Huiskamp, G., Hersevoort, M., Seppenwoolde, J.H., van Huffelen, A.C., Leijten, F.S.S.: EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 130, 2343ā€“2353 (2007). https://doi.org/10.1093/brain/awm141

    ArticleĀ  Google ScholarĀ 

  2. van Houdt, P.J., de Munck, J.C., Leijten, F.S.S., Huiskamp, G.J.M., Colon, A.J., Boon, P.A.J.M.: EEG-fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. Neuroimage 75, 238ā€“248 (2013). https://doi.org/10.1016/j.neuroimage.2013.02.033

  3. Tousseyn, S., Dupont, P., Goffin, K., Sunaert, S., Van Paesschen, W.: Correspondence between large-scale ictal and interictal epileptic networks revealed by single photon emission computed tomography (SPECT) and electroencephalography (EEG)-functional magnetic resonance imaging (fMRI). Epilepsia 56(3), 382ā€“392 (2015). https://doi.org/10.1111/epi.12910

    ArticleĀ  Google ScholarĀ 

  4. Coan, A.C., Chaudhary, U.J., Grouiller, F., Campos, B.M., Perani, S., De Ciantis, A.: EEG-fMRI in the presurgical evaluation of temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 87(6), 642ā€“649 (2016). https://doi.org/10.1136/jnnp-2015-310401

  5. Ito, Y., Maesawa, S., Bagarinao, E., Okai, Y., Nakatsubo, D., Yamamoto, H.: Subsecond EEG-fMRI analysis for presurgical evaluation in focal epilepsy. J. Neurosurg. 13, 1ā€“10 (2020). https://doi.org/10.3171/2020.1.JNS192567

  6. van Houdt, P.J., Ossenblok, P.P.W., Colon, A.J., Boon, P.A.J.M., de Munck, J.C.: A framework to integrate EEG-correlated fMRI and intracerebral recordings. Neuroimage 60, 2042ā€“2053 (2012). https://doi.org/10.1016/j.neuroimage.2012.02.023

    ArticleĀ  Google ScholarĀ 

  7. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137ā€“152 (2004). https://doi.org/10.1109/TMI.2003.822821

    ArticleĀ  Google ScholarĀ 

  8. Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.: Consistent resting-state networks. Proc. Natl. Acad. Sci. USA 103, 6 (2006). https://doi.org/10.1073/pnas.0601417103

  9. Hunyadi, B., Tousseyn, S., Mijovic, B., Dupont, P., Van Huffel, S., Van Paesschen, W.: ICA extracts epileptic sources from fMRI in EEG-negative patients: a retrospective validation study. PLoS ONE 8(11), e78796 (2013). https://doi.org/10.1371/journal.pone.0078796

  10. van Houdt, P.J., Ossenblok, P.P.W., Colon, A.J., Hermans, K.H.M., Verdaasdonk, R.M., Boon, P.A.J.M.: Are epilepsy-related fMRI components dependent on the presence of interictal epileptic discharges in scalp EEG? Brain Topogr. 28(4), 606ā€“618 (2014). https://doi.org/10.1007/s10548-014-0407-1

  11. Hermans, K., Ossenblok, P., Van Houdt, P., Geerts, L., Verdaasdonk, R., Boon, P.: Network analysis of EEG related functional MRI changes due to medication withdrawal in focal epilepsy. Neuroimage Clin. 9(8), 560ā€“571 (2015). https://doi.org/10.1016/j.nicl.2015.06.002

  12. Centeno, M., Carmichael, D.W.: Network connectivity in epilepsy: resting state fMRI and EEG-fMRI contributions. Front. Neurol. 5, 93 (2014). https://doi.org/10.3389/fneur.2014.00093

    ArticleĀ  Google ScholarĀ 

  13. Dansereau, C.L., Bellec, P., Lee, K., Pittau, F., Gotman, J., Grova, C.: Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment. Frontiers Neurosci. 8, 419 (2014). https://doi.org/10.3389/fnins.2014.00419

    ArticleĀ  Google ScholarĀ 

  14. Bernhardt, B.C., Bonilha, L., Gross, D.W.: Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 50, 162ā€“170 (2015). https://doi.org/10.1016/j.yebeh.2015.06.005

    ArticleĀ  Google ScholarĀ 

  15. Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P.: The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382ā€“2395 (2014). https://doi.org/10.1093/brain/awu132

  16. Wink, A.M., De Munck, J.C., van der Werf, Y.D., van den Heuvel, O.A., Barkhof, F.: Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect. 2(5), 265ā€“274 (2012). https://doi.org/10.1089/brain.2012.0087

    ArticleĀ  Google ScholarĀ 

  17. Schoonheim, M., Geurts, J., Wiebenga, O., De Munck, J., Polman, C., Stam, C.: Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Mult. Scler. 20, 1058ā€“1065 (2013). https://doi.org/10.1177/1352458513516892

  18. Binnewijzend, M.A.A., Adriaanse, S.M., Van der Flier, W.M., Teunissen, C.E., de Munck, J.C., Stam, C.J.: Brain network alterations in Alzheimerā€™s disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum. Brain Mapp. 35, 2383ā€“2393 (2014). https://doi.org/10.1002/hbm.22335

  19. Gotman, J., Grova, C., Bagshaw, A., Kobayashi, E., Aghakhani, Y., Dubeau, F.: Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. PNAS 102(42), 15236ā€“15240 (2005). https://doi.org/10.1073/pnas.0504935102

    ArticleĀ  Google ScholarĀ 

  20. van Houdt, P.J., de Munck, J.C., Zijlmans, M., Huiskamp, G., Leijten, F.S., Boon, P.A.: Comparison of analytical strategies for EEG-correlated fMRI data in patients with epilepsy. Magn. Reson. Imag. 28(8), 1078ā€“1086 (2010). https://doi.org/10.1016/j.mri.2010.03.022

  21. Masterton, R.A.J., Abbott, D.F., Fleming, S.W., Jackson, G.D.: Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. Neuroimage 37, 202ā€“211 (2007). https://doi.org/10.1016/j.neuroimage.2007.02.060

    ArticleĀ  Google ScholarĀ 

  22. Glover, G.H., Li, T.Q., Ress, D.: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162ā€“167 (2000). https://doi.org/10.1002/1522-2594(200007)44:1%3c162::aid-mrm23%3e3.0.co;2-e

    ArticleĀ  Google ScholarĀ 

  23. de Munck, J.C., van Houdt, P.J., GonƧalves, S.I., van Wegen, E., Ossenblok, P.P.W.: Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction. Neuroimage 64, 407ā€“415 (2013). https://doi.org/10.1016/j.neuroimage.2012.09.022

    ArticleĀ  Google ScholarĀ 

  24. Beall, E.B., Lowe, M.J.: The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. J. Neurosci. Methods 191, 263ā€“276 (2010). https://doi.org/10.1016/j.jneumeth.2010.06.02

    ArticleĀ  Google ScholarĀ 

  25. de Munck, J.C., GonƧalves, S.I., Faes, T.J.C., Kuijer, J.P., Pouwels, P.J.W., Heethaar, R.M.: A study of the brainā€™s resting state based on alpha band power, heart rate and fMRI. Neuroimage 42, 111ā€“121 (2008). https://doi.org/10.1016/j.neuroimage.2008.04.244

  26. Hermans, K., de Munck, J.C., Verdaasdonk, R., Boon, P., Krausz, G., Prueckl, R.: Effectiveness of reference signal-based methods for removal of EEG artifacts due to subtle movements during fMRI scanning. IEEE Trans. Biomed. Eng. 63(12), 2638ā€“2646 (2016). https://doi.org/10.1109/TBME.2016.2602038

  27. de Munck, J.C., GonƧalves, S.I., Huijboom, L., Kuijer, J.P.A., Pouwels, P.J.W., Heethaar, R.M.: The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35, 1142ā€“1151 (2007). https://doi.org/10.1016/j.neuroimage.2007.01.022

  28. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57, 289ā€“300 (1995). https://doi.org/10.1016/s0166-4328(01)00297-2

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  29. Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158ā€“165 (2012). https://doi.org/10.1093/cercor/bhr099

    ArticleĀ  Google ScholarĀ 

  30. Heller, R., Stanley, D., Yekutieli, D., Rubin, N., Benjamini, Y.: Cluster-based analysis of FMRI data. Neuroimage 33, 599ā€“608 (2006). https://doi.org/10.1016/j.neuroimage.2006.04.233

    ArticleĀ  Google ScholarĀ 

  31. Chakraborty, A.R., Almeida, N.C., Prather, K.Y., Oā€™Neal, C.M., Wells, A.A., Chen, S.: Resting-state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: a systematic review and meta-analysis. Epilepsia 00, 1ā€“11 (2020). https://doi.org/10.1111/epi.16637

  32. Iannotti, G.R., Grouiller, F., Centeno, M., Carmichael, D., Abela, E., Wiest, R.: Epileptic networks are strongly connected with and without the effects of interictal discharges. Epilepsia 57(7), 1086ā€“1096 (2016). https://doi.org/10.1111/epi.13400

Download references

Acknowledgements

This study was part of the Central Nervous System and Imaging (CSI) project and the Devices for NeuroControl and NeuroRehabilitation (DeNeCor) project funded by ENIAC Joint Undertaking (grant numbers 120209, 324257). The authors thank, especially, the Academic Center for Epileptology, Kempenhaeghe for the contribution to the data collection, Kees Hermans for his contribution to the fMRI data analysis and Jan Verwoerd (clinical scientist at Philips Health Care, Best) for his contribution to the EEG-related fMRI sequences development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauly Ossenblok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ossenblok, P., Colon, A., Geerts, L., Boon, P., van Houdt, P., de Munck, J. (2021). Data-Driven EEG Informed Functional MRI Combined with Network Analysis Successfully Identifies the Seizure Onset Zone. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics