Skip to main content

Relationships Between Vertical Jump and Composite Indices of Femoral Neck Strength in a Group of Young Women

  • Conference paper
  • First Online:
Bioengineering and Biomedical Signal and Image Processing (BIOMESIP 2021)

Abstract

The purpose of this study was to investigate the relationships between vertical jump and composite indices of femoral neck strength (Compression strength index (CSI), bending strength index (BSI) and impact strength index (ISI)) in a group of young women. 206 young women (18 to 35 years) voluntarily participated in this study. Weight and height were measured, and body mass index (BMI) was calculated. Body composition, bone mineral content (BMC), bone mineral density (BMD) and trabecular bone score (TBS) were determined for each individual by Dual-energy X-ray absorptiometry (DXA). Composite indices of femoral neck strength (CSI, BSI and ISI) were calculated. Vertical jump was evaluated using a validated field test (Sargent test), and maximum power (P max, in watts) of the lower limbs was calculated accordingly. Vertical jump was positively correlated to CSI (r = 0.36; p < 0.001), BSI (r = 0.30; p < 0.001) and ISI (r = 0.33; p < 0.001). After adjusting for weight, vertical jump remained positively correlated to CSI (p = 0.026). The correlations between vertical jump and bone variables disappeared after adjusting for fat mass. The current study suggests that vertical jump is a positive determinant of composite indices of femoral neck strength in young women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shakil, A., Gimpel, N.E., Rizvi, H., et al.: Awareness and prevention of osteoporosis among south asian women. J. Community Health. 35, 392–397 (2010)

    Article  Google Scholar 

  2. Keen, R.W.: Pathophysiology of osteoporosis. In: Clunie, G., Keen, R.W. Osteoporosis, 2nd edn. Oxford Rheumatology Library. United Kingdom (2014)

    Google Scholar 

  3. Rizzoli, R., Bianchi, M.L., Garabédian, M., McKay, H.A., Moreno, L.A.: Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2), 294–305 (2010)

    Article  Google Scholar 

  4. Hernandez, C.J., Beaupré, G.S., Carter, D.R.: A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos. Int. 14(10), 843–847 (2003)

    Article  Google Scholar 

  5. Melton, L.J., Atkinson, E.J., Khosla, S., Oberg, A.L., Riggs, B.L.: Evaluation of a prediction model for long-term fracture risk. J. Bone Miner. Res. 20(4), 551–556 (2005)

    Article  Google Scholar 

  6. Bonjour, J.P., Chevalley, T., Ferrari, S., Rizzoli, R.: The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 51(1), S5–S17 (2009)

    Google Scholar 

  7. Khawaji, M., Astermark, J., Akesson, K., Berntorp, E.: Physical activity for prevention of osteoporosis in patients. Haemophilia 16, 495–501 (2010)

    Google Scholar 

  8. Ainsworth, B.E., Youmans, C.P.: Tools for physical activity counseling in medical practice. Obes. Res. 10(1), 69S-75S (2002)

    Article  Google Scholar 

  9. Nikander, R., Sievänen, H., Heinonen, A., Kannus, P.: Femoral neck structure in adult female athletes subjected to different loading modalities. J. Bone Miner. Res. 20, 520–528 (2005)

    Article  Google Scholar 

  10. Frost, H.M.: Bone’s mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 275, 1081–1101 (2003)

    Article  Google Scholar 

  11. Giangregorio, L.M., et al.: Too Fit to Fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos. Int. 25, 821–835 (2014)

    Article  Google Scholar 

  12. Vicente-Rodriguez, G., Dorado, C., Perez-Gomez, J., Gonzalez-Henriquez, J.J., Calbet, J.A.: Enhanced bone mass and physical fitness in young female handball players. Bone 35, 1208–1215 (2004)

    Article  Google Scholar 

  13. Dixon, W.G., et al.: Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology (Oxford) 44, 642–646 (2005)

    Article  Google Scholar 

  14. Sirola, J., Rikkonen, T., Tuppurainen, M., Jurvelin, J.S., Alhava, E., Kröger, H.: Grip strength may facilitate fracture prediction in perimenopausal women with normal BMD: a 15-year population based study. Calcif. Tissue Int. 83, 93–100 (2008)

    Article  Google Scholar 

  15. Sherk, V.D., Palmer, I.J., Bemben, M.G., Bemben, D.A.: Relationships between body composition, muscular strength, and bone mineral density in estrogen-deficient postmenopausal women. J. Clin. Densitom. 12, 292–298 (2009)

    Article  Google Scholar 

  16. Berro, A.J., et al.: Physical performance variables and bone parameters in a group of young overweight and obese women. J. Clin. Densitom. 22(2), 293–299 (2019)

    Article  Google Scholar 

  17. Khawaja, A., et al.: Does muscular power predict bone mineral density in young adults? J. Clin. Densitom. 22(3), 311–320 (2019)

    Article  Google Scholar 

  18. Kanis, J.A., Kanis, J.A.: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporosis Int 4, 368–381 (1994). https://doi.org/10.1007/BF01622200

  19. Kanis, J.A., McCloskey, E.V., Johansson, H., Oden, A., Melton, L.J., Khaltaev, N.: A reference standard for the description of osteoporosis. Bone 42(3), 467–475 (2008)

    Article  Google Scholar 

  20. Stone, K.L., et al.: BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J. Bone Miner. Res. 18, 1947–1954 (2003)

    Article  Google Scholar 

  21. Black, D.M., et al.: Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J. Bone Miner. Res. 23, 1326–1333 (2008)

    Article  Google Scholar 

  22. Karlamangla, A.S., Barrett-Connor, E., Young, J., Greendale, G.A.: Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos. Int. 15, 62–70 (2004). https://doi.org/10.1007/s00198-003-1513-1

    Article  Google Scholar 

  23. Yu, N., et al.: Evaluation of compressive strength index of the femoral neck in Caucasians and Chinese. Calcif. Tissue Int. 87, 324–332 (2010). https://doi.org/10.1007/s00223-010-9406-8

    Article  Google Scholar 

  24. Ayoub, M.L., et al.: DXA-based variables and osteoporotic fractures in Lebanese postmenopausal women. Orthop. Traumatol. Surg. Res. 100, 855–858 (2014)

    Article  Google Scholar 

  25. El Hage, R.: Composite indices of femoral neck strength in adult female soccer players. J. Clin. Densitom. 17, 212–213 (2014)

    Article  Google Scholar 

  26. El Hage, R., Zakhem, E., Zunquin, G., Theunynck, D., Moussa, E., Maaloufet, G.: Does soccer practice influence compressive strength, bending strength, and impact strength indices of the femoral neck in young men? J. Clin. Densitom. 17(1), 213–214 (2014)

    Article  Google Scholar 

  27. Berro A, Fayad N, Pinti A, et al. 2017 Maximal oxygen consumption and composite indices of femoral neck strength in a group of young women. In: International Conference on Bioinformatics and Biomedical Engineering. Springer, Cham:369–75https://doi.org/10.1007/978-3-319-56148-6_32

  28. Khoury, C.E.I., et al.: Decreased Composite Indices of Femoral Neck Strength in Young Obese Men. J. Clin. Densitom. 20(2), 268–270 (2017)

    Article  Google Scholar 

  29. Khoury, G.E., et al.: Maximal oxygen consumption and composite indices of femoral neck strength in a group of young overweight and obese men. J Clin Densitom 21(2), 310–311 (2018)

    Article  Google Scholar 

  30. Zakhem, E., et al.: Influence of physical activity level on composite indices of femoral neck strength in a group of young overweight. J. Clin. Densitom. 23(4), 596–603 (2020)

    Article  Google Scholar 

  31. Zakhem, E., Sabbagh, P., Khoury, C.A., Zunquin, G., Baquet, G., El Hage, R.: Positive correlations between physical activity level and composite indices of femoral neck strength in a group of young overweight and obese men. Sci. Sport 36(3), 210–217 (2020)

    Google Scholar 

  32. Finianos, B., Zunquin, G., El Hage, R.: Composite indices of femoral neck strength in middle-aged inactive subjects vs former football players. J. Clin. Densitom. 24(2), 214–224 (2021)

    Google Scholar 

  33. Sardinha, L.B., Baptista, F., Ekelund, U.: Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics 122(3), e728–e736 (2008)

    Article  Google Scholar 

  34. Mori, T., et al.: Physical activity as determinant of femoral neck strength relative to load in adult women: findings from the hip strength across the men- opause transition study. Osteoporos. Int. 25, 265–272 (2014). https://doi.org/10.1007/s00198-013-2429-z

    Article  Google Scholar 

  35. World Health Organization: Obesity: Preventing and managing the global epidemic. WHO technical report series, Geneva (2000)

    Google Scholar 

  36. Beck, T.J., Ruff, C.B., Warden, K.E., LeBoff, M.S., Cauley, J.A., Chen, Z.: Predicting femoral neck strength from bone mineral data. A structural approach. Invest. Radiol. 25(1), 6–18 (1990)

    Article  Google Scholar 

  37. Silva, B.C., Broy, S.B., Boutroy, S., Schousboe, J.T., Shepherd, J.A., Leslie, W.D.: Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 2: trabecular bone score. J. Clin. Densitom. 18(3), 309–330 (2015)

    Article  Google Scholar 

  38. Harvey, N.C., et al.: Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015)

    Article  Google Scholar 

  39. El Hage, R., et al.: Maximal oxygen consumption and bone mineral density in a group of young Lebanese adults. J. Clin. Densitom. 17, 320–324 (2014)

    Google Scholar 

  40. El Hage, R., Bachour, F., Sebaalt, A., Issa, M., Zakhem, E., Maalouf, G.: The influence of weight status on radial bone mineral density in Lebanese women. Calcif. Tissue Int. 94(4), 465–467 (2014)

    Google Scholar 

  41. El Hage, R., et al.: The influence of obesity and overweight on hip bone mineral density in Lebanese women. J. Clin. Densitom. 17(1), 216–217 (2014)

    Google Scholar 

  42. Zakhem, E., et al.: Physical performance and trabecular bone score in a group of young Lebanese women. J. Clin. Densitom. 18, 271–272 (2015)

    Article  Google Scholar 

  43. Harman, E., Rosenstein, M., Frykman, P., Rosenstein, R., Kraemer, W.: Estimation of human power output from vertical jump. J. Strength Conditioning Res. 5(3), 116–120 (1991)

    Google Scholar 

  44. Zakhem, E., et al.: Performance physique et densité minérale osseuse chez de jeunes adultes libanais. J. Med. Liban. 64(4), 193–199 (2016)

    Google Scholar 

  45. Khoury, C.E., et al.: Physical performance variables and bone mineral density in a group of young overweight and obese men. J. Clin. Densitom. 21(1), 41–47 (2018)

    Article  Google Scholar 

  46. Petit, M.A., Beck, T.J., Hughes, J.M., Lin, H.M., Bentley, C., Lloyd, T.: Proximal femur mechanical adaptation to weight gain in late adolescence: a six-year longitudinal study. J. Bone Miner. Res. 23, 180–188 (2008)

    Article  Google Scholar 

  47. Shea, K.L., et al.: Loss of bone strength in response to exercise-induced weight loss in obese postmenopausal women: results from a pilot study. J. Musculoskelet. Neuronal. Interact. 14, 229–238 (2014)

    Google Scholar 

  48. MacKelvie, K.J., McKay, H.A., Petit, M.A., Moran, O., Khan, K.M.: Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J. Bone Miner. Res. 17(5), 834–844 (2002)

    Article  Google Scholar 

  49. Nikander, R., Sievänen, H., Heinonen, A., Kannus, P.: Femoral neck structure in adult female athletes subjected to different loading modalities. J. Bone Miner. Res. 20(3), 520–528 (2005)

    Article  Google Scholar 

  50. Lorentzon, M., Mellström, D., Ohlsson, C.: Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. J. Bone Miner. Res. 20(11), 1936–1943 (2005)

    Article  Google Scholar 

  51. Bonjour, J.P., Chevalley, T., Rizzoli, R., Ferrari, S.: Gene environment interactions in the skeletal response to nutrition and exercise during growth. Med. Sport Sci. 51, 64–80 (2007)

    Article  Google Scholar 

  52. El Hage, R., et al.: Effects of 12 weeks of endurance training on bone mineral content and bone mineral density in obese, overweight and normal weight adolescent girls. Sci. Sports 24(3–4), 210–213 (2009)

    Google Scholar 

  53. Genaro, P.S., Pereira, G.A., Pinheiro, M.M., Szejnfeld, V.L., Martini, L.A.: Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch. Gerontol. Geriatr. 51(3), 295–298 (2010)

    Article  Google Scholar 

  54. Khoury, G.E., et al.: Bone variables in active overweight/obese men and sedentary overweight/obese men. J. Clin. Densitom. 20, 239–246 (2017)

    Article  Google Scholar 

  55. Rocher, E., El Hage, R., Chappard, C., Portier, H., Rochefort, G.Y., Benhamou, C.L.: Bone mineral density, hip bone geometry, and calcaneus trabecular bone texture in obese and normal-weight children. J. Clin. Densitom. 16(2), 244–249 (2013)

    Google Scholar 

  56. Beck, T.J.: Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos. Int. 14(5), S81–S88 (2003)

    Article  Google Scholar 

  57. Beck, T.J.: Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr. Osteoporos. Rep. 5(2), 49–55 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the research council of the University of Balamand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pinti .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interest

None of the authors reported a conflict of interest related to the study.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khawaja, A. et al. (2021). Relationships Between Vertical Jump and Composite Indices of Femoral Neck Strength in a Group of Young Women. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics