Skip to main content

Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties

  • Conference paper
  • First Online:
Bioengineering and Biomedical Signal and Image Processing (BIOMESIP 2021)

Abstract

The current research deals with bio-composites which are fabricated by using natural cellulosic fibers as reinforcements. A multifunctional bio-resin derived from epoxy is used as matrix. Four different types of fibers e.g., jute, sisal, coconut/coir and sugarcane (bagasse) were used for reinforcement. Fibers were used with three different loading levels by volume i.e., 20%, 25% and 30% respectively. Mechanical properties e.g., impact strength, flexural strength, tensile strength, and modulus etc. were evaluated and analyzed for the developed samples. The results reveal that there is improvement of mechanical properties by increasing fiber loading which is important requirement for several structural engineering applications. Among all the different types of cellulosic fibrous reinforcement, jute fiber-based composites exhibit superior tensile, impact and flexural properties as compared to all other fiber types. This is attributed to the jute fiber mechanical properties, morphology and surface roughness which contribute significantly towards the interfacial bonding with resin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, R., Lim, J.K.: Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J. Compos. Mater. 41(13), 1655–1669 (2007). https://doi.org/10.3390/ma12060854

    Article  Google Scholar 

  2. Thomason, J., Yang, L., Gentles, F.: Characterization of the anisotropic thermoelastic properties of natural fibers for composite reinforcement. Fibers. 5(4), 36 (2017). https://doi.org/10.3390/fib5040036

    Article  Google Scholar 

  3. Cavalcanti, D., Banea, M., Neto, J., et al.: Mechanical characterization of intralaminar natural fiber-reinforced hybrid composites. Compos. Part B-Eng. 175, 107–149 (2019)

    Article  Google Scholar 

  4. Arumugam, V., Mishra, R., Militky, J., Salacova, J.: Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Text. Inst. 108(7), 1095–1105 (2017)

    Google Scholar 

  5. Behera, B.K., Mishra, R.K.: Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Clothing Sci. Technol. 19, 259–276 (2007)

    Article  Google Scholar 

  6. Zhang, Z., Cai, S., Li, Y., et al.: High performances of plant fiber reinforced composites—a new insight from hierarchical microstructures. Compos. Sci. Technol. 194, 108151 (2020). https://doi.org/10.1016/j.compscitech.2020.108151

    Article  Google Scholar 

  7. Venkataraman, M., Mishra, R., Wiener, J., Kotresh, T.M., Vaclavik, M.: Novel techniques to analyze thermal performance of aerogel-treated blankets under extreme temperatures. J. Text. Inst. 106(7), 736–747 (2015)

    Article  Google Scholar 

  8. Balachandar, M., Ramnath, B., Barath, R., Sankar, S.: Mechanical characterization of natural fiber polymer composites. Mater. Today Proc. 16(2), 1006–1012 (2019)

    Article  Google Scholar 

  9. Koronis, G., Silva, A., Fontul, M.: Green composites: a review of adequate materials for automotive applications. Compos. Part B-Eng. 44(1), 120–127 (2013)

    Article  Google Scholar 

  10. Saba, N., Jawaid, M., Alothman, O.Y., Tahir, P.M., Hassan, A.: Recent advances in bio-epoxy resin, natural fiber-reinforced bio-epoxy composites and their applications. J. Reinf. Plast. Comp. 35(6), 447–470 (2016)

    Article  Google Scholar 

  11. Longobardo, A.V.: Glass fibers for printed circuit boards. In: Wallenberger, F., Bingham, P. (eds.) Fiberglass and Glass Technology. Springer, USA (2010)

    Google Scholar 

  12. Kabir, M., Huque, M.M., Islam, M.R., Islam, R.: Mechanical properties of jute fiber reinforced polypropylene composite: effect of chemical treatment by benzenediazonium salt in alkaline medium. J. Reinf. Plast. Comp. 29(20), 3111–3114 (2010)

    Article  Google Scholar 

  13. Patel, B.C., Acharya, S.K., Mishra, D.: Environmental effect of water absorption and flexural strength of red mud filled jute fiber/polymer composite. Int. J. Eng. Sci. Technol. 4(4), 49–59 (2012)

    Article  Google Scholar 

  14. Venkataraman, M., Mishra, R., Jasikova, D., Kotresh, T.M.: Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures. J. Ind. Text. 45(3), 387–404 (2015)

    Article  Google Scholar 

  15. Ramesh, M., Palanikumar, K., Reddy, K.H.: Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Compos. Part B-Eng. 48(1), 1–9 (2013)

    Article  Google Scholar 

  16. Nagaraj, C., Mishra, D., Reddy, J.D.P.: Estimation of tensile properties of fabricated multi layered natural jute fiber reinforced E-glass composite material. Mater. Today. Proc. 27(2), 1443–1448 (2020)

    Article  Google Scholar 

  17. Chandekar, H., Chaudhari, V., Waigaonkar, S.: A review of jute fiber reinforced polymer composites. Mater. Today Proc. 26(2), 2079–2082 (2020)

    Article  Google Scholar 

  18. Behera, B.K., Pattanayak, A.K., Mishra, R.: Prediction of fabric drape behaviour using finite element method. J. Text. Eng. 54, 103–110 (2008)

    Article  Google Scholar 

  19. Crina, B., Blaga, M., Luminita, V., Mishra, R.: Comfort properties of functional weft knitted spacer fabrics. Tekstil v Konfeksiyon. 23(3), 220–227 (2013)

    Google Scholar 

  20. Valarmathi, T., Arputhabalan, J., Ravichandran, S., et al.: Studies on mechanical properties of jute fiber composite panels. Mater. Today Proc. 16(2), 1239–1243 (2019)

    Article  Google Scholar 

  21. Plackett, D., Andersen, T., Pedersen, W., Nielsen, L.: Biodegradable composites based on l-polylactide and jute fibers. Compos. Sci. Technol. 63(9), 1287–1296 (2003)

    Article  Google Scholar 

  22. Mishra, R., Behera, B.K.: Recycling of textile waste into green composites: performance characterization. Polym. Compos. 35, 1960–1967 (2014). https://doi.org/10.1002/pc.22855

    Article  Google Scholar 

  23. Magarajan, U., Dharanikumar, S., Arvind, D., et al.: A comparative study on the static mechanical properties of glass fiber vs glass-jute fiber polymer composite. Mater. Today Proc. 5(2), 6711–6716 (2018)

    Article  Google Scholar 

  24. Bisaria, H., Gupta, M., Shandilya, P., et al.: Effect of fiber length on mechanical properties of randomly oriented short jute fiber reinforced bio-epoxy composite. Mater. Today Proc. 2(4–5), 1193–1199 (2015)

    Article  Google Scholar 

  25. Mishra, V., Biswas, S.: Physical and mechanical properties of bi-directional jute fiber bio-epoxy composites. Procedia Eng. 51, 561–566 (2013)

    Article  Google Scholar 

  26. Ramnath, B., Kokan, S., Raja, R.: Evaluation of mechanical properties of abaca–jute–glass fiber reinforced bio-epoxy composite. Mater. Design. 51, 357–366 (2013)

    Article  Google Scholar 

  27. Jamshaid, H., Mishra, R., Militky, J., Pechociakova, M., Noman, M.T.: Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers. Polym. 17(10), 1675–1686 (2016). https://doi.org/10.1007/s12221-016-6563-z

    Article  Google Scholar 

  28. Mishra, R., Behera, B.K., Pal, B.P.: Novelty of bamboo fabric. J. Text. Inst. 103(3), 320–329 (2012)

    Google Scholar 

  29. Doan, T., Brodowsky, H., Mäder, E.: Jute fiber/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behavior. Compos. Sci. Technol. 67(13), 2707–2714 (2007)

    Google Scholar 

  30. Islam, M., Ahmed, S.: Influence of jute fiber on concrete properties. Constr. Build. Mater. 189, 768–776 (2018)

    Article  Google Scholar 

  31. Sharif, S., Shikkeri, S., Rajanikanth, K.: Mechanical characterization of Jute/Banana/Bio-epoxy reinforced laminate composite. Mater. Today Proc. 27(2), 835–839 (2020)

    Article  Google Scholar 

  32. Reddy, M., Kumar, M., Raju, C.: Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites. Mater. Today Proc. 5(1), 458–462 (2018)

    Article  Google Scholar 

  33. Mishra, R., Wiener, J., Militky, J., Petru, M., Tomkova, B., Novotna, J.: Bio-composites reinforced with natural fibers: comparative analysis of thermal, static and dynamic-mechanical properties. Fibers Polym. 21(3), 619–627 (2020)

    Article  Google Scholar 

  34. Sivakandhan, C., Murali, G., Tamiloli, N., Ravikumar, L.: Studies on mechanical properties of sisal and jute fiber hybrid sandwich composite. Mater. Today Proc. 21(1), 404–407 (2020)

    Article  Google Scholar 

  35. Ansari, A., Dhakad, S., Agarwal, P.: Investigation of mechanical properties of sisal fiber and human hair reinforced with bio-epoxy resin hybrid polymer composite. Mater. Today Proc. 26(2), 2400–2404 (2020)

    Article  Google Scholar 

  36. Vishnuvardhan, R., Kothari, R., Sivakumar, S.: Experimental investigation on mechanical properties of sisal fiber reinforced bio-epoxy composite. Mater. Today Proc. 18(7), 4176–4181 (2019)

    Article  Google Scholar 

  37. Senthilkumar, K., Saba, N., Rajini, N.: Mechanical properties evaluation of sisal fiber reinforced polymer composites: a review. Constr. Build. Mater. 174, 713–729 (2018)

    Article  Google Scholar 

  38. Mishra, R., Militky, J., Gupta, N., Pachauri, R., Behera, B.K.: Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos B: Eng. 81, 91–97 (2015)

    Article  Google Scholar 

  39. Venkataraman, M., Mishra, R., Militky, J., Hes, L.: Aerogel based nanoporous fibrous materials for thermal insulation. Fibers. Polym. 15(7), 1444–1449 (2014). https://doi.org/10.1007/s12221-014-1444-9

    Article  Google Scholar 

  40. Rana, R., kumre, A., Rana, S., Purohit, R.: Characterization of properties of bio-epoxy sisal / glass fiber reinforced hybrid composite. Mater. Today Proc. 4(4), 5445–5451 (2017)

    Google Scholar 

  41. Mishra, R., Huang, J., Kale, B., Zhu, G., Wang, Y.: The production, characterization and applications of nanoparticles in the textile industry. Text. Prog. 46, 133–226 (2014). https://doi.org/10.1080/00405167.2014.964474

    Article  Google Scholar 

  42. Towo, A., Ansell, M.: Fatigue evaluation and dynamic mechanical thermal analysis of sisal fiber–thermosetting resin composites. Compos. Sci. Technol. 68(3–4), 925–932 (2008)

    Article  Google Scholar 

  43. Ramires, E., Megiatto, J., Gardrat, C., et al.: Biobased composites from glyoxal–phenolic resins and sisal fibers. Bioresour. Technol. 101(6), 1998–2006 (2010)

    Article  Google Scholar 

  44. Reis, M.L.: Sisal fiber polymer mortar composites: Introductory fracture mechanics approach. Constr. Build. Mater. 37, 177–180 (2012)

    Article  Google Scholar 

  45. Saravanan, N.: Mechanical and fracture study of hybrid natural fiber reinforced composite – Coir and sugarcane leaf sheath. Mater. Today. Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.677

    Article  Google Scholar 

Download references

Acknowledgements

The result was obtained through the financial support of the Ministry of Education, Youth and Sports of the Czech Republic, the European Union (European Structural and Investment Funds - Operational Program Research, Development and Education) in the frames of the project “Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation”, Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293 and Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague (no. 2021:31140/1312 /3108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Petru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, R., Petru, M. (2021). Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics