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Abstract. Weakly supervised learning has been rapidly advanced in biomedical
image analysis to achieve pixel-wise labels (segmentation) from image-wise an-
notations (classification), as biomedical images naturally contain image-wise la-
bels in many scenarios. The current weakly supervised learning algorithms from
the computer vision community are largely designed for focal objects (e.g., dogs
and cats). However, such algorithms are not optimized for diffuse patterns in
biomedical imaging (e.g., stains and fluorescence in microscopy imaging). In this
paper, we propose a novel class-aware codebook learning (CaCL) algorithm to
perform weakly supervised learning for diffuse image patterns. Specifically, the
CaCL algorithm is deployed to segment protein expressed brush border regions
from histological images of human duodenum. Our contribution is three-fold: (1)
we approach the weakly supervised segmentation from a novel codebook learn-
ing perspective; (2) the CaCL algorithm segments diffuse image patterns rather
than focal objects; and (3) the proposed algorithm is implemented in a multi-task
framework based on Vector Quantised-Variational AutoEncoder (VQ-VAE) via
joint image reconstruction, classification, feature embedding, and segmentation.
The experimental results show that our method achieved superior performance
compared with baseline weakly supervised algorithms. The code is available at
https://github.com/ddrrnn123/CaCL
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1 Introduction

Mapping the location of 19,628 human protein-coding genes plays a critical role as a
“census” of proteins, which further increases our knowledge of human biology and en-
ables new insights into principles of life. For instance, the Human Protein Atlas (HPA)
project3 has applied >25,000 antibodies to characterize the tissue-level spatial expres-
sion by collecting 10 million immunohistochemistry (IHC) images. The IHC images
indicate the location and distribution of protein expression. For example, understanding
the area ratio between IHC stained regions and cell body regions at the brush border of
the human duodenum reveals the specificity of gene expressions.

The color deconvolution algorithm [13] is regarded as the de facto standard ap-
proach to segment IHC stained histopathology images. However, the manual tuning

3 https://www.proteinatlas.org

ar
X

iv
:2

01
1.

00
79

4v
2 

 [
cs

.C
V

] 
 1

3 
A

pr
 2

02
2

https://github.com/ddrrnn123/CaCL


2 Authors Suppressed Due to Excessive Length

Weakly Supervised Segmentation

GradCAM

GradCAM

CaCL

Proposed

Semantic Object

Diffuse Object

Diffuse Object

Attention of “Cat”

Attention of “Positive Brush Boarder”

Attention of “Positive Brush Boarder”

Fig. 1: The performances of object segmentation. This figure shows the perfor-
mances of object segmentation using different attention-based weakly supervised learn-
ing methods. The former method, GradCAM, is designed for focal objects rather than
diffuse objects. Our proposed method, CaCL, can obtain better results on diffuse ob-
jects.

of IHC staining parameters (e.g., segmentation threshold) to deal with heterogeneous
image qualities and attributes is labor-intensive. Moreover, color deconvolution cannot
understand the semantic information of a figure.

Recent weakly supervised learning techniques have played a critical role in im-
age segmentation with the benefits of only needing image-wise annotation [15]. Zhou
et al., [18] proposed Class Activation Mapping (CAM) for Convolutional Neural Net-
work(CNN) with a global average pool to allow CNNs to visualize object localization.
Then, Selvaraju et al., [14] developed Gradient-weighted Class Activation Mapping
(GradCAM) and Guided GradCAM (G-GradCAM) for better visual explanations with
localization information. Later on, Fong et al., [6, 7] introduced a framework for learn-
ing meta-predictors. However, the current weakly supervised learning algorithms from
the computer vision community are mostly designed for focal objects and may display
attention with any image, which are not optimized for diffuse patterns in biomedical
imaging [4](Fig. 1).

Meanwhile, there have been several weakly supervised learning approaches in his-
tology [12]. Belharbi et al., [3] proposed an active learning framework to jointly per-
form supervised image-level classification and active learning for segmentation. Xu et
al., [16] proposed a weakly supervised learning framework for histopathology image
segmentation, using multiple instance learning (MIL)-based label enrichment and fully
supervised training with image-level labels. These methods achieved superior perfor-
mances. With the development of deep learning technology, more unsupervised seg-
mentation models were proposed for medical image analysis [1, 2, 10, 17]. However,
most of the attention-based methods only obtained attention maps for partial classifi-
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Fig. 2: The backbone of our method. Our method includes CaCL embedding, GAN
based reconstruction and classification, and weakly supervised learning segmentation.

cation tasks rather than segmentation tasks. Herein, we provided a weakly supervised
learning model to achieve robust segmentation images directly from attention maps.

A new generative model, Vector Quantised-Variational AutoEncoder (VQ-VAE) [9],
was proposed to encode an image from an infinite continuous feature space to a finite
discrete feature space using a codebook with a fixed number of codes. Inspired by VQ-
VAE, we propose a novel class-aware codebook learning (CaCL) algorithm to segment
diffuse patterns in medical imaging. The central idea is to split the original codebook
into two separate codebooks. One codebook encodes the discriminative class patterns
(codebookC), while the other encodes the common image patterns between two groups
of images (codebook S). Then, the pixels that used in the codebook S + C during the
encoding process are used as an “attention” to perform weakly supervised segmenta-
tion. Briefly, the innovations of the proposed approach is in three-fold: (1) We approach
the weakly supervised segmentation from a novel codebook learning perspective; (2)
We introduce the CaCL algorithm to segment diffuse image patterns rather than focal
objects; (3) The proposed algorithm is implemented in a multi-task framework based on
Vector Quantised-Variational AutoEncoder (VQ-VAE) via joint image reconstruction,
classification, feature embedding, and segmentation.

2 Methods

The entire framework of the proposed CaCL method is presented in Fig. 2 . The CaCL
algorithm consists of three sections: (1) a class-aware codebook for feature embedding;
(2) generative adversarial image reconstruction and classification; and (3) weakly su-
pervised segmentation from diffuse patterns.

2.1 Class-aware Codebook Based Feature Encoding

In this study, we design a class-aware codebook inspired by VQ-VAE2 [11]. With the
VQ-VAE framework, three steps are used to process an input image. First, the encoder
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Fig. 3: The design of the class-aware codebook. This figure shows the design of the
class-aware codebook. One encodes class discriminative features (codebook C), while
another encodes the shared features among two classes (codebook S).

E is used to convert a RGB image into a feature map. Second, the feature map is coded
by the codebook from an infinite solution space to a fixed number of codes for each
pixel. For example, if the codebook contains 32 codes, each pixel can only be one of
the 32 types of features. Last, the coded feature maps were decoded to the input image
resolution as a encoder-decoder design.

As opposed to VQ-VAE, which only used one codebook to encode all inputs, we
propose to use two codebooks in CaCL. One encodes class discriminative features
(codebook C), while another encodes the shared features among two classes (code-
book S), as shown in Fig. 3. In this study, the images with positive protein expression
patterns (dark brown at the brush broader) are defined as IP , while the images without
protein expression patterns are defined as IN . Then, for each input image, we will first
retrieve one raw feature map from E. Second, two coded feature maps will be obtained
by using codebook S only and codebook S + C, respectively. Two images will be re-
constructed using the same decoder D. One image only has common diffuse patterns
across positive and negative images (Recons Negative RN in Fig. 2), while another im-
age contains both common diffuse patterns and class discriminative patterns (Recons
Positive RP in Fig. 2).

2.2 Loss Definition

Commitment loss and codebook loss: Herein, we implement the commitment loss and
codebook loss in VQ-VAE2 that retains the reconstruction features close to the chosen
codebook vectors.

Lcommitment(I,D(e)) = ||sg[e]− E(I)||22 (1)

Lcodebook(I,D(e)) = ||sg[E(I)]− e||22 (2)

where e is the coded feature map for the input I , E is the encoder function, and D
is the decoder function. The operator sg refers to a non-gradient operation that stops
the gradients from flowing into its argument. It uses the exponential moving average
updates for the codebook with a decay parameter.
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Reconstructive loss: The reconstructive loss is applied to supervise the quality of
reconstruction images RP and RN . Each input image I will go through the combined
codebook C and S and the single codebook S, which obtain both RP and RN . RP is
calculated through the mean-square-error as the reconstruction loss with IP , and RN is
compared with images IN , respectively.

Lrecons(I,RP , RN ) = (1−M)||I −RP ||22 +M ||I −RN ||22

Where M =

{
1, I = IN

0, I = IP

(3)

Discriminative-codebook loss: To encourage the model to use codebook C, we
introduce a new discriminative-codebook loss to calculate the mean-square-error of the
quantized feature maps eN and eP in the non-zero channels from codebook C. Briefly,
if the image is negative, we force the feature maps to be identical from two code books.
If the image is positive, we force the feature maps to be different from two code books
by using Ldiscriminative−codebook.

Ldiscriminative−codebook(I, eN , eP ) = K||eN − eP ||22

Where K =

{
1, I = IN

−1, I = IP

(4)

Hybrid discriminator loss: The hybrid discriminator loss performs both: (1) real/fake;
and (2) positive/negative classification tasks on reconstructed images. The implementa-
tion of the discriminator and the generator are followed by a generative adversarial net-
work (GAN) design [19]. We create two image pools Pdata to separately store all fake
positive and fake negative images to train the discriminator. We use one resnet18 [8],
named as Cls, as the discriminator (classifier).

Lclassifier(IP , IN , RP , RN ) = TRP
log(Cls(X ∼ Pdata(RP )))

+ TRN
log(Cls(X ∼ Pdata(RN )))

+ TIP log(Cls(IP )) + TIN log(Cls(IN ))

(5)

Lmapping(RP , RN ) = TIP log(Cls(RP )) + TIN log(Cls(RN )) (6)

where TIP , TIN , TRP
, TRN

are the targets of IP , IN , RP , RN , respectively.
The aforementioned loss functions are aggregated into Lcombine with weights λ.

Since the discriminators typically converge faster than generators, we perform back-
propagation at different frequencies. During the training, the classification loss (Lclassifier)
is updated in every ten epochs, while Lcombine is updated in each epoch.

Lcombine = λmappingLmapping + λcommitmentLcommitment + λreconsLrecons

+ λdiscriminative−codebookLdiscriminative−codebook

(7)
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2.3 Training Strategy

The class consistency is normalized by computing commitment loss and reconstructive
loss. For all positive images (Ip), only reconstructed positive images (Rp) are calcu-
lated in reconstructive loss. The raw features E(Ip) from positive input images (Ip) are
computed in commitment loss with positive coded features (ep). The same principles
are implemented for all negative inputs (In).

To train the codebooks, all the vectors in both codebook S and C are updated after
quantizing the coded positive features (ep). In contrast, only the vectors in codebook S
are updated after quantizing the coded negative features (en). Meanwhile, we use mean-
square-error to reduce the difference between encoded features (ep and en) from the
negative inputs (In), while simultaneously amplifying the distinctions between ep and
en from the positive inputs in the discriminative-codebook lossLdiscriminative−codebook.
Such a process guides the codebook S and codebook C to assemble distinctive features
in different classes, independently.

Next, a classifier is used to identify four types of images, which are Input Positive
(Ip), Input Negative (In), Reconstructive Positive (Rp), and Reconstructive Negative(Rn).
Meanwhile, we employ a discriminator to reconcile the differences between the input
images (Ip, In) and the reconstructive images (Rp, Rn). Ideally, only Rp from Ip con-
tain the positive patterns from the codebook C.

2.4 Weakly Supervised Learning Segmentation

Ideally, after training the model, only pixels using class-specific codebook C should
contribute to the differences between the two classes. Therefore, we simply mark those
pixels as 1, and mark the remaining pixels as 0. The outcome mask is used as our weakly
supervised segmentation results.

3 Data and Experiments

This research study was conducted retrospectively using human subject data made avail-
able in open access by the Human Protein Atlas (https://www.proteinatlas.org). Ethical
approval was not required as confirmed by the license attached with the open access
data. 42 high resolution duodenum histological micro-array images were obtained from
the Human Protein Atlas. 27 images contained high brush border protein expression,
while the remaining ones did not. The protein expression is specified as the IHC stain-
ing pattern (dark brown). Patches in an 8×8 grid without overlapping from each high-
resolution image were extracted. Due to the GPU memory limitation, we downsample
these patches with 375×375 pixels to image patches with 128×128 pixels. We ran-
domly selected 1480 patches for training, 200 patches for validation, and 200 for testing.
Half of the testing images were from the brush border area to evaluate the performance
of our method.

The design of the class-aware codebook is in Fig. 3. The number of descriptors in
codebook S is 27, while the number of descriptors in codebook C is 5. Each descriptor
has 64 channels, where 32 non-overlapping channels are from each codebook S and C,
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Fig. 4: CaCL at the testing stage. This figure shows the example outcomes from the
proposed CaCL framework, which include reconstructed images, classification results
and segmentation results.

respectively. The remaining locations of the codebook are set to 0. The decay in each
codebook update is 0.98. For all the experiments, we use the Adam solver for optimiza-
tion with a batch size of one. The learning rate of the classification loss is 0.0001, while
the learning rate of the combined loss is 0.0003. The size of the image pool is 64. The
weights λ of commitment loss, reconstructive loss, discriminative-codebook loss, and
discriminator loss are empirically set to 0.25,100,50, and 1, respectively. These param-
eters were determined by fine-tuning process to obtain superior performances in both
segmentation metrics and reconstructive visualizations.

The color deconvolution was employed as the current standard IHC stain segmen-
tation method. CAM and GradCAM were utilized as the benchmarks of attention based
weakly supervised learning. All experiments were completed on the same workstation,
with NVIDIA Quadro P5000 GPU.

4 Results

In Fig.4, the example input IP and IN images, and the corresponding reconstructed
RP and RN , are presented. Fig. 5 shows the qualitative weakly segmentation results,
while Table 1 presents the quantitative results. The Dice Similarity Coefficient (DSC),
Positive Predictive Value (Precision), Sensitivity (Recall), and Binary Cross-Entropy
(BCE) are used as evaluation metrics. For each IN image, if all the pixels inside the
predicted segmentation masks are 0, then DSC, Precision, and Recall are computed as
1. Otherwise, those metrics are 0, according to [5]. All the results of baseline models
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Fig. 5: Pixel-wise attention segmentation. This figure shows the results of brush bor-
der segmentation using pixel-wise attention from different weakly supervised learning
methods.

Table 1: Segmentation results.
Method Dice Recall Precision BCE

Color deconv. [13] 0.347 0.400 0.363 7.066
CAM [18] 0.065 0.038 0.260 15.813

GradCAM [14] 0.061 0.035 0.298 19.586
G-GradCAM [14] 0.030 0.018 0.099 14.273

CaCL (Ours) 0.623 0.787 0.574 1.079
CaCL+morph. (Ours) 0.703 0.712 0.723 1.258

in Table 1 are the best performances by iterating all the intensity values as thresholds.
A simple morphological dilation operation with radius 1 is also tested in Table 1. As a
result, our method achieved the best quantitative performance.

5 Discussion

In this study, we presented a new weakly supervised learning method with a class-aware
codebook. The proposed CaCL approach achieved diffuse pattern segmentation without
pixel-wise annotation. Our proposed method combines with the classification task and
the segmentation task as a whole with “pixel-wise attention” from image-wise weak
labels, while previous CAM based attention is more coerce.

The codebook-based reconstruction uses the region-level features from pixel-wise
feature maps, which inhibit positive features. The purpose of the dilation enhancement
is to decrease this impact from neighbor pixels, which achieve better segmentation re-
sults in Table 1.

The goal of our method is to achieve both focal pattern segmentation and con-
trolling the expression of positive patterns with the realistic reconstructive images by
class-aware codebooks. In our experiment, simply using the standard reconstruction



Title Suppressed Due to Excessive Length 9

loss without the discriminator loss Lmapping generates numerous unreasonable noise
pixels as fake patterns on the reconstructive images, which can cheat in the classi-
fier Lclassifier and fail to control the pattern expression. In Fig. 5, our design can re-
ceive segmentation results while achieving consistent expression control in IHC stained
histopathology images.

At current stage, there are still major limitations. One obvious limitation is the size
of our dataset. The number of the training and testing images is limited due to the
limitation of resources and extensive labor costs, as well as time needed to achieve
pixel-wise manual annotations. More training data would lead to better segmentation
performance. In the future, one promising improvement of the proposed method would
be to extend the current binary classification and segmentation approach to multi-class
scenarios.
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