Skip to main content

Improved Attacks Against Key Reuse in Learning with Errors Key Exchange

  • Conference paper
  • First Online:
Progress in Cryptology – LATINCRYPT 2021 (LATINCRYPT 2021)

Abstract

Basic key exchange protocols built from the learning with errors (LWE) assumption are insecure if secret keys are reused in the face of active attackers. One example of this is Fluhrer’s attack on the Ding, Xie, and Lin (DXL) LWE key exchange protocol, which exploits leakage from the signal function for error correction.

In this work, we demonstrate improved and new attacks exploiting key reuse in several LWE-based key exchange protocols. First, we show how to greatly reduce the number of samples required to carry out Fluhrer’s attack and reconstruct the secret period of a noisy square waveform, speeding up the attack on DXL key exchange by a factor of over 200. We show how to adapt this to attack a protocol of Ding, Branco, and Schmitt (DBS) designed to be secure with key reuse, breaking the claimed 128-bit security level in 12 min. Our results show that building secure key exchange protocols directly from LWE that resist key reuse attacks remains a challenging and mostly open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akleylek, S., Seyhan, K.: A probably secure BI-GISIS based modified AKE scheme with reusable keys. IEEE Access 8, 26210–26222 (2020). https://doi.org/10.1109/ACCESS.2020.2970537

  2. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key exchange protocols (extended abstract). In: 30th ACM STOC, pp. 419–428. ACM Press, May 1998

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  4. Bindel, N., Stebila, D., Veitch, S.: Improved attacks against key reuse in learning with errors key exchange. Cryptology ePrint Archive, Report 2020/1288 (2021). https://eprint.iacr.org/2020/1288

  5. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: IEEE European Symposium on Security and Privacy (EuroS&P) 2018, pp. 353–367. IEEE (2018)

    Google Scholar 

  6. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: One-round key exchange in the standard model. Int. J. Appl. Cryptogr. 1(3), 181–199 (2009)

    Article  MathSciNet  Google Scholar 

  7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  8. Ding, J., Alsayigh, S., RV, S., Fluhrer, S., Lin, X.: Leakage of signal function with reused keys in RLWE key exchange. Cryptology ePrint Archive, Report 2016/1176 (2016). http://eprint.iacr.org/2016/1176

  9. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S., Lin, X.: Leakage of signal function with reused keys in RLWE key exchange. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017)

    Google Scholar 

  10. Ding, J., Branco, P., Schmitt, K.: Key exchange and authenticated key exchange with reusable keys based on RLWE assumption. Cryptology ePrint Archive, Report 2019/665 (2019). https://eprint.iacr.org/2019/665

  11. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_27

    Chapter  Google Scholar 

  12. Ding, J., RV, S., Alsayigh, S., Clough, C.: How to validate the secret of a ring learning with errors (RLWE) key. Cryptology ePrint Archive, Report 2018/081 (2018). https://eprint.iacr.org/2018/081

  13. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688 (2012). http://eprint.iacr.org/2012/688

  14. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive, Report 2016/085 (2016). http://eprint.iacr.org/2016/085

  15. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_28

    Chapter  MATH  Google Scholar 

  16. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

    Chapter  Google Scholar 

  17. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1

    Chapter  MATH  Google Scholar 

  18. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An efficient protocol for authenticated key agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  20. Menezes, A., Qu, M., Vanstone, S.A.: Some new key agreement protocols providing implicit authentication. In: Workshop on Selected Areas in Cryptography (SAC 1995), pp. 22–32 (1995)

    Google Scholar 

  21. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12

    Chapter  MATH  Google Scholar 

  22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005

    Google Scholar 

  23. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. In: ACM Conference on Computer and Communications Security (CCS) 2020. ACM, November 2020

    Google Scholar 

  24. Seyhan, K., Nguyen, T.N., Akleylek, S., Cengiz, K., Islam, S.H.: Bi-GISIS KE: modified key exchange protocol with reusable keys for IoT security. J. Inf. Secur. Appl. 58, 102788 (2021). https://doi.org/10.1016/j.jisa.2021.102788

  25. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Des. Codes Cryptogr. 46(3), 329–342 (2008)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Bindel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bindel, N., Stebila, D., Veitch, S. (2021). Improved Attacks Against Key Reuse in Learning with Errors Key Exchange. In: Longa, P., Ràfols, C. (eds) Progress in Cryptology – LATINCRYPT 2021. LATINCRYPT 2021. Lecture Notes in Computer Science(), vol 12912. Springer, Cham. https://doi.org/10.1007/978-3-030-88238-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88238-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88237-2

  • Online ISBN: 978-3-030-88238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics