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Motivation

● One of the largest open, free, multilingual knowledge bases

● 90M (~100M now) items and over 1.3B (~1.8B now) edits1

● Play an important role in many applications
○ Natural Language Processing

○ Recommender Systems, User Modeling

○ Life Sciences

○ …
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1.  https://www.wikidata.org/wiki/Wikidata:Statistics
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Motivation

● Editors (users) on Wikidata platform are critical to its success

● Understanding editing dynamics such as whether an editor will leave the 

platform is important but little attention has been given in the context of 

Wikidata, which is our focus of this study.
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● Editors (users) on Wikidata platform are critical to its success

● Understanding editing dynamics such as whether an editor will leave the 

platform is important but little attention has been given in the context of 

Wikidata, which is our focus of this study.

Problem formulation: 𝑓 𝐱𝑢 → 𝑦𝑢
● 𝐱𝑢 denotes a set of features based on the edit history of a user u, 

● 𝑦𝑢 is the class label indicating activeness of 𝑢 (1 for inactive, 0 for active)

Motivation
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Findings

Statistical features and pattern-based complement each other and ↑ perf.

DeepFM model performs best with those features

7

• total # of edits in the last 1 month

• distinct # of edited entities in the last 3 

months

• …

Example: rncv for a pair of entities (𝑖1, 𝑖2)
• 𝑖2  is re-edit of a previous entity 

• 𝑖2 is normal entity 

• 𝑖2  is a continuous edit of 𝑖1
• very fast edit from 𝑖1
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Wikidata dataset: Dump of 2020-12-01

● Excluded edits from 
○ anonymous users

○ bot accounts and administrators of Wikidata based on 

the open bot and admin lists

● 371,068 users & 519,121,793 edits

Username Time Entity ID Edit action type
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Wikidata dataset: Observations

● a lot of users making a low number of edits

● a small number of heavy users making a high number of edits
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Wikidata dataset: Observations

● Lifespan: last edit – first edit (in days)

● 6.54 hours compared to 8 hours in 

Wikipedia1
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1.  Zhang, D., Prior, K., Levene, M., Mao, R., van Liere, D.: Leave or stay: The departure dynamics of wikipedia editors. In: International Conference on Advanced Data Mining and Applications.

● The No. of newcomers is ↑

● The No. of users who stopped is also ↑
● Again, it is important to predict leaving 

editors and having additional efforts to 

keep those users



Wikidata dataset: For our experiments
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1.  Sarasua, C., et al.,  The evolution of power and standard wikidata editors: comparing editing behavior over time to predict lifespan and volume of edits. CSCW’19.

● Inactive user: has not been editing any 

entity for 9.967 months (299 days)1

● For both training and testing, we limit users 

who are active before ttrain and ttest to 

predict whether those active users will 

remain active or become inactive
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Proposed approach: Overview

● Statistical and/or pattern-based features

● A DeepFM classification model where those features are used as an input
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Statistical features

• total # of edits

• distinct # of edited entities

• # of days between first and last edits

• # of days between first edit and prediction time

• # of days between the last edit and prediction 

time
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Proposed approach: Statistical features
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Statistical features (in p months)

• total # of edits

• distinct # of edited entities

• # of days between first and last edits

• diversity of edit actions

• diversity of entities

• diversity of day of week
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• # of days between first edit and prediction time

• # of days between the last edit and prediction time



Proposed approach: Pattern-based features
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Pattern-based features

• r/n: 𝑖2 is re-edit or not

• m/n: 𝑖2 is normal entity (starts with Q) or not

• If 𝑖2 is a re-edit, c/n: 𝑖2 is continuous edit or not

• If not a re-edit, z/o/u: common classes of 𝑖1 and 𝑖2

• v/f/s: time diff. between two edits (e.g., very fast: v)

● From chronological sequence of each 

consecutive pair 𝑖1, 𝑖2 of edited entities

● e.g., rncv for a pair of entities 𝑖1, 𝑖2
○ 𝑖2 is a re-edit of edited entities previously

○ and is a normal entity 

○ continuous edit of 𝑖1 , 

○ very fast edit -- the time diff. between the two 

consecutive edits is less than 3 minutes.

● Top 13 patterns for both classes (active and inactive), and active class

● of length 𝑙 ∈ 1, 2, 3 , in total 13 * 2 * 3 = 78 features
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Results: Compared to other methods

18

• DeepFM-Stat+Pattern provides the best performance in terms of AUROC and F1
• The two types of features - statistical and pattern-based ones - can complement each 

other and achieves the best classification performance



Results: Efficiency of statistical features
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• Using our statistical features consistently achieves better AUROC and F1 scores with 
those methods, which indicates the effectiveness of those features



Results: Importance of periods
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Results: Importance of features
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Results: Time for training 
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Conclusions & Future work

● Investigated a set of proposed statistical and pattern-based features with 

DeepFM and built several adapted approaches from previous studies in the 

context of Wikipedia or different tasks

● DeepFM-Stat achieves the best AUROC and F1 performance compared to 

other adapted methods when using either set of features

● Using both types of features can improve the performance significantly

● The promising results using DeepFM indicate other alternatives can be 

explored for the problem in the future

● Detailed analysis on pattern-based features can be explored
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