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Abstract. Proof-of-Stake (PoS) distributed ledgers are the most com-
mon alternative to Bitcoin’s Proof-of-Work (PoW) paradigm, replacing
the hardware dependency with stake, i.e., assets that a party controls.
Similar to PoW’s mining pools, PoS’s stake pools, i.e., collaborative en-
tities comprising of multiple stakeholders, allow a party to earn rewards
more regularly, compared to participating on an individual basis. How-
ever, stake pools tend to increase centralization, since they are typically
managed by a single party that acts on behalf of the pool’s members. In
this work we propose Conclave, a formal design of a Collective Stake Pool,
i.e., a decentralized pool with no single point of authority. We formalize
Conclave as an ideal functionality and implement it as a distributed pro-
tocol, based on standard cryptographic primitives. Among Conclave’s
building blocks is a weighted threshold signature scheme (WTSS); to
that end, we define a WTSS ideal functionality and propose two con-
structions based on threshold ECDSA, which enable (1) fast trustless
setup and (2) identifiable aborts.

1 Introduction

A major innovation of Bitcoin [31] was combining Proof-of-Work (PoW), to
prevent sybil attacks, with financial rewards, to incentivize participation.

Regarding sybil resilience, Bitcoin’s PoW depends on the collective network’s
ability to compute hashes. Thus, PoW limits each party’s power and also deter-
mines how the distributed ledger is updated, i.e., which blocks can extend its
blockchain. However, PoW’s deficiencies, particularly its egregious environmen-
tal cost,4 have driven research on alternative designs, most prominently Proof-
of-Stake (PoS). PoS removes hardware requirements altogether and internalizes
sybil resilience by relying on parties’ stake, i.e., the assets that they own. These
assets are managed by the distributed ledger and serve as both the system’s
internal currency and consensus participation tokens. PoS systems are almost

? This work is supported by JSPS KAKENHI No. JP21K11882.
4 The carbon footprint of: i) a single Bitcoin transaction is equivalent to 1, 202, 422
VISA transactions; ii) the total Bitcoin network is comparable to Sweden. (https:
//digiconomist.net/bitcoin-energy-consumption; May 2021)
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energy-free, but often rely on complex cryptographic primitives, e.g., secure Mul-
tiparty Computation [26], Byzantine Agreement [8,17,27], or Verifiable Random
Functions (VRFs) [9,17].

Regarding rewards, blockchain-based financial systems, like Bitcoin, aim to
incentivize participation in the consensus mechanism. The rewards comprise of
newly-issued assets and of transaction fees, i.e., assets paid by parties for using
the system. Interestingly, both PoW and PoS ledgers are economies of scale, who
favor parties with large amounts of participating power. One reason is poorly-
designed incentives, resulting in disproportionate power accumulation [23,13].
Another is temporal discounting, i.e., the tendency to disfavor rare or delayed
rewards [35]. Specifically, in Bitcoin, a party is rewarded for every block it pro-
duces, so parties with insignificant amounts of power are rarely rewarded. In
contrast, accumulating the power of multiple small parties in “pools” yields a
steadier reward. As a result, PoW systems see the formation of mining pools,5
while PoS systems usually favor delegation to stake pools [7,21] over “pure” PoS,
where parties act independently. Finally, the ledger’s performance and security
are often better under fewer participants. For instance, PoS systems require
participants to be constantly online, since abstaining is a security hazard; this
requirement is more easily guaranteed within a small set of dedicated delegates.

A major drawback of existing stake pools is that they are typically managed
by a single party, the operator. This party participates in consensus, claims
the rewards offered by the system, and then distributes them among the pool’s
members (after subtracting a fee). However, the operator is a single point of
failure. In this work, we explore a more desirable design, which allows players
to jointly form a collective pool, i.e., a conclave. This design assumes no single
operator, minimizing excess fees, and trust and security concerns, altogether.
Collective stake pools also promote a more fair and decentralized environment.
In existing incentive schemes [3], operators who can pledge large amounts of
stake to the pool are preferred. Consequently, the system favors a few major
pool operators and, in the long run, its wealth is concentrated around them,
resulting in a “rich get richer” situation. Although this problem is inherent in
all decentralized financial systems [23], a well-designed collective pool may offset
the stakeholder imbalance and slightly decelerate this tendency.

Desiderata. Our design assumes a group of stakeholders who jointly create a
stake pool without a single operator. Since large stakeholders typically form pools
on their own, our protocol concerns smaller stakeholders, who could otherwise
not participate directly. Therefore, our design could e.g., be appealing to a group
of friends or colleagues, who aim for a more steady reward ratio without relying
on a third party. Importantly, it should operate in a trustless environment as,
unfortunately, even in these scenarios, trust is not a given. Notably, our targeted
audience is parties who wish to actively participate, i.e., always be online to

5 86% of Bitcoin’s hashing power and 83% of Ethereum’s hashing power are controlled
by 5 entities each. (https://miningpools.com; May 2021)
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perform the required consensus actions; parties who wish to remain offline may
instead opt for delegation schemes [7,21].

In the absence of a central party, the responsibility of running the pool is
shared among all pool’s members, requiring some level of coordination which
may be cumbersome. For instance, if the protocol requires unanimous actions,
a single member could halt the pool’s operation. To ensure good performance,
the pool should allow a subset (of a carefully chosen size) to act on behalf of
the whole group. The choice of such subsets depends on each party’s “weight”,
which is in proportion to their stake. In summary, we have the following initial
assumptions, which form the basis for outlining our work’s desiderata:

• small number of parties: a collective pool is operated by a small group
of players;

• small stake disparity: the profiles of the collective pool’s members are
similar, i.e., they contribute a similar amount of stake to the pool;

• stake proportion as “weight”: each party is assigned a weight for partic-
ipating in the pool’s actions, relative to their part of the pool’s total stake.

Next, we provide an exhaustive list of basic requirements of a collective stake
pool. We note that an admissible party set is a set of parties with enough stake,
i.e., above a threshold of the total pool’s stake which is agreed upon during
the pool’s initialization. To the extent that some desiderata are conflicting, our
design will aim to satisfy as many requirements as possible:

• Proportional Rewards: the claim of each member on the entire pool’s
protocol rewards should be proportional to their individual contribution.

• Joint Control of Rewards: the members of a pool should jointly control
the access to its funds.

• Unilateral Reward Withdrawal: at any point in time, a stakeholder
should be able to claim their reward, accumulated up to that point, without
necessarily interacting with other members of the pool.

• Permissioned Access: new users can join the pool following agreement by
an admissible set of pool members.

• Robustness against Aborting: the pool should not fail to participate in
consensus, unless an admissible set of members aborts or is corrupted.

• Public Verifiability: stake pool formation and operation should be publicly
verifiable (s.t. consensus could take into account the aggregate pool’s stake).

• Stake Reallocation: users should freely change their personal stake allo-
cated to the pool, without interacting with other members of the pool.

• Parameter Updates: an admissible set of parties should be able to update
the stake pool’s parameters.

• Force Removal: an admissible set of parties should be able to remove a
member from the pool.

• Pool Closing: an admissible set of parties should be able to permanently
close the stake pool.

• Prevention of Double Stake Allocation: a party should not simultane-
ously commit the same stake to two different stake pools.
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Our Contributions and Roadmap. We propose Conclave, a collectively man-
aged stake pool protocol that aims to satisfy the listed desiderata. Our first
contribution is the ideal functionality Fpool, a simulation-based security defini-
tion of collective stake pools, which captures the core security properties that
our collective pool scheme should possess. We then describe πpool, a distributed
protocol executed by a set of n parties P which realizes Fpool. πpool employs
certificates, which are published on the ledger, to announce its formation and
closing. A major consideration and performance enhancement of our design is
load balancing of transaction verification. Each transaction is verified by a (de-
terministically elected) committee of parties, whose size is a tradeoff between
balancing workload, i.e., not requiring each party to verify every transaction,
and reducing trust on the chosen validator(s). We thus construct a distributed
mempool, i.e., a collectively managed set of unpublished transactions, s.t. if a
majority of the committee’s members are honest, transaction verification is se-
cure. Our scheme uses a weighted threshold signature scheme (WTSS), to share
the pool’s key among its members, and a smart contract to manage the rewards.
To that end, we provide a WTSS Universally Composable ideal functionality
(Section 2), which may be of independent interest, and construct an ECDSA
WTSS, based on [15,16], s.t. each party has as many shares as “units” of weight.

Related Work. In the past years a multitude of PoS protocols have been pro-
posed. The Ouroboros family [2,9,25,26] offers, like Bitcoin, eventual guarantees
of liveness and persistence. Subselection has been employed in systems like Al-
gorand [17], which employs Byzantine Agreement to achieve transaction finality
in (expected) constant time, and Snow White [8,32], which uses the notion of
“robustly reconfigurable consensus” to address potential lack of participation.
Our work is complementary to these protocols and can be composed with them,
as it is agnostic to the underlying PoS ledger’s consensus mechanism.

Real-world PoS implementations often opt for stake representation and dele-
gation. Systems like Cardano6, EOS [7], and (to some extent) Tezos [19], employ
different consensus protocols, but all enforce that a (relatively small) subset of
representatives is elected to participate. Decred [10] takes a somewhat different
approach, where stakeholders buy a ticket for participation, akin to PoS with op-
tional participation. However, these systems typically assume single parties that
act as delegates, either individually or as pool operators; our design directly aims
at relaxing this restriction without requiring changes to the consensus protocol.

In cryptographic literature, pools are mostly treated from an engineering
perspective. In PoW systems, SmartPool [30] is a notable design of a distributed
mining pool for Ethereum, which, similar to our work, utilizes smart contracts
for reward distribution. On the PoS domain, Ouroboros [26] offers a brief descrip-
tion of how delegation can be used within the protocol. This idea is expanded
in [21], which provides a formal definition of PoS wallets and includes stake pool
formation method via certificates. However, the pool’s management is again cen-
tralized around the operator; our work extends this line of work by enabling the
6 https://cardano.org
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formation of a collective pool. Another work, orthogonal to ours, by Brünjes et
al. [3] considers the incentives of distributing rewards among stake pools and
aims to incentivize the creation of a (pre-defined) number of pools. However, it
assumes that the pool operator commits part of their stake to make the pool
more appealing, thus favoring larger pool operators. Our work eases such wealth
concentration tendencies by enabling a collective pool to be equally competitive
to a centralized one.

2 UC Weighted Threshold Signature

In this section, we present the weighted threshold signature ideal functionality
Fwtss (Figure 1). This functionality is used in the Collective Pool Protocol πpool,
which employs weighted threshold signatures for collectively signing certificates
and new blocks. The functionality Fwtss is inspired by Almansa et al. [1], which
is in turn inspired by Canetti [5]. However, unlike Almansa et al. and similar to
Canetti, during signature verification we consider the case of a corrupted signer,
i.e., a set of parties such that the majority (of weights) is corrupted.
Fwtss interacts with a set of n parties. Each party Pi is associated with an

integer wi, i.e., its weight. Fwtss also keeps the following, initially empty, tables:
i) pubkeys: tuples 〈sid, vk〉 of sid and a public key vk; ii) sigs: tuples (m,σ, vk, f)
of message m, a signature σ, a public key vk, and a verification bit f . The
mapping ω[p] → wp denotes the weight of a party p, while the term ω also
denotes the set of keys the participating parties.

As highlighted in the definition, completeness, consistency, and unforgeability
are enforced upon verification, whereas threshold completeness is enforced upon
signature generation. Hence, it should be infeasible to issue a signature unless
using keys with enough weight, i.e., above the threshold, say, a value T .

3 The Collective Stake Pool

Our analysis is based on the UC Framework, following Canetti’s formulation of
the “real world” [4]. Specifically, we define the collective pool ideal functionality
Fpool, which distills the required (operational and security) properties; for read-
ability, Fpool is divided into two parts, management and consensus participation.
The ideal functionality is realized – in the “real world” – by the distributed pro-
tocol πpool, which employs various established cryptographic primitives, and,
therefore, πpool can be described with auxiliary functionalities. Before proceed-
ing with the functionality’s definition, we first describe the hybrid execution of
πpool and its building blocks.

3.1 Hybrid Protocol Execution

The protocol πpool is performed by n parties, where each party pi holds two
pairs of keys: (vkpi , skpi) for issuing transactions, and (vksi , sksi) for staking
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Each message is associated with sid = 〈P, ω, T, sid′〉, where P is the set of
parties, ω is a mapping of parties to weights, T is the collective signature
weight threshold, and sid′ is a unique identifier.
Key Generation: Upon receiving (KeyGen, sid) from every honest
party P ∈ P, send (KeyGen, sid, P ) to S. Upon receiving a re-
sponse (KeyGen, sid, vk) from S, record 〈sid, vk〉 to pubkeys and send
(KeyGen, sid, vk) to every party in P. Following, all messages that do not
contain the established sid are ignored.
Signature Generation: Upon receiving (Sign, sid,m) from a party p, for-
ward it to S. After a subset of parties P ′ ⊆ P has submitted a Sign mes-
sage for the same m, and upon receiving (Sign, sid,m, σ) from S, check that∑

p∈P′ ω[p] > T (Note: This condition guarantees threshold completeness.)
Next, if (m,σ, vk, 0) 6∈ sigs (for the key vk that corresponds to sid in pubkeys),
record (m,σ, vk, 1) to sigs and reply with (Sign, sid,m, σ).
Signature Verification: Upon receiving (Verify, sid,m, σ, vk′) from P , for-
ward it to S. Upon receiving (Verified, sid,m, σ, φ) from S, set f as next:

1. If vk′ = vk and (m,σ, vk, 1) ∈ sigs, f = 1. (This guarantees completeness.)
2. Else, if vk′ = vk, the aggregate weight of the corrupted parties in P is

strictly less than T , and (m,σ, vk, 1) 6∈ sigs, f = 0 and record (m,σ, vk, 0)
to sigs. (This guarantees unforgeability, if the aggregate weight of the cor-
rupted parties is below the threshold.)

3. Else, if (m,σ, vk′, b) ∈ sigs, f = b. (This guarantees consistency.)
4. Else, f = φ and record (m,σ, vk′, f) to sigs.

Finally, send (Verified, sid,m, σ, vk′, f) to P .

Weighted Threshold Signature Functionality Fwtss

Fig. 1. Weighted Threshold Signature Ideal Functionality
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operations, e.g., issuing delegation certificates (cf. [21]). The public key vki is
also used to generate an address αi. Each pool member pi pledges the funds of
an address αi (which it owns) to the pool. These funds are the player’s stake in
the pool and form the player’s weight in the weight distribution mapping ω.

We assume the members’ stake, i.e., their weight wi in the pool, is public.
Therefore, the weight distribution mapping ω is also public. Furthermore, each
member of the pool has its own signature key, and can issue standard signa-
tures through a standard signature scheme. A weighted version for a threshold
signature scheme follows by having each party holding as many shares, of the
original threshold scheme, as its weight. This approach has the extra advantage
that security guarantees of the original scheme are carried straightforwardly into
the weighted version. The full description of the WTSS Σthresh based on ECDSA
is presented in Section 4.

Additionally, our construction relies on the consensus sub-protocol πconsensus
to validate a transaction by the elected committee. Specifically, the collective
stake pool protocol is parameterized by: i) the validation predicate Validate,
ii) the permutation algorithm πperm, and iii) a consensus sub-protocol πconsensus.

Finally, our (modular) protocol is described in a hybrid world whith auxiliary
functionalities for established primitives. The functionality FBC [20] provides a
broadcast channel to all parties; Fcorewallet [21] enables delegation to the pool;
Fwtss (cf. Section 2) is used for weighted threshold signature operations; the
Smart Contract Functionality Γreward realizes the reward distribution mecha-
nism; GsimpleLedger is a global Ledger Functionality [24]. Let HYBRIDpoolπpool,A,Z
denote the {GsimpleLedger,FBC ,Fcorewallet,Fwtss, Γreward}-hybrid execution of
πpool in the (global) UC Framework.

3.2 Part 1: Stake Pool Management

The functionality’s first part (Figure 3) includes all operations that are not
consensus-oriented. First, establishing a stake pool consists of two parts, defined
as corresponding interfaces in the ideal functionality. The pool’s members gather
and jointly decide to create a staking pool; they contact each other, e.g., via
off-chain direct channels, agree on the pool’s parameters, and generate its key.
Importantly, the participants are aware of the total number of participants in
the pool, as well as their weights. Then, the members of the pool perform a
setup protocol and register the new pool via a registration certificate, which is
signed by the pool’s key and published on the ledger. Following, the pool receives
rewards for participating in the consensus protocol. The rewards are managed
by a smart contract and, at any point, each each party can withdraw their part,
which is proportional to the internal stake distribution. Finally, to close the pool,
the members sign and publish a revocation certificate.

In more detail, the functionality Fpool interacts with n parties p1, . . . , pn and
is parameterized by:

• the validation predicate Validate(·, ·) which, given a transaction τ and a chain
C, defines whether τ can be appended to C (as part of a block);
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• the algorithm blockify which, given a set of transactions, serializes them
(deterministically) in a block;

• the probability Πθ,t,n that the elected committee, responsible for a transac-
tion’s verification, is corrupted, dependent on the subselection parameter θ
and the number of corrupted parties t out of n total parties.

It also keeps the (initially empty) variables: i) the signature threshold T ;
ii) the public key vkpool; iii) the reward address αreward; iv) the set of valid and
unpublished transactions mempool; v) a mapping of parties to weights W ; vi) a
table of signatures sigs.

Gathering and Registration. The first step in creating a pool is the gathering
of parties, in order to collectively create the pool’s public key vkpool. Following,
the parties create and publish on the ledger the registration certificate certreg,
which contains the following:

• ω: a mapping identifying each member’s weight;
• αreward: the address which accumulates the pool’s rewards;
• vkpool: the pool’s threshold public key;
• σpool: the signature of 〈ω, αreward〉 created by vkpool.

Reward Withdrawal. During the life cycle of the pool, a member may want
to withdraw the rewards received up to that point. As per the desiderata of
Section 1, any party should be able to do so, without the explicit permission
of the other pool’s members. Additionally, the rewards that each party receives
should be proportional to its stake, i.e., its weight within the collective pool.
Reward withdrawal is implemented as the smart contract functionality Γreward.
The contract is initialized with the weight distribution of the pool’s members
and each member’s public key. We assume that the contract is associated with an
address and can receive funds, similar to real-world smart contract systems like
Ethereum [36]. The state transition functionality Γreward is defined in Figure 2.

Γreward maintains a mapping ω, of parties to weights, and a variable b.
Initialization: Upon receiving (init, sid, ω′), forward it to S. Upon receiving
a response (init-ok, sid, αsc), set ω ← ω′ and return (init-ok, sid, αsc).
Balance Update: On receiving (transaction, sid, τ) from U , such that τ =
〈αs, αr, v, f〉, if αs = αsc set b := b− v, else if αr = αsc set b := b+ v.
Withdrawal: Upon receiving (withdraw, sid, α, f) from the party p, set r =

wp∑
p′∈ω

wp′
· b and return (transaction, sid, 〈αsc, α, r, f〉).

Reward Smart Contract Functionality Γreward

Fig. 2. The pool’s Reward Smart Contract Functionality.
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Closing. Eventually, the members halt the operation of the pool. In order
to do so, they revoke the pool’s registration by jointly producing a revocation
certificate certrev. The certificate is relatively simple, containing a timestamp x
announcing the end of the pool and signed by the pool’s public key vkpool.

The first part of our functionality definition is given by Figure 3, whereas
the management routines, i.e., the first part of the description, of our protocol
construction is given by Figure 4.

Gathering: Upon receiving (gather, sid) from p, forward it to S. Af-
ter every party pi, i ∈ [1, n] has submitted gather, upon receiving from S
(gather-ok, sid, vkpool), store T and vkpool, add all party-weight pairs (pi, ωi)
to W , and reply with (gather-ok, sid, vkpool) to all parties.
Pool Registration: Upon receiving (register, sid,W ) from p, forward it to
S. After all parties pi, i ∈ [1, n] have submitted register, upon receiving from S
(register-ok, sid, αreward, σpool), set certreg = 〈(W,αreward, vkpool, σpool)〉.
Then check if ∀(m,σ, b′) ∈ sigs : σ 6= σpool, (certreg, σpool, 0) 6∈ sigs; if the
checks hold, insert (certreg, σpool, 1) to sigs. Finally, store αreward and reply
with (register-ok, sid, certreg).
Reward Withdrawal: Upon receiving the message (withdraw, sid, α, f)
from pi, forward it to S. Then, compute r = wpi∑n

j=1
wpj
· rpool, where

rpool is the funds of address αsc as defined in GsimpleLedger. Finally, return
(transaction, sid, 〈αsc, α, r, f〉).
Closing: Upon receiving (close, sid, x) from p, forward it to S. After a set
of parties B has submitted close for the same x, if

∑
p∈B wp > T , upon

receiving (close-ok, sid, σpool) from S, check if ∀(m,σ, b′) ∈ sigs : σ 6=
σpool, (x, σpool, 0) 6∈ sigs; if the checks hold, insert (x, σpool, 1) to sigs. Finally,
return to all parties (close-ok, sid, certrev), with certrev = 〈x, σpool〉.

Collective Pool Functionality FT,ωpool (first part)

Fig. 3. The first part of the Collective Pool Functionality, parameterized with thresh-
old T and weight mapping ω, refers to the creation and management of the pool (the
second part is given by Figure 5).

3.3 Part 2: Participation in Consensus

After a pool is set up, the functionality’s second part (Figure 5) considers partic-
ipation in the system, i.e., validating transactions and issuing blocks. The pool
members continuously monitor the network for new transactions, which they
collect, validate, and organize in a mempool. As mentioned in the introduction,
the pool members remain online for the entirety of the execution to perform
the pool’s operations. Specifically, when the pool is elected to participate, the
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Gathering: Upon receiving (gather, sid), send (KeyGen, sid) to Fwtss, with
sid containing the weight mapping ω and the threshold T . Upon receiving the
reply (KeyGen, sid, vkpool), return (gather-ok, sid, vkpool).
Pool Registration: Upon receiving (register, sid,W ), send (init, sid,W )
to Γreward and wait for the reply (init-ok, sid, αreward). Then, set m =
(W,αreward) and send (Sign, sid,m) to Fwtss. Upon receiving a reply
(Sign, sid,m, σpool), return (register-ok, sid, certreg), where certreg =
〈(W,αreward, vkpool, σpool)〉.
Reward Withdrawal: Upon receiving (withdraw, sid, α, f), forward it to
Γreward. Upon receiving a response (transaction, sid, 〈αsc, α, r, f〉) return it.
Closing: Upon receiving (close, sid, x), send (Sign, sid, x) to Fwtss. Upon
receiving a reply (Sign, sid, x, σpool), return (close-ok, sid, certrev) with
certrev = 〈x, σpool〉.

Collective Pool Protocol πT,ωpool (first part)

Fig. 4. The first part of the Collective Pool Protocol, which describes the set of
management operations (the second part is given by Figure 6).

mempool’s transactions are serialized and published in a block. Under PoS, the
pool participates proportionally to its aggregated member and delegated stake.

To improve performance, we define a distributed mechanism for transaction
verification, i.e., a distributed mempool. Such a load balancing mechanism in-
creases efficiency by requiring only a subset of the pool’s members to verify each
transaction. Notably, this is in contrast to the standard practice of Bitcoin min-
ing pools, where the pool’s operator decides the transactions to be mined by its
members; instead, our approach further reduces these trust requirements.

To construct a distributed mempool, we consider a subselection mechanism
to identify the parties that verify each transaction. This mechanism should be:
a) non-interactive b) deterministic, c) balanced, i.e., every party should be chosen
with the same probability. Subselection is secure if a majority of the elected com-
mittee is honest. However, since the adversary may corrupt some pool members,
this may not always be the case. We model this uncertainty via the probabil-
ity Πθ,t,n, which depends on the size of the committee and the power of the
adversary among the pool’s members.

A straightforward way to implement subselection is to assume that the pool’s
members are ordered in a well-defined manner, e.g., lexicographically. Given the
ordered list L = [p1, p2, . . . , pn] of the pool’s members, we use a permutation
algorithm πperm(·, ·, ·), which takes i) a transaction τ , ii) a chain C, and iii) the
ordered list of pool members L, and outputs a pseudorandom permuted list
Lτ . For every transaction τ and a given chain C, the committee responsible for
verification consists of the θ first members in Lτ . Naturally, this proposal is
rather simple, so alternative, e.g., VRF-based, mechanisms could be proposed
to improve performance.
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We note that using C during the subselection mechanism is important to
avoid adaptive attacks. Specifically, the chain C simulates a randomness beacon,
such that at least one of its last u blocks is honest, for some parameter u. If
C was not used, the adversary could construct a malicious transaction in such
a way that the subselected committee would also be malicious. By using C as
a seed to the pseudorandom permutation, the adversary’s ability to construct
such malicious transactions is limited. Alternatively, cryptographic sortition [17]
could be employed to fully handle adaptive adversaries.

The (honest) members need to always have the same view of the distributed
mempool; this is achieved via authenticated broadcast. Assuming a Public Key
Infrastructure, as is our setting, it is possible to achieve deterministic authenti-
cated broadcast in t+ 1 rounds for t adversarial parties [28,33,12]. Each time a
party adds a transaction to its mempool, it broadcasts it, such that, at any point
in time, the honest members of the pool have the same view of the network w.r.t.
the canonical chain and the mempool of unconfirmed transactions. We remind
that, as shown by Garay et al. [14], FBC can be implemented to ensure adaptive
corruptions using commitments. We note that, in existing distributed ledgers,
the order with which transactions are added to the mempool does not affect
the choice when creating a new block; for instance, transactions of a new block
are typically chosen based on a fee-per-byte score. If the order of transactions is
pertinent, a stronger primitive like Atomic Broadcast [11] could be employed.

Following, the committee employs a consensus sub-protocol to agree on the
transaction’s validity. When a party p retrieves a new transaction τ from the
network, it broadcasts it as above. Then, each party computes the permuted
list Lτ . Each party, which is in the validation committee for τ , computes locally
the validation predicate and submits its output to the consensus protocol. The
consensus protocol should offer strong validity, i.e., if all honest parties should
have the same input bit, they should output this bit. Finally, the output of the
consensus protocol is broadcast to the rest of the pool. To verify the committee’s
actions, a party may request the transcript of the consensus sub-protocol.

Finally, to compute the probability of electing an honest committee, we have
a hypergeometric distribution, with population size n and n− t honest parties,
where a sample of parties of size θ is chosen without replacement. Thus, the
probability of honest committee majority is: Πθ,t,n = 1−

∑min(θ,t)
v=b θ+1

2 c
(tv)·(n−tθ−v)

(nθ)
.

Following, Figure 5 defines the second part of our functionality, while Figure 6
presents the second part of our protocol.

3.4 The Security of the Conclave Collective Stake Pool

Theorem 1 formalizes the security of πpool; due to space constraints, the full
proof is available at the paper’s full version [22].

Theorem 1. The protocol πpool, parameterized by a validation predicate Validate,
a permutation algorithm πperm, and a consensus protocol πconsensus securely re-
alizes Fpool with the hybrid execution HYBRIDpoolπpool,A,Z in the global GsimpleLedger
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Transaction Verification: Upon receiving (transaction, sid, τ, θ) from pi,
forward it to S. Then send READ to GsimpleLedger on behalf of pi and
wait for the reply C. Following, set t as the number of corrupted par-
ties; with probability Πθ,t,n set b := Validate(τ, C), otherwise (with prob-
ability 1 − Πθ,t,n), send (transaction-ver, sid, τ) to S, wait for a reply
(transaction-ok, sid, C, τ, f), and set b := f . Finally, if b = 1, insert τ to
mempool and send (transaction, sid, C, τ, b) to all parties.
Mempool Update: Upon receiving (transaction, sid, C′, τ, 1) from pi, for-
ward it to S. Then send READ to GsimpleLedger on behalf of pi and wait
for the reply C. If C′ ≺ C and pi is honest, insert τ to mempool and return
(mempool-updated, sid, τ).
Block issuing: Upon receiving (issue-block, sid) from a party p, for-
ward it to S. When a set of parties P has submitted (issue-block, sid), if∑

j∈[1,m] W [pj ] > T , then for every party pi ∈ P, send READ to GsimpleLedger
on behalf of pi and wait for the reply Ci. If all received chains equal, i.e., are
the same chain C, remove every τ in mempool that also exists in C. Then,
set b = blockify(mempool), send (issue-block, sid, b) to S, and wait for the
reply (issue-block, sid, b, σpool). Following, check if ∀(m,σ, b′) ∈ T : σ 6=
σpool, (b, σpool, 0) 6∈ T ; if the checks hold, insert (b, σpool, 1) to T . Finally, reply
with (block, sid, b, σpool).

Collective Pool Functionality FT,ωpool (second part)

Fig. 5. The second part of the proposed Pool Functionality, which defines the consen-
sus participation operations.

Transaction Verification: Upon receiving (transaction, sid, τ, θ), send
READ to GsimpleLedger and wait for the reply C. Then, set b = Validate(C, τ),
compute L′ = πperm(τ, C, L) and initiate protocol πconsensus with the θ first
parties in L′ with input b. Upon computing the output of πconsensus, β, send
(transaction, sid, C, τ, β) to FBC and return it.
Mempool Update: Upon receiving (transaction, sid, C′, τ, 1), pi, send
READ to GsimpleLedger and wait for the reply C. If C′ ≺ C, insert τ to mempool
and return (mempool-updated, sid, τ).
Block Issuing: Upon receiving (issue-block, sid), send READ to
GsimpleLedger and wait for the reply C. For every τ in mempool, if τ is also
in C, then remove τ from mempool. Next, set b = blockify(mempool) and
send (Sign, sid, b) to Fwtss. Upon receiving a reply (Sign, sid, b, σpool), return
(block, sid, b, σpool).

Collective Pool Protocol πT,ωpool (second part)

Fig. 6. The second part of our protocol, which describes the set of operations for
consensus participation.
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model, and Πθ,t,n = 1−
∑min(θ,t)
v=b θ+1

2 c
(tv)·(n−tθ−v)

(nθ)
, assuming

∑
p∈PA wp < T , where θ

is the subselection parameter for transaction verification, PA is the set of t cor-
rupted parties out of n total parties, ω is the weight distribution of the n parties,
and T is the signature threshold.

Proof (Sketch). There are multiple points of interest in proving the security of
πpool. First, when A advances a party in the real world, the simulator (i.e., the
ideal adversary) S follows suit in the ideal world; importantly, A should advance
parties correctly, s.t. the security of GsimpleLedger is guaranteed and the (honest)
pool members are synchronized w.r.t. the ledger state and mempool. Second, re-
garding the consensus sub-protocol πconsensus, if πpool does not securely realize
Fpool, a transcript of an execution of πconsensus exists s.t. the validity property
of πconsensus is violated. Finally, security of the Reward Withdrawal interface
depends on the security guarantees of Kachina [24], which formalizes smart con-
tracts and is the basis for Γreward, security of Mempool Issuing relies on FBC
to ensure that all members are synchronized w.r.t. the mempool and produce
the same block without further coordination, while the security of the other
interfaces relies on the Weighted Threshold Signature Functionality Fwtss.

4 Weighted Threshold ECDSA

Our final contribution is a weighted threshold signature construction, which can
be used in the implementation of πpool. Our scheme is based on [15]; specifically,
we introduce weights, with each party having as many shares as “units” of weight.

Our construction is a (t, n, ω)-weighted threshold ECDSA. We assume that
each player pi has a associated a weight wi, identified by the (publicly avail-
able) weight function ω such that ω[pi] = wi; ω is a parameter in the following
two algorithms. Furthermore, we assume an index function I(i, w) in the secret
sharing scheme, which assigns a unique index to each pair (pi, wi).

Following, we instantiate the algorithms Thresh-Key-Gen and Thresh-Sign. We
outline the changes of our constructions to obtain identifiable abort capability
based on [16], to make it suitable for an incentive-compatible pool. We note that
some PoS protocols employ a Verifiable Random Function (VRF) [9,17]. Thus,
this section’s secret sharing techniques can also be used to distribute the VRF
key in a weighted manner.

Due to space constraints, we refer to the paper’s full version [22] for the
computation and communication complexities of both schemes.

4.1 Key Generation Protocol Thresh-Key-Genω

Each party pi is associated with a public key for the homomorphic encryption
Ei and the weight wi.

• Phase 1: Each party pi picks its share proportionally to its weight, i.e.,
wi shares. Then it commits to them and broadcast them together with its
homomorphic encryption key Ei.
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− Pick uniformly random local values u(1)
i , . . . , u

(wi)
i ∈ Zp

− Compute y(w)
i = com(gu

(w)
i ) = [C(w)

i , D
(w)
i ], for ∀w = {1, . . . , wi}

− Broadcast C(1)
i , . . . , C

(wi)
i

− Broadcast Ei
• Phase 2: The confirmation of the values is done through opening of com-
mitments, and each value for each weight is secretly shared among all the
players. Therefore each player executes as many secret-sharing instance as
weight “units” it has, resulting in its combined shares for the secret key
(x(1)
i , . . . , x

(wi)
i ) proportionally to its weight wi.

− Broadcast D(1)
i , . . . , D

(wi)
i

− Receive the decommitments for (y(1)
j , . . . , y

(wj)
j ), ∀j ∈ {1, . . . , n}, j 6= i

− Perform secret-sharing for each share u(1)
i , . . . , u

(wi)
i , s.t. for each value

u
(w)
i compute the shares u(w)

i,I(j,w′) and secretly send to pj , with respect to
weight 1 ≤ w′ ≤ wj and index I(j, w′), receiving back the share u(w)

I(j,w′),i
− Each player pi compute its respective set of shares

x
(1)
i =

∑
1≤j≤n

1≤w′≤wj

u
(1)
I(j,w′),i , . . . , x

(wi)
i =

∑
1≤j≤n

1≤w′≤wj

u
(wi)
I(j,w′),i

with the values received from other parties pj .
• Phase 3: For the public key Ei, the module Ni = pi · qi for primes pi and qi
provide zero-knowledge proof for:
− for pi and qi (Proof of knowledge for factoring [34])
− and x(1)

i , . . . , x
(wi)
i (Schnorr based)

Note that the joint public-key is vk =
∏i=n
i=1

∏w=wi
w=1 y

(w)
i , whereas the joint

secret-key is tsk =
∑i=n
i=1

∑w=wi
w=1 x

(w)
i .

4.2 Signing Protocol Thresh-Signω

We assume a set B of parties pi that jointly compute a signature.

• Phase 1: Each party selects two tuples of values, each with wi values, and
broadcasts wi commitments to one of the sets.
− Pick random values k(1)

i , . . . , k
(wi)
i ∈R Zp

− Pick random values γ(1)
i , . . . , γ

(wi)
i ∈R Zp

− Define k =
∑
i∈B

∑w=wi
w=1 k

(w)
i and γ =

∑
i∈B

∑w=wi
w=1 γ

(w)
i

− Compute wi commitments com(gγ
(w)
i ) = [C(w)

i , D
(w)
i ] for ∀w = {1, . . . , wi}

− Broadcast C(1)
i , . . . , C

(wI)
i

• Phase 2: Each party computes the interpolation coefficients λ(w)
i for each

share it keeps, that is the shares for weights w = {1, . . . , wi}, taking into
account its indexes I(i, w).
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− For w = {1, . . . , wi} and w′ = {1, . . . , wj}, compute the Lagrangian
coefficients λ(w)

i,B =
∏w′=wj
j∈B,w′=1

−I(j,w′)
I(i,w)−I(j,w′)

− Compute the values

x(1)
i = (λ(1)

i ) · (x(1)
i ) , . . . , x(wi)

i = (λ(wi)
i ) · (x(wi)

i ).

• Phase 2A - Local Shares: The party pi executes locally the MtA protocol with
the local shares, which are (k(1)

i , . . . , k
(wi)
i ) and (γ(1)

i , . . . , γ
(wi)
i ) to compute

α and β such that k(w)
i γ

(w′)
i = α

(w)(w′)
i,i + β

(w)(w′)
i,i for pi and 1 ≤ w,w′ ≤ wi.

Note that both values of the pair k(w)
i and γ(w)

i are used which means MtA
is executed twice for a given party pi and weight w.

• Phase 2B - Online Shares: Party pi executes MtA protocol between its local
shares (k(1)

i , . . . , k
(wi)
i ) and shares of the remaining parties, other than pi:

p1, . . . , p(i−1) p(i+1), . . . , pn

(γ(1)
1 , . . . , γ

(w1)
1 )

...
(γ(1)
i−1, . . . , γ

(wi−1)
i−1 )

(γ(1)
i+1, . . . , γ

(wi+1)
i+1 )

...
(γ(1)
n , . . . , γ

(wn)
n )

Like Local Shares, there will be two MtA executions for each pair k(w)
i and

γ
(w)
i , i.e., k(w)

i γ
(w′)
j = α

(w)(w′)
i,j + β

(w)(w′)
j,i .

• Phase 2C - Compute δ(w)
i , for 1 ≤ w ≤ wi and 1 ≤ i ≤ n the following values

by summing the produced values from steps 2A and 2B. Second and third
terms from 2A, and the remaining terms from 2B:

δ
(w)
i = k

(w)
i γ

(w)
i +

w′=wi∑
w′=1
w 6=w′

α
(w)(w′)
i,i +

w′=wi∑
w′=1
w 6=w′

β
(w)(w′)
i,i

+
∑

1≤`≤i−1
1≤w′≤w`
j∈B

(
α

(w)(w′)
i,j + β

(w)(w′)
j,i

)
+

∑
i+1≤`≤n
1≤w′≤w`
j∈B

(
α

(w)(w′)
i,j + β

(w)(w′)
j,i

)
.

• Phase 2D - Local Shares: Party pi executes locally the MtA protocol wi the
local shares which are (k(1)

i , . . . , k
(wi)
i ) and (x(1)

i , . . . ,x(wi)
i ) to compute µ

and ν such that k(w)
i x(w′)

i = µ
(w)(w′)
i,i + ν

(w)(w′)
i,i for pi and 1 ≤ w,w′ ≤ wi.

• Phase 2E - Online Shares: Party pi executes MtAwc protocol between its
local shares (k(1)

i , . . . , k
(wi)
i ) and shares of the remaining parties except pi:

p1, . . . , p(i−1) p(i+1), . . . , pn

(x(1)
1 , . . . ,x(w1)

1 )
...

(x(1)
i−1, . . . ,x

(wi−1)
i−1 )

(x(1)
i+1, . . . ,x

(wi+1)
i+1 )

...
(x(1)
n , . . . ,x(wn)

n )
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Likewise the Local Shares, there will be two executions of the MtAwc pro-
tocol for each pair k(w)

i and x(w)
i , that is k(w)

i x(w′)
j = µ

(w)(w′)
i,j + ν

(w)(w′)
j,i .

• Phase 2F: Compute σ(w)
i , for 1 ≤ w ≤ wi and 1 ≤ i ≤ n the following values

by summing the produced values from Steps 2D and 2E. Second and third
terms from 2D, and the remaining terms from 2E:

σ
(w)
i = k

(w)
i x(w)

i +
w′=wi∑
w′=1
w 6=w′

µ
(w)(w′)
i,i +

w′=wi∑
w′=1
w 6=w′

ν
(w)(w′)
i,i

+
∑

1≤`≤i−1
1≤w′≤w`
j∈B

(
µ

(w)(w′)
i,j + ν

(w)(w′)
j,i

)
+

∑
i+1≤`≤n
1≤w′≤w`
j∈B

(
µ

(w)(w′)
i,j + ν

(w)(w′)
j,i

)
.

• Phase 3: At this point each party pi has two sets of values (δ(1)
i , . . . , δ

(wi)
i ) and

(σ(1)
i , . . . , σ

(wi)
i ) from, respectively, Steps 2C and 2F. The party pi broadcasts

the former set, and all parties reconstruct the value δ =
∑w=wi
w=1
i∈B

δ
(w)
i = k · γ

(as defined in Step 1).
• Phase 4: Release wi commitments computed in Step 1, and use them to
compute the r as the first part of the signature.
− Broadcast the valuesD(w)

i which open the commitments for Γ (w)
i = gγ

(w)
i

− pi proves in ZK the knowledge of γ(w)
i for 1 ≤ w ≤ wi

− All compute

R =

 ∏
i∈B

1≤w≤wi

Γ
(w)
i


δ−1

= g

(∑
i∈B

1≤w≤wi
γ

(w)
i

)
k−1γ−1

= gγk
−1γ−1

= gk
−1

− Compute the first half of the signature as r=R mod p

• Phase 5: Each player pi computes s(w)
i = mk

(w)
i + rσ

(w)
i , so each player pi

holds the set (s(1)
i , . . . , s

(wi)
i ) of shares of the second part of the signature.

• Phase 5A: To build the second half of the signature it is necessary to ran-
domly sample and commit to two value sets:
− Choose two sets of random values (`(1)

i , . . . , `
(wi)
i ) and (ρ(1)

i , . . . , ρ
(wi)
i )

such that `(w)
i ∈ Zp and ρ(w)

i ∈ Zp.
− Compute the set (V (1)

i , . . . , V
(w)
i ) such that V (w)

i = rs
(w)
i g`

(w)
i

− Compute (A(1)
i , . . . , A(w)i) such that A(w)

i = gρ
(w)
i

− Compute the commitments ([Ĉ(1)
i , D̂

(1)
i ], . . . , [Ĉ(wi)

i , D̂
(wi)
i ]), such that

com(V (w)
i , A

(w)
i ) = [Ĉ(w)

i , D̂
(w)
i ]

− Broadcast (Ĉ(1)
i , . . . , Ĉ

(wi)
i )

• Phase 5B: Once all committed values were received, open the commits in
order to joint compute V and A:
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− Broadcast (D̂(1)
i , . . . , D̂

(wi)
i )

− Prove in ZK, for each value w, such that 1 ≤ w ≤ wi, the knowledge of
`

(w)
i , ρ(w)

i and s(w)
i such that V (w)

i = Rs
(w)
i g`

(w)
i and A(w)

i = gρ
(w)
i

− Compute:

V = g−m · (vk)−r ·
∏
i∈B

1≤w≤wi

V
(w)
i , A =

∏
i∈B

1≤w≤wi

V
(w)
i

• Phase 5C: Like Step 5A, compute two sets of values U (w)
i and T (w)

i and prove
the knowledge of them via ZK proofs. These values are used to guarantee
consistency of the shares:
− Compute the set (U (1)

i , . . . , U
(wi)
i ) such that U (w)

i = V ρ
w
i

− Compute the set (T (1)
i , . . . , T

(wi)
i ) such that T (w)

i = A`
w
i

− Compute the commitments ([C̃(1)
i , D̃

(1)
i ], . . . , [C̃(wi)

i , D̃
(wi)
i ]), such that

com(U (w)
i , T

(w)
i ) = [C̃(w)

i , D̃
(w)
i ]

− Broadcast (C̃(1)
i , . . . , C̃

(wi)
i )

• Phase 5D: Once the commitments are received, broadcasts their openings
and verify the consistency of the shares:
− Broadcast (D̃(1)

i , . . . , D̃
(wi)
i )

− If
∏

i∈B
1≤w≤wi

T
(w)
i 6=

∏
i∈B

1≤w≤wi
U

(w)
i , then abort

• Phase 5E: Broadcast the shares of the second half of the signature, and
reconstruct it:
− Broadcast the set (s(1)

i , . . . , s
(wi)
i )

− Compute the second signature share as s =
∑

i∈B
1≤w≤wi

si. If (r, s) is not
a valid signature, then abort.

4.3 Identifiable Abort

Here we describe the changes required to provide identifiable abort capability
considering weights as it is used in our proposed construction. As mentioned
earlier, weights can be also introduced in the extended version of [16]; we note
that weights can be similarly applied to the scheme of [6], which extends [16].
The changes yield a similar construction as the one presented earlier, and affect
only Phase 3, and the substitution of the Phases 5, 5A, 5B, 5C, 5D and 5E, to
new Phases 5, 6 and 7. Identification follows similarly to [16], therefore we refer
the reader to that work for a full description of the procedure.

Concretely, for the new phases with weights below, consider w ∈ {1, . . . , wi}:

• Phase 3:
− All parties reconstruct δ =

∑w=wi
w=1
i∈B

δ
(w)
i = k · γ and compute δ−1 mod p

− Compute (T (1)
i , . . . , T

(wi)
i ) such that T (w)

i = gσ
(w)
i h`

(w)
i , and provide a

ZK proof of knowledge of (`(1)
i , . . . , `

(wi)
i ) and (σ(1)

i , . . . , σ
(wi)
i )
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• Phase 5: All players broadcast R̃(w)
i = Rk

(w)
i and a ZK proof of range (as

the ones sent in the MtA on Phase 2) between R
(w)
i and Ei(k(w)

i ). If g 6=∏
i∈B

1≤w≤wi
R̃

(w)
i , the protocol aborts.

• Phase 6: All parties broadcast S(w)
i = Rσ

(w)
i and a ZK knowledge proof (as in

Phase 3) between S(w)
i and T (w)

i . If y 6=
∏

i∈B
1≤w≤wi

S
(w)
i , the protocol aborts.

• Phase 7: Each player broadcasts s(w)
i = mk

(w)
i +rσ(w)

i and sets s =
∑

i∈B
1≤w≤wi

si.

If (r, s) is not a valid signature, abort.

5 Conclusion

Our work explores a novel design for collective stake pools for Proof-of-Stake
ledgers, i.e., pools without a central operator. Our first contribution is a security
definition for collective stake pools, which takes the form of the ideal functional-
ity Fpool that articulates the security properties and functions that a collective
pool should offer. Following, we propose the concrete protocol Conclave which
UC-realizes Fpool. Our construction incorporates a load balancing mechanism for
transaction verification, to boost performance, as well as a Weighted Threshold
Signature Scheme (WTSS). Regarding the latter, we present the ideal function-
ality Fwtss (Section 2) that formalizes this new definition and might be of in-
dependent interest, and propose two constructions based on threshold ECDSA.
We stress that the collective pool is modular and agnostic to the WTSS imple-
mentation, so any scheme that securely realizes Fwtss suffices.

Our design satisfies most of the desiderata outlined in Section 1. Some (e.g.,
pool proportional rewards or stake reallocation) are dependent on the underly-
ing ledger system’s details, therefore are outside of our scope; nevertheless, our
design does not pose restrictions in capturing them. The reward functionality
Γreward handles the reward-specific desiderata, while Fpool’s first part (Figure 3)
covers the requirements for permissioned access and closing of the pool. How-
ever, Fpool’s handling of stake reallocation and updating of the pool’s parameters
could be more dynamic, as it currently requires closing and re-creating a pool
with the new parameters; a more efficient design is an interesting direction for
future research. Additionally, an improvement to the WTSS scheme of Section 4,
which would be directly applicable by πpool, could assign a single weighted share
to each party, instead of using multiple shares depending on each party’s weight.
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