
POW-HOW: An enduring timing side-channel to evade
online malware sandboxes

Antonio Nappa‡†�, Panagiotis Papadopoulos◦, Matteo Varvello?,
Daniel Aceituno Gomez†, Juan Tapiador†, Andrea Lanzi�

‡ UC Berkeley, † Universidad Carlos III de Madrid, � Zimperium zLabs Team,
◦ Telefonica Research, ? Nokia Bell Labs, � University of Milan

Abstract. Online malware scanners are one of the best weapons in the arsenal of
cybersecurity companies and researchers. A fundamental part of such systems is
the sandbox that provides an instrumented and isolated environment (virtualized
or emulated) for any user to upload and run unknown artifacts and identify po-
tentially malicious behaviors. The provided API and the wealth of information in
the reports produced by these services have also helped attackers test the efficacy
of numerous techniques to make malware hard to detect.
The most common technique used by malware for evading the analysis system
is to monitor the execution environment, detect the presence of any debugging
artifacts, and hide its malicious behavior if needed. This is usually achieved by
looking for signals suggesting that the execution environment does not belong
to a the native machine, such as specific memory patterns or behavioral traits of
certain CPU instructions.
In this paper, we show how an attacker can evade detection on such online ser-
vices by incorporating a Proof-of-Work (PoW) algorithm into a malware sample.
Specifically, we leverage the asymptotic behavior of the computational cost of
PoW algorithms when they run on some classes of hardware platforms to ef-
fectively detect a non bare-metal environment of the malware sandbox analyzer.
To prove the validity of this intuition, we design and implement the POW-HOW
framework, a tool to automatically implement sandbox detection strategies and
embed a test evasion program into an arbitrary malware sample. Our empirical
evaluation shows that the proposed evasion technique is durable, hard to finger-
print, and reduces existing malware detection rate by a factor of 10. Moreover,
we show how bare-metal environments cannot scale with actual malware submis-
sions rates for consumer services.

1. Introduction
Malware attacks have a significant financial cost, estimated around $1.5 trillion dollars
annually (or $2.9 million dollars per minute) [42], with predictions hinting at this cost
to reach $6 trillion dollars by 2021 [30]. Due to the sheer amount of known malware
samples [76,28], manual analysis neither scales nor allows to build any comprehensive
threat intelligence around the detected cases (e.g., malware clustering by specific behav-
ior, family or infection campaign). To address this problem, security researchers have
introduced sandboxes [19]: isolated environments that automate the dynamic execution
of malware and monitor its behavior under different scenarios. Sandboxes usually com-
prise a set of virtualized or emulated machines, instrumented to gather fundamental
information of the malware execution, such as system calls, registry keys accessed or
modified, new files created, and memory patterns.

ar
X

iv
:2

10
9.

02
97

9v
2

 [
cs

.C
R

]
 5

 O
ct

 2
02

1

As a next step, online services came to bring malware analysis from security ex-
perts to the common users [66]. Online malware scanners are not only useful for the
users but also for the attackers. In fact by allowing an artefact to be checked multi-
ple times against various state-of-the-art of malware analysis sandboxes, attackers can
tune the evasiveness of their malware samples by exploiting the feedback reported by
these services and try various techniques before making the sample capable of detecting
the presence of a sandbox. Specific CPU instructions, registry keys, memory patterns,
and red pills [70,67,58] are only a few of the signals used by attackers for identifying
glitches of the emulated environment that can disclose the presence of a sandbox en-
vironment. These techniques have triggered an arms-race, with the more sophisticated
web malware scanners rushing to spoof any such exploitable signals [43].

In this work, we show how an attacker can evade malware analysis of these scan-
ning services by leveraging Proof-of-Work (PoW) [35] algorithms. Our intuition lies on
the fact that, like NP-class problems [79], the asymptotic behavior of a PoW algorithm
is constant in terms of computational power [35], e.g., CPU and memory consumption
which remain stable over time. Accordingly, PoW algorithms are perfect candidates for
benchmarking the computation capability of the underlying hardware. In such scenario
the benchmark can be leveraged as a fingerprint of the underlying computing infrastruc-
ture, revealing the presence of a sandbox since it shows a statistical deviation compared
with the native hardware platform. Moreover, current defensive techniques that aim
at spoofing the virtualization signals present in contemporary sandboxes cannot act as
countermeasures against the stable timing side-channels that our technique exploits.

A key advantage of using PoW techniques is that they are a time-proof and self-
contained mechanism compared to other more fine-grained timing side-channel ap-
proaches that try to detect the underlying hardware machine. In fact, our system does
not require access to precise timing resources for detecting the emulated environment
(e.g., network or fine-grained timers). In our evaluation we empirically validate that a
PoW-based technique can detect an emulated environment with high precision just by
looking at the output of the algorithm (i.e., execution time, and number of successful
iterations). Furthermore, PoW implementations do not raise any suspicion to automated
malware sandboxes compared with the stalling code (e.g., infinite loops and/or sleep)
that is easier to detect because of CPU idleness [52]. Fingerprinting PoW algorithms as
a malware component is feasible e.g., by checking the usage of particular cryptographic
instructions. However, using it as a proxy signal for detecting malware would produce a
large number of false positives since PoW algorithms are part of legitimate applications
such as Filecoin [68] and Hashcash [9].
Contributions. In this paper, we make the following contributions:

1. We design and implement POW-HOW: a framework to automatically create, inject,
and evaluate PoW-based evasion strategies in arbitrary programs. POW-HOW oper-
ates as a three-step pipeline. First (step 1) multiple PoW algorithms are thoroughly
tested across different hardware platforms (Raspberry Pi 3, Dual Intel Xeon, Intel
i9), operating systems (Linux Ubuntu 18.03 and Windows 10), and machine loads.
The outcome of these tests (step 2) is used to build a statistical characterization of
each PoW’s execution time under each setting. We use the Bienaymé–Chebyshev in-
equality [11] to obtain statistical evidence about the expected execution time. Next,

2

a miscreant can upload its malware to the POW-HOW framework and select the eva-
sion mechanism to be used. Finally (step 3), POW-HOW automatically evaluates the
accuracy of the evasion mechanism selected and embedded in the uploaded malware
via several tests on multiple online sandbox services [66].

2. We empirically evaluate each step of POW-HOW’s pipeline. For the PoW thresh-
old estimation, we have tested three popular PoW algorithms (Catena [27], Ar-
gon2 [20,21] and Yescrypt [10]) using multiple configurations. During 24 hours
of testing, we find Chebyshev inequality values higher than 97% regardless of PoW
and setting. This result verifies high determinism in PoW execution times on real
hardware, thus validating the main intuition behind this work. We test our technique
on top of two known ransomware families by submitting to three sandboxes several
variants that include PoW-based evasion. The results demonstrate how PoW-based
evasion reduces the number of detections, even in the presence of anti-analysis tech-
niques such as code virtualization or packing.

3. To further quantify the efficacy of PoW-based evasion with real-world sandboxes,
we wrote a fully functional malware sample, integrated with an evasion mechanism
based on Argon2, and submitted it to several online sandboxes. All the reports from
each sandbox mark our malware as clean. We further discuss the behavioral analy-
sis for our malware, as well as potential countermeasures to this novel PoW-based
evasion mechanism we have proposed. To ensure the reproducibility of our results
and foster further research on this topic, we make the source code of our system
publicly available [16]1.

2. Background
2.1 Malware and Malware Analysis
Together with the evolution of malicious software, researchers and professionals have
tried to improve their tools and skills to understand malware and counter its conse-
quences. There is a huge amount of literature devoted to analyze and counter mal-
ware [62,80,39,47,24,77,46,60]. Every aspect of this phenomenon has been taken into
consideration, from its network infrastructure, to the code that gets reused among
samples, unexplored paths in the control-flow, sandbox design and instrumentation.
Nonetheless the arms race keeps running, while new analysis evasion techniques are
found, new countermeasures get developed.
Anti-Analysis Techniques: There are several anti-analysis techniques which have
been developed during the years by miscreants, and promptly countered by our commu-
nity: e.g., packers [56,75], emulators [71], anti-debugging and anti-disassembly tricks
and stalling code. Among all these techniques the only one that seems to resist is stalling
code, which is very difficult to detect [50]. Indeed, over 70% of all malware attacks in-
volved evasive zero-day malware in Q2 of 2020: a 12% rise on the previous quarter [29].
This denotes that evasive malware is a phenomenon that will hardly disappear and there
will always be continuous research in evading analysis systems.

1https://github.com/anonnymousubmission/Esorics2021_Paper159

3

https://github.com/anonnymousubmission/Esorics2021_Paper159

2.2 PoW for Malware Analysis Evasion
Proof-of-Work (PoW) [35] is a consensus mechanism that imposes computation work-
load on a node. A key feature of such algorithms is their asymmetry: the work imposed
on the node is moderately hard but it is easy for a server to check the computed result.
There are two types of PoW protocols: (a) challenge-response protocols, which require
an interactive link between the server and the client, and (b) solution-verification proto-
cols, which allow the client to solve a self-imposed problem and send the solution to the
server to verify the validity of the problem and its solution. Such PoW protocols (also
known as CPU cost functions) leverage algorithms like hashcash with doubly iterated
SHA256 [51], momentum birthday collision [49], cuckoo cycle [73], and more.

In POW-HOW we use Argon2, which guarantees that by using the same input pa-
rameters, the amount of computation performed is asymptotically constant; hence, the
variance of Argons2’s execution time T is very small on the same platform. More-
over, Argon2 is based on a memory-hard function which, even in the case of parallel or
specialized execution (e.g., ASICs or FPGAs), will not enhance scalability, and hence
remains computationally bounded due to its asymptotic behavior.

The Argon2 algorithm takes the following input:

– A message string P , which is a password for password hashing applications. Its
length must be within 32-bit size.

– A nonce S, which is used as salt for password hashing applications. Its length must
be within 32-bit size.

– A degree of parallelism p that determines how many independent (but synchro-
nized) threads can be run. Its value should be within 24-bit size (minimum is 1).

– A tag, which length should be within 2 and 32-bit.
– A memory size m, which is a number expressed in Kibibytes.
– A number of internal iterations t, which is used to tune the running time indepen-

dently of the memory size. Its value should be within 32-bit size (minimum is 1).

These input parameters are used in our framework to define the computational
boundary of the algorithm execution on a specific class of hardware machines. Once
the parameters are set, the output of the PoW algorithm only depends on the hardware
platform.

2.3 Side-channel Measurement
Various techniques have been proposed to detect if applications are running inside a
sandbox/virtualizer/emulator. The most reliable of them is based on timing measure-
ments [45]. Indeed, fine grained timers help also to build micro-architectural attacks
such as Spectre and Meltdown [54,44]. The intuition behind our work is that PoW al-
gorithms offer strong cryptographic properties with a very stable complexity growth,
which make the approach very resilient to any countermeasure, such as using more
powerful bare-metal machines to enhance performance and reduce the space for time
measurements.

By exploiting the asymptotic behavior of the PoW algorithms, we build a statistical
model that can be used to guess the class of environment where the algorithm is running
and consequently distinguish between physical and virtualized, emulated or simulated
architectures, like different flavors of malware sandboxes. Indeed, even fine grained

4

red-pills techniques [67] such as CPU instruction misbehavior can be easily fixed in
the sandbox or spoofed to thwart evasion techniques. On the other hand PoW stands on
top of well defined mathematical and well defined computational behavior. Moreover, a
simple modification of the PoW library avoids the malware sample to be fingerprinted
by static techniques. If we take as an example of PoW complexity the one that is run in
the crypto currency environment, we know that by design the computation complexity
of the algorithm is increased for each new block of the blockchain transaction [61].
Such an increase of computation shows the asymptotic behavior that can be exploited
by our technique. By applying PoW as a malware sandbox evasion technique, we get an
off-the-shelf technique which improves the malware resilience and limits its analysis.

3. Our Approach: POW-HOW
This section describes our threat model before describing our approach in detail. We
first provide an overview of the technique (Section 3.2) and its main workflow. We
then describe how the key parameters are estimated (Sections 3.3 and 3.4) and how an
arbitrary sample can be equipped with the evasion module (Section 3.5).

3.1 Threat Model
In this paper, we assume a malware scanning service based on virtualized or emulated
sandboxes, which allows users to upload and scan their individual files for free as many
times as they need. Such a service joins together results from various state-of-the-art
malware analysis sandboxes before responding back to the user with a detailed report
about the detection outcome of each and every sandbox scanner used.

On the other hand, we assume an attacker who developed a program that includes
(i) some malicious payload along with (ii) a technique to pause or alter the execution
of the malicious program itself, when a possible malware analysis environment is de-
tected. Before distributing the malicious program to the victims, the attacker may use a
malware scanning service to assess its evasiveness.

3.2 System Design
As described in Section 2., PoW puzzles have moderately high solving cost and a very
small verification time, like problems in the NP complexity class [79]. This implies
that their asymptotic behavior is constant in terms of computational cost [35], e.g.,
CPU and memory consumption. POW-HOW exploits this asymptotic behavior to build
a statistical model that can be used to identify the class of hardware machines where the
algorithm is running. Such a model can later be used to distinguish between physical
and virtualized architectures, like those present in malware sandboxes. POW-HOW is a
three-step pipeline (see Figure 1):

1. Performance Profiling. It executes multiple PoW algorithms on several hardware
and operating systems using different configuration settings and system loads.

2. Model estimation. The previous step provides the system with a measurement of
the amount of time needed to execute the PoW on real hardware. By using the Bi-
enaymé–Chebyshev [11] inequality, it then estimates the time (threshold) expected
for a particular configuration to run on a given architecture.

3. Integration. Once the models are built, a malware developer can select a specific
PoW and parameters to associate with an arbitrary malware sample. POW-HOW

5

2. PoW Threshold Estimation

Evasive
Behavior
Malicious
Behavior

1. Execution of 3 PoW on
different hardware and

OS

Malware
compilation

3. Compile & Test
Sandbox 1
Sandbox 2
Sandbox 3
Sandbox 4
Sandbox 5

Fig. 1: High level overview of POW-HOW. Step 1: execution of the PoW on several hard-
ware/OSes using different configuration settings and system load. Step 2: threshold estimation
based on execution time per configuration/architecture. Step 3: malware integration and test.

then generates a module with the chosen PoW, which is integrated with the sample
by building a single statically-linked executable.

As ground truth, our methodology leverages a custom Cuckoo Sandbox [40] and pop-
ular crowd-sourced malware scanning services (like VirusTotal or similar [66]), as a
testbed to report on the accuracy of the evasiveness of the malware in real-world set-
tings.

3.3 Performance Profiling
The first step in POW-HOW’s pipeline produces a number of PoW executions using
different algorithms, parameters, hardware, operating systems, and load settings:
Hardware: POW-HOW leverages three machines representative of low, medium, and
high-end platforms. The high-end machine is a desktop equipped with an Intel(R)
Core(TM) i9-9900X CPU @ 3.50GHz with 10 physical cores and 20 threads equipped
with a PCI-e M2 512GB disk and 32 GB of RAM. The medium-end machine is a
workstation equipped with a Dual Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz with
16 physical cores and 64GB of RAM. Finally, the low-end device is a Raspberry Pi 3
which comes with a quad core ARMv7 Processor rev 4 (v7l) and 1GB of RAM.
Systems and loads: With the exception of the Raspberry Pi 3, the other hardware
platforms are setup in dual boot, supporting both Linux Ubuntu 18.04.3 (64 bits) and
Windows 10 (64 bits). Each platform can be further configured in idle and busy mode.
The latter is achieved using iperf [34] a CPU bound network traffic generator to keep
the operating system and the CPU occupied.
PoW and parameters: POW-HOW currently supports three popular PoW algorithms:
Catena [27], Argon2 [20,21], and Yescrypt [10]. Each PoW algorithm is executed mul-
tiple times with different input parameters on each hardware platform, operating sys-

6

tem, and load setting. The parameters of each algorithm allow to control the amount of
memory, parallelism, and complexity of the PoW. Our selection is based on common
configuration of COTS hardware devices, with respect to memory and CPU. However,
not all the selected algorithms have these parameters available for tuning and in some
cases, their tuning is more coarse grained [27].

3.4 Threshold Estimation
The second step in POW-HOW’s pipeline aims at estimating the PoW thresholds for
different settings (PoW algorithm, parameters, hardware, operating system, and load).
This is achieved through a statistical characterization of the execution time in each
setting using the Bienaymé–Chebyshev inequality [11]. This is a well-known result in
probability theory stating that for a large class of distributions, no more than 1

k2 values
of a distributionX can be more than k standard deviations (σ) away from the mean (µ):

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(1)

Using the empirical distribution of execution time observed in the previous step,
this inequality allows us to select a threshold T (i.e., a maximum execution time) which
guarantees a high sample population coverage. The previous deduction enables us to
determine with high probability the time T it will take for a PoW to run if the underlying
platform is not virtualized. To reduce false positives, the evasion rule can be generalized
to “the execution environment is virtualized if the PoW does not completeN executions
in less than T seconds.”

3.5 Malware Integration and Testing
The final step in POW-HOW’s pipeline is PoW integration with a malware sample pro-
vided as input. At this step, the attacker can upload its sample to POW-HOW and select
the PoW-based evasion mechanism to be used, along with its parameters. POW-HOW
further informs the attacker about the predicted accuracy of this selection.

POW-HOW integrates the uploaded malware with the PoW selected and the Boost
C++ libraries [65], which ease the OS interaction to build a single statically-linked exe-
cutable. The compilation stage is automated as an Ansible [69] playbook and clang [55].
The integration is achieved at linking stage, so the malware will have a stub call to an
external symbol that will be linked with the chosen PoW. POW-HOW’s pipeline then
starts the Ansible scripts, which runs some tests and launch the compilation of the final
binary for multiple platforms automatically.
Testing: To evaluate the accuracy of the newly generated evasion mechanism, we rely
both on a local sandbox—a custom Cuckoo Sandbox [40] equipped with Windows
10 (64 bits), which is the most targeted OS for malware campaigns [78]—and several
on-line free-of-charge sandbox services [66]. Once this step is completed, POW-HOW
offers to the user access to the set of reports generated by each sandbox.

4. Evaluation
In this section, we evaluate POW-HOW’s pipeline. We first analyze the combination of
PoWs and their parameters currently supported by POW-HOW. The outcome of this
evaluation are the parameters N (cycle of execution made in less than T second) and T
(maximum execution time) to be associated with the malware sample. We then discuss

7

Platform Status Win 10 Ubuntu 18.03

Intel i9 idle 4,500 9,325
busy 3,642 8,867

Dual Intel Xeon idle 6,005 7,897
busy 4,320 7,012

Raspberry Pi 3 idle - 300
busy - 143

Table 1: Number of consecutive PoW execu-
tions per hardware and OS combination over
24 hours. For a given platform, the first line
refers to results obtained with the idle setting,
while the second line refers to busy setting.

Garlic Graph Size Min Max Sigma Mean K Chebyshev

15 0.12 5.35 0.503 0.209 9.99 99.00%
18 1.13 35.61 4.22 1.86 7.94 98.41%
20 5.11 165.57 19.01 8.26 8.26 98.54%

Table 2: Statistical measurement results for
Catena.

the accuracy of our evasion mechanism across using various case studies across three
public malware scanning services: ([14], [12], [13]), along with our own Cuckoo
Sandbox instance.

4.1 Threshold Estimation and PoW Algorithm Choice
For each PoW, we have selected different configurations with respect to memory foot-
print, parallelism, and algorithm internal iterations (see Tables 2 for Catena and 3 for
Argon2i and Yescryot). Argon2i and Yescrypt have similar parameters (memory, num-
ber of threads, blocks) whereas Catena’s only parameter is a graph size which grows in
memory and will make its computation harder as the graph size increases.

POW-HOW executes each PoW configuration on the low-end (Raspberry Pi 3),
medium-end (Dual Intel Xeon), and high-end (Intel i9) machines. All PoW configu-
rations are executed sequentially during 24 hours on each machine for both idle and
busy conditions. As pointed out in Section 3., with the exception of the Raspberry Pi 3,
all tests are performed on two operating system per hardware platform: Linux Ubuntu
18.04.3 (64 bits) and Windows 10 (64 bits).

Table 1 shows the total number of PoW executed over 24 hours per hardware, op-
erating systems, and CPU load (idle or busy). Regardless of the CPU load on each
machine, we observe two key insights. First, there is a significant drop in the number
of PoW executions when considering Linux vs Windows, which is close to a 50% re-
duction in the high-end machine. This is due to operating system interaction, ABI and
binary format, and ultimately idle cycle management. Second, a 30x reduction in the
number of PoW executions when comparing high-end and low-end platforms, e.g., un-
der no additional load the Raspberry Pi 3 completes 300 executions versus an average
of 8,611 executions on both the high and medium-end machines. Finally, extra load on
the medium and high-end machines causes a reduction in number of proofs computa-
tion of about 6-10%, averaging out to 7,300 executions between the two machines. A
more dramatic 50% reduction was instead measured for the Raspberry Pi 3.

Next, we statistically investigate PoW execution times by mean of the Bien-
aymé–Chebyshev inequality (see Section 3.4). To balance equally sized datasets, we
sampled 150 random executions (i.e., the total number of executions that were possible
to complete on the low-end platform) from the 9,325 executions available from both the
medium and high-end platforms. Tables 2 and 3 show for each PoW and configuration,
several statistics (min, max, σ, and K, Chebyshev inequality) of the PoW execution

8

Thr. It. Mem. Min Max Sigma Mean K Cheb.

1 10 1KB 0.01 0.70 0.09 0.02 7.9 98.4%
8 100 4KB 0.20 9.28 1.07 0.46 8.1 98.3%
16 500 8KB 2.03 88.8 10.5 3.85 7.9 98.4%

1 1K 8KB 0.00 0.02 0.00 0.01 6.1 97.3%
8 2K 32KB 0.03 0.56 0.05 0.05 10.5 99.1%
16 4K 64KB 0.08 5.00 0.51 0.19 9.4 98.9%

Table 3: Statistical measurement results for
Argon2i (top) and Yescrypt (bottom). Thr. =
number of threads. It. = number of algorithm
steps. Mem. = amount of memory used in KiB.
Cheb. = Chebyshev coverage.

Test Relec Forbidden Hello
Tear World

Original 23/72 26/72 3/72
Original+Code Virtualizer 32/72 n/a 19/72
Original+Themida 33/72 21/72 17/72
Original+PoW+Code Virtualizer 29/72 n/a 0/72
Original+PoW+Themida 32/72 18/72 9/72
Original+PoW 3/71 3/72 2/72

Table 4: Online Sandbox detection results for
2 ransomware samples (Relec and Forbidden
Tear) and a benign test program using various
anti-analysis configurations.

time computed across hardware platforms, OSes (when available), and load condition
(idle, busy). Overall, we measured Chebyshev inequality values higher than 97% re-
gardless of the PoW and its configuration. This confirms high determinism in the PoW
execution times on real hardware, validating the main intuition behind this work.
Algorithm choice: The results above provide the basis to select a PoW algorithm
along with its parameters to integrate with the input malware sample. These results in-
dicate that PoW selection has minimal impact on the expected accuracy of the proposed
evasion mechanism. We then selected Argon2i (with 8 threads, 100 internal functions
and 4KiB of memory) motivated by its robustness and maturity. We leverage the results
from Table 3 (top, second line) to set the parametersN (PoW execution) and T (evasion
threshold) of an Argon-based evasion mechanism. The table shows that K = 8.1 sec-
onds allows a good coverage for the execution time population (98.3%). We opted for a
more conservative value of T = 10 and further performed multiple tests on our internal
Cuckoo Sandbox. Given that our Cuckoo Sandbox could not even execute 1 PoW with
T = 10, we simply set N > 1. We will use this configuration for the experimentation
described in the remaining of this paper.

4.2 Case Study: Known Malware
We first analyze the effect of adding our PoW-based evasion strategy to the code of two
well-known ransomware samples: Relec and Forbidden Tear. The use of real-world mal-
wares, which are well know and thus easy to detect, allows us to comment on the impact
that PoW-based evasion has on malware reuse, the practice of recycling old malware
for new attacks. We use POW-HOW to generate various combinations of each original
ransomware with/without PoW-based evasion strategy, code virtualization2, and pack-
ing offered by Themida, a well-known commercial packer [64]. We verify that all the
malicious operations of the original malwares were preserved across the generated ver-
sions.

We submitted all malware variants to three online sandboxes for analysis and
checked how many AV engines (antivirus products) flag each variant as malicious (see
Table 4). In the case of Relec, adding code virtualization or packing, results in more
AV engines detecting the sample as malicious. This is likely due to the engines flag-
ging such protections, not the malware sample itself. In all cases, the addition of PoW

2This cannot be applied to ForbiddenTear since it is written in .NET.

9

Ransomware

Ad Monetization

Network

DoS

Disk

APT

Miner

Stalling Code

Fig. 2: Behavioral map of the
malware PoC without PoW
and without full static protec-
tion enabled.

Ransomware

Ad Monetization

Network

DoS

Disk

APT

Miner

Stalling Code

Fig. 3: Behavioral map of the
malware PoC without PoW
and with full static protection
enabled.

Ransomware

Ad Monetization

Network

DoS

Disk

APT

Miner

Stalling Code

Fig. 4: Behavioral map of the
malware PoC with PoW and
with full static protection en-
abled.

decreases the number of detections by a factor of 10 [17], reaching a level where the
difference between the label malicious and false positive is evanescent.

Table 4 also show results when submitting several variants of a standard Hello
World program. Note that the original code has been flagged as malicious by 3 AV
engines, though as it is possible to see from the report the detections are mislabeled
i.e., Relec is not recognized. This false positive could be due to a large number of sub-
missions of the same code hash (due to its simplicity and popularity), our source IP
being flagged, and other unknown factors which may influence the scoring. The table
also shows that adding code virtualization or packing translates into a substantial in-
crease in false positive detections even of a simple Hello World program, confirming
our intuition above. Instead, adding our PoW-based evasion strategy results in less false
positives, one less than the original code. This is likely due to the fact that our code on
top of Hello World has more entropy, respect to a very simple one line program, looking
more legit to engines that measure such kind of parameters.

Overall, these three case studies show that a PoW-based evasion strategy reduces
the number of detections by 10x with known malware by preventing the sample from
executing in the analysis sandbox. This result demonstrates large potential for malware
reuse by coupling it with PoW-based evasion strategy. In the next section, we perform
more controlled experiments based on fresh (i.e., previously unseen) malware.

4.3 Case Study: Fresh Malware Sample
In order to further explore the results obtained in the previous case studies, we wrote
a simple malware PoC (roughly 150 LoC) for Windows 10 (VC++) and Linux (C++).
Our malware sample implements a basic ransomware functionality which scans the
entire hard drive and encrypts all its files. This behavior should be easy to detect by
any malware scanning services.3 Using POW-HOW, we automatically embed a PoW
(Argon2i, as we will discuss below) and make sure to exhibit its malicious activity
only if the PoW is successfully executed at least N times before a timeout T . Finally,
we submitted different variants of our malware sample (with PoW, without PoW, with
static sanitization) to several on-line sandboxes and the results were disheartening (see
Table 5). For the static sanitation we remove the symbol tables and debugging symbols.
Note that very similar results were also achieved with our local Cuckoo Sandbox. It

3The malware detection report for this malware without our PoW-based evasive measure has
been anonymized [1,15].

10

is important to note that to check the execution of the malware payload we insert a
create-file function at the beginning of the malware payload itself. Such file creation is
visible on the behavioral report of the analyzed sandboxes in case the malware payload
is executed4. We used such a simple test to check whether the PoW algorithm detects the
emulated environment and so validate our technique. In case such a file is not present
on the behavioral report, it means the PoW algorithm detects the emulated environment
and stops the payload execution. None of the analyzed sandboxes is able to execute
more than 1 PoW during T = 10 (or even T = 20 sec), which is worse than what a
Raspberry Pi 3 can do even in presence of some extra load (e.g., see max value in the
top of Table 1).

We made all the reports of our analysis publicly available, including screenshots of
evasive malware samples 5. It has to be noted that not all sandboxes report are the same,
but they all signal the hard drive scan (Ransomware behavior) without full static pro-
tection (i.e., with the default compiler options). In Table 5 the number of PoW executed
is visible only if a screenshot of the sandbox is available. As for the sandbox execution
timeout, not all the analysis services had it available for selection.
Detection Rate Decrease: As it is possible to see POW-HOW’s approach is capable
of reducing to zero the detection rate of roughly 70 antiviruses run by the tested sand-
boxes [13,14,12] for any sample that we have tested. We have investigated the multiple
facets of our technique (static and dynamic). Thus we conclude after looking also at the
behavioural results of our samples that the whole technique is capable of reducing the
detection rate to zero. The behavioural part plays a fundamental role as it is possible to
see from the Hello World example and the behavioural maps generated by AV labels of
Figures 2-4.

5. Security Analysis
The results shown in the previous section demonstrate that a POW-HOW-ed malware
can effectively detect a sandbox and abort the execution of any malicious payload. This
strategy is effective in getting a malware sample marked as “clean” by all sandboxes
tested by POW-HOW (see Table 5). POW-HOW’s technique is simple to deploy, it
does not require precise timing measurements and, thanks to its algorithmic prop-
erties, it will last for many years as a potential threat.

We next discuss in detail the behavioral analysis of our malware. This is an analysis
produced by a sandbox related to how a malware interacts with file system, network,
and memory. If any of the monitored operations matches a known pattern, the sandbox
can raise an alarm.

Figures 2, 3, and 4 show the behavioral analysis of our malware on a radar plot,
labelled with most prevalent AV labels. The samples were submitted with different
combinations of PoW and static protection. In Figure 2, the radar plot is mostly “green”
(benign) with respect to some operations like phishing, banker and adware for which
we would not expect otherwise. However, four “suspicious” (orange) behaviors are re-

4This reference has been anonymized not to violate the terms of service of sandbox ven-
dors [1]

5The references have been anonymized not to violate the terms of service of sandbox ven-
dors [2,5,6,7,3,8,4]

11

Sandbox Evasion Timeout PoW Timeout # of PoW executed Timeout Notes

Sandbox1 10 secs 50 1 120 Clean
Sandbox1 15 secs 45 1 180 Clean
Sandbox1 20 secs 40 1 240 Clean
Sandbox1 20 secs 15 1 500 Clean
Sandbox2 20 secs 15 0 N/A Clean
Sandbox3 20 secs 45 N/A N/A Clean
Sandbox3 20 secs 15 N/A N/A Clean

Table 5: Execution results of a custom ransomware sample on various sandboxes

Time (sec)

C
PU

 u
sa

ge
 (

%
)

5 10 15 20

20

40

60

80

100

0

Fig. 5: CPU consumption of
our malware PoC (Argon2d)
Malware:red line, System Idle
(PID 0):green line.

Time (sec)

Fig. 6: Memory consumption
of our malware PoC (Argon2d)
Malware:red line, System Idle
(PID 0):green line.

C
PU

 u
sa

ge
 (

%
)

Time (sec)
0

20

40

60

80

100

20 40 600 20 40 60

20

40

60

80

100

Time (sec)

C
PU

 u
sa

ge
 (

%
)

Fig. 7: CPU consumption of
our malware PoC. T=60 sec-
onds and 0.5 seconds be-
tween each PoW execution.
Malware:red line, System Idle
(PID 0):green line.

ported with respect to evader, spyware, ransomware, Trojan operations. While our mal-
ware PoC is not labeled as “malicious” (red), the suspicious flags for our binary would
trigger further manual analysis that coukd reveal its maliciousness. It is thus paramount
to investigate and mitigate such suspicious flags.

Our intuition is that the suspicious flags are due to the fact that our malware is nei-
ther packed nor stripped, and hence some of its functionality i.e., exported functions,
linked libraries, and function names are visible through basic static analysis that is usu-
ally also implemented in the dynamic sandbox environment. Accordingly, we strip out
the whole static information from our binary and resubmit it as a new binary. Figure 3
shows the behavioral analysis of our PoC malware without PoW-based sandbox detec-
tion but with full static protection enabled. As expected, various signals have dropped
from the behavioral report. Finally, Figure 4 shows the result of adding PoW to the last
binary. A completely green radar plot which does not raise any suspicion illustrates the
evasion effect of POW-HOW.
CPU and memory usage: The main downside of associating a PoW with a malware
sample is an increase in both CPU and memory consumption. We here report on CPU
and memory consumption as measured by our sandbox. Figures 5 and 6 compare, re-
spectively, CPU and memory utilization of our malware (red line) with System Idle
(PID 0). With respect to CPU usage, the PoW associated with our malware causes an
(expected) 100% utilization for the whole duration of the PoW (T = 10 sec). With
respect to memory utilization, our malware only requires about 17 MB versus the 7 MB
that utilizes a sample system process like System Idle (PID 0). This is a minor increase,
unlikely to raise any suspicion.

Next, we investigate whether we can reduce the CPU usage of our PoC ransomware
by setting a longer T (e.g., 60 sec) and a sleep of 0.5 sec between each PoW execution.
Despite such sleeps, Figure 7 still shows 100% CPU utilization for the whole T (60 sec

12

in this test). The lack of CPU reduction associated with the extra sleeps is counter-
intuitive. The likely explanation is that the sandbox leverages a coarse CPU monitoring
tool and, thus, the CPU reduction associated with our extra sleeps gets averaged out.
These results provide a foundation to detect evasion techniques based on PoW. A sand-
box could attempt heuristics based on a binary’s CPU and memory consumption. We
argue, however, that this is quite challenging because of the potential high number of
false positives that can be generated.

6. Countermeasures
Evasion techniques are easily comparable with other anti-analysis techniques like pack-
ing. Packing techniques have evolved to such sophistication that it has become practi-
cally impossible to unpack a malware sample without dynamically executing it [41,75].
However, dynamically executing a sample can indeed trigger evasion techniques like
stalling code. To counter evasion techniques, and especially the ones that POW-HOW
implements, one idea would be to fingerprint the algorithms, e.g., CPU and memory
footprint. However, it would be very easy for attackers to apply code polimorphism
techniques and produce variants that diverge from the original implementation, as it is
done with packers. This will constitute a challenge for the sandbox, which could gener-
ate a false negative by not being able to spot the algorithm. In Table 4, the Hello World
program is detected as malicious and our technique reduces its detection rate and with
a code virtualizer it makes the sample completely stealth.
Fingerprinting evasion: A common solution against red pills [67] is to reduce the
amount of instructions failing due to emulation. As Martignoni et al. [57,58] show,
the analysis can be automated and the fixes can be easily produced. However, with
PoW the computational model is not seeking for emulation/virtualization failures or
malfunctions. Instead, PoW is acting as a probe to spot a side channel in the execution
time of the algorithm, which in this case is time-based.
Virtualized instructions set: Native execution of the cryptographic instructions is an-
other potential countermeasure that could be considered to mitigate our approach. In
such a case, the cryptographic instructions of the PoW algorithm are not emulated by
the sandbox environment, but directly executed on the native CPU. Avoiding the emu-
lation of the cryptographic instructions could clearly improve the computational perfor-
mance of the PoW algorithm and reduce the success probability of the evasive behavior
showed by POW-HOW. The technique described in the Inspector Gadget paper [46],
which works at the program analysis level, may also work to avoid the execution of our
evasion code. Once the sample is unpacked, it would be possible to extract and execute
only the malware branch of the code as a gadget and analyze its behavior in isolation.
However, a sufficiently complex packer or emulator would make such process very te-
dious and require manual effort, which makes this solution excessively complex to be
implemented in an automated malware analysis service.
Specialized hardware: Even if our choice, Argon2, is resilient to specialized circuits
for mining (ASICs and FPGAs), other PoW algorithms are not, and hence an analyst
could equip his sandbox with a miner [74]. Such a dedicated hardware is expensive for
a non-professional user (around $3, 000 at the time of writing). Nonetheless, if the phe-
nomenon of sandbox evasion due to PoW proliferate, having such a platform would be

13

of great help to offload the PoW calculations, through a tailored interface, and continue
the execution of the malware sample inside the sandbox. The cost/benefit trade-off of
adopting such a measure really depends on the intended scale of the analysis platform.
For example, according to VirusTotal statistics [28], the service receives weekly more
than 3M PE binaries. Hence, a dedicated hardware to defeat PoW evasion based tech-
niques seem a good compromise, since it allows to analyze and discover new malicious
behaviors.
Spoofing timers: The sandbox that gets a POW-HOW-ed malware could try to delay
the time, which could mean to make our T = 10 seconds last much longer to achieve
the payload execution. This approach may work well. Though, if we expect a total of
at least 50 PoW iterations (see Section 3.4) and the sandbox is not able to execute
more than one in about a minute for a unique malware sample, the analysis would take
more than one hour. This will eventually extract the payload that will then require extra
work to be reverse engineered, understood, and fingerprinted. Hence, this approach may
not scale in terms of time/cost for the large number of samples that online sandboxes
analyze daily.
Bare-Metal Sandboxes: Using bare metal hardware represents a reasonable solution
that might be adopted within corporate companies but it is not possible to use such
technology at Internet scale, i.e., cloud-based solutions like Virus Total. Also, isolated
sandboxes do not benefit of the information that on-line in cloud services have which
leverages large scale cross-correlations.

7. Discussion
7.1 Ethical Considerations
The results obtained by POW-HOW regarding the analyzed publicly available sand-
boxes, normally used by malware analysts under their term of service (ToS), demon-
strate that our technique works consistently either in our custom Cuckoo Sandbox im-
plementation or in proprietary solutions. Our aim, though, is not to disrupt any business
nor to difficult the operation of companies that profit from providing malware behavior
analysis. We contacted all the platforms and vendors that we have tested with POW-
HOW and we notified them about our findings. Part of the vendors were very positive
and agreed to further collaborate to work on practical countermeasures. Unfortunately,
the response we received from other vendors opposed any dissemination of our results,
adopting a shortsighted security-through-obscurity approach which is not novel in our
community. Consequently, tested vendors have been anonymized to avoid violation of
their ToS. We purposely maintained the number of new variants submitted to the bare
minimum, but our approach may transform easily any existing sample into a new one.
The authors are available for contact for further information disclosure.

7.2 Bare-Metal Environments
In [43] the authors present BareCloud a bare-metal system which helps to detect evasive
malware. This system in order to execute malware trades visibility against transparency.
In other words it makes the analysis system transparent (non-detectable by malware)
and produces less powerful analysis data (limited instrumentation). Indeed their detec-
tion technique leverages hierarchical similarity [36] comparison between different mal-
ware execution traces (virtualized and emulated) systems i.e., (Ether [32], Anubis [19],

14

and VirtualBox [40]). One of the biggest problem of hierarchical similarity algorithms is
scalability, which means that the algorithm should be polynomial in time and space. An
example [63] of application and analysis of hierarchical similarity for binary program
comparison shows O(n2) complexity. Hence using BareCloud as a production system
for example for VirusTotal which claims [28] about 1.5M daily submissions means that
the hierarchical comparison would approximate 2.250 billion of operations daily to de-
tect evasive malware with bare metal equipment. It is evident that BareCloud can be
useful in special cases, as briefly stated above, where also a manual analyst can make
the difference. For the sake of scalability though virtualization and emulation methods
cannot be fully replaced, even if it would be possible to instrument in hardware an entire
system [52], the approach would suffer many other issues, for instance having a lot of
physical hardware and maintaining it.

7.3 Economical denial of sustainability
Online sandboxes, like any other business, have costs to sustain. Ignoring evasive mal-
ware to avoid an additional cost is (for now) understandable. Unfortunately, malware
that exploits POW-HOW’s technique implies additional energy and memory costs, es-
pecially if submitted in large scale to such systems, opening avenues to EDoS attacks,
which will try to make the on-line service not sustainable economically. These on-line
services receive on average 1.5M samples daily. It is not difficult to imagine how much
energy just a tenth of the total submissions can consume if it is running PoW. Such
algorithm is one of the most energy intensive operation that a computer can perform.
For instance, the yearly energy consumption of Bitcoin’s blockchain is comparable to
the one of a country such as Tunisia or Czech Republic [31]. We strongly recommend
that not all evasion techniques are the same, and every technique that exploits hardware
consumption side channels should be properly analyzed to avoid service disruption.

8. Related Work
There is a significant body of research [81,23,72,25,48,38,71] focusing on both de-
signing novel evasion techniques for malware and also providing mechanisms to detect
them. We next discuss the most relevant works related to ours.
Fingerprinting emulated environments: By recognizing the sandboxes of different
vendors, malware can identify the distinguishing characteristics of a given emulated
environment and alter its behavior accordingly. The work in [70] introduced the notion
of red pill and released a short exploit code snippet that could be used to detect whether
the code is executed under a VM or in a real platform. In [67], the authors propose an
automatic and systematic technique (based on EmuFuzzer [57]) to generate red pills for
detecting whether a program is executed inside a CPU emulator. In [58], the authors
build KEmuFuzzer, which leverages protocol-specific fuzzing and differential analysis.
KEmuFuzzer forces the hosting virtual machine and the underlying physical machine
to execute specially crafted snippets of user- and system-mode code before comparing
their behaviors. In [22] authors presented AVLeak, a tool that can fingerprint emula-
tors running inside commercial antivirus (AV) software, which are used whenever AVs
detect an unknown executable. The authors developed an approach that allows them to
deal with these emulators as black boxes and then use side channels for extracting fin-
gerprints from each AV engine. Instead, we show that even with completely transparent

15

analysis programs, the real environment can be used by the malware to determine that
it is under analysis. In [59] authors propose a ML-based approach to detect emulated
environments. This technique is based on the use of features such as the number of
running processes, shared DLLs, size of temporary files, browser cookies, etc. These
features are named by the authors “wear-and-tear artifacts” and are present in real sys-
tem as opposed to sandboxes. The authors use such features to train an SVM classifier.
We also rely on modeling a distinguishing feature, in our case is a time channel arising
from the asymptotic behavior of a Pow, not the presence or absence of system artefacts.

In [37], authors introduce the virtual machine monitor (VMM) detection and they
propose a fuzzy benchmark approach that works by making timing measurements of
the execution time of particular code sequences executed on the remote system. The
fuzziness comes from heuristics which they employ to learn characteristics of the re-
mote system’s hardware and its configuration. In [26], the authors present a technique
that leverages TCP timestamps to detect anomalous clock skews in VMs. A downside
of the approach is that it requires the transmission of streams of hundreds of SYN pack-
ets to the VM, something that can be detected in the case of a honeypot VM and flagged
as malicious behavior. Compared to the previous approaches, POW-HOW is more prin-
cipled and offers a solid basis founded on cryptographic primitives (PoW) with a pre-
dictable and reproducible computational behavior on different tested platforms.
Detecting evasive malware: In [33], the authors propose Ether, a malware analyzer
that eliminates in-guest software components vulnerable to detection. Ether leverages
hardware virtualization extensions such as Intel VT, thus residing outside of the target
OS environment. In [43], the authors present an automated evasive malware detection
system based on bare-metal dynamic malware analysis. Their approach is designed to
be transparent and thus robust against sophisticated evasion techniques. The evaluation
results showed that it could automatically detect 5,835 evasive malware out of 110,005
tested samples. In [18], authors propose a technique to detect malware that deploys eva-
sion mechanisms. Their approach works by comparing the system call trace recorded
when running a malware program on a reference system with the behavior observed in
the analysis environment. In [53], authors propose a system for detecting environment-
sensitive malware by comparing its behavior in multiple analysis sandboxes in an au-
tomated way. Compared to previous techniques, our approach is agnostic to system
artifacts and cannot be recognized by only monitoring the system operations.

9. Conclusion
Online malware scanning services are becoming more and more popular, allowing users
to upload and scan artefacts against AV engines and malware analysis sandboxes. Com-
mon mechanisms used by malware samples to avoid detection include the inspection
of signals that imply the existence of a virtualized or emulated environment. These
strategies triggered an arms-race where online malware scanners patch such signals to
make virtualization transparent. In this paper, we leverage PoW techniques as the basis
for a novel malware evasion technique due to their ability to fingerprint real hardware.
We provide empirical evidence of how it can be used to evade online malware analysis
sandboxes and discuss potential countermeasures. The implementation of our approach
goes beyond a simple proof-of-concept, showing that injecting evasion modules can

16

be easily automated on any arbitrary sample. We make our code and results publicly
available in an attempt to increase reproducibility and stimulate further research in this
area.

References
1. : Evasive malware analysis report. anonymized (2020)
2. : Evasive malware analysis report. anonymized (2020)
3. : Evasive malware analysis report. anonymized (2020)
4. : Evasive malware analysis report. anonymized (2020)
5. : Evasive malware analysis report - 1. anonymized (2020)
6. : Evasive malware analysis report - 2. anonymized (2020)
7. : Evasive malware analysis report - 3. anonymized (2020)
8. : Evasive malware analysis sandbox. anonymized (2020)
9. Adam Back: Hashcash: antin-spam tool. http://www.hashcash.org/ (2020)

10. Alexander Peslyak, T.H.: yescrypt - scalable kdf and password hashing scheme.
www.openwall.com/yescrypt (2015)

11. Alsmeyer, G.: Chebyshev’s inequality. In: International Encyclopedia of Statistical Science.
Springer Berlin Heidelberg (2011)

12. anonymized: Sandbox 1. anonymized (2020)
13. anonymized: Sandbox 2. anonymized (2020)
14. anonymized: Sandbox 3. anonymized (2020)
15. Antonio Nappa, Panagiotis Papadopoulos, Matteo Varvello, Daniel Aceituno Gomez, Juan

Tapiador, Andrea Lanzi: PoC Behaviour (No Evasion) - anonymized. anonymized (2020)
16. Antonio Nappa, Panagiotis Papadopoulos, Matteo Varvello, Daniel Aceituno Gomez,

Juan Tapiador, Andrea Lanzi: Artifact repository. https://github.com/
anonnymousubmission/Esorics2021_Paper159 (2021)

17. Antonio Nappa, Panagiotis Papadopoulos, Matteo Varvello, Daniel Aceituno Gomez, Juan
Tapiador, Andrea Lanzi: Relec + PoW + static sanitization) - anonymized. anonymized
(2021)

18. Balzarotti, D., Cova, M., Karlberger, C., Vigna, G.: Efficient detection of split personalities
in malware. In: Proc. 17th Annual Network and Distributed System Security Symposium
(NDSS), 2010 (2010)

19. Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., Kirda, E.: Scalable, behavior-
based malware clustering. In: NDSS. The Internet Society (2009), http://dblp.uni-
trier.de/db/conf/ndss/ndss2009.html#BayerCHKK09

20. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New generation of memory-hard func-
tions for password hashing and other applications. In: IEEE European Symposium on Secu-
rity and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016 (2016)

21. Biryukov, A., Dinu, D., Khovratovich, D., Josefsson, S.: Argon2 rfc.
www.tools.ietf.org/id/draft-irtf-cfrg-argon2-05.html (2019)

22. Blackthorne, J., Bulazel, A., Fasano, A., Biernat, P., Yener, B.: Avleak: Fingerprint-
ing antivirus emulators through black-box testing. In: 10th USENIX Workshop on
Offensive Technologies (WOOT 16). USENIX Association, Austin, TX (Aug 2016),
https://www.usenix.org/conference/woot16/workshop-program/
presentation/blackthorne

23. Brengel, M., Backes, M., Rossow, C.: Detecting hardware-assisted virtualization. In: Pro-
ceedings of the 13th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment - Volume 9721. p. 207–227. DIMVA 2016, Springer-Verlag,
Berlin, Heidelberg (2016)

24. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring Pay-per-Install: The Commodi-
tization of Malware Distribution. In: Proceedings of the 20th USENIX Security Symposium
(2011)

25. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.:
A quantitative study of accuracy in system call-based malware detection. In: Heim-
dahl, M.P.E., Su, Z. (eds.) International Symposium on Software Testing and

17

anonymized
anonymized
anonymized
anonymized
anonymized
anonymized
anonymized
anonymized
http://www.hashcash.org/
www.openwall.com/yescrypt
anonymized
anonymized
anonymized
anonymized
https://github.com/anonnymousubmission/Esorics2021_Paper159
https://github.com/anonnymousubmission/Esorics2021_Paper159
anonymized
http://dblp.uni-trier.de/db/conf/ndss/ndss2009.html#BayerCHKK09
http://dblp.uni-trier.de/db/conf/ndss/ndss2009.html#BayerCHKK09
www.tools.ietf.org/id/draft-irtf-cfrg-argon2-05.html
https://www.usenix.org/conference/woot16/workshop-program/presentation/blackthorne
https://www.usenix.org/conference/woot16/workshop-program/presentation/blackthorne

Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012. pp. 122–132.
ACM (2012). https://doi.org/10.1145/2338965.2336768, https://doi.org/10.1145/
2338965.2336768

26. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware. In: 2008 IEEE international
conference on dependable systems and networks with FTCS and DCC (DSN). pp. 177–186.
IEEE (2008)

27. Christian Forler, Stefan Lucks, J.W.: The catena password-scrambling framework.
www.uni-weimar.de/fileadmin/user/fak/medien/professuren/
Mediensicherheit/Research/Publications/catena-v3.1.pdf (2015)

28. Chronicle Security: File statistics during last 7 days. https://www.virustotal.com/
en/statistics/ (2020)

29. Coker, J.: Evasive malware threats on the rise despite decline in overall attacks.
https://www.infosecurity-magazine.com/news/evasive-malware-
rise-decline/ (2020)

30. Cybersecurity Ventures: Global cybercrime damages predicted to reach $6 trillion annually
by 2021. https://cybersecurityventures.com/cybercrime-damages-6-
trillion-by-2021/ (2018)

31. Digiconomist: Yara Signature Detector. https://digiconomist.net/bitcoin-
energy-consumption (2007)

32. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware analysis via hardware virtualiza-
tion extensions. In: Proceedings of the 15th ACM Conference on Computer and Communi-
cations Security. p. 51–62. CCS ’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1455770.1455779, https://doi.org/10.1145/
1455770.1455779

33. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware virtual-
ization extensions. In: Proceedings of the 15th ACM conference on Computer and commu-
nications security. pp. 51–62 (2008)

34. Dugan, J., Elliott, S., Mah, B.A., Poskanzer, J., Prabhu, K.: iperf - the ultimate speed test
tool for tcp, udp and sctp. https://iperf.fr/ (2020)

35. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Proceedings of
the 12th Annual International Cryptology Conference on Advances in Cryptology. CRYPTO
’92, Springer-Verlag (1992)

36. Feldman, R., Dagan, I.: Knowledge discovery in textual databases (kdt). In: Proceedings of
the First International Conference on Knowledge Discovery and Data Mining. p. 112–117.
KDD’95, AAAI Press (1995)

37. Franklin, J., Luk, M., McCune, J.M., Seshadri, A., Perrig, A., Van Doorn, L.: Remote detec-
tion of virtual machine monitors with fuzzy benchmarking. ACM SIGOPS Operating Sys-
tems Review 42(3), 83–92 (2008)

38. Graziano, M., Canali, D., Bilge, L., Lanzi, A., Balzarotti, D.: Needles in a Haystack: Mining
Information from Public Dynamic Analysis Sandboxes for Malware Intelligence. In: Pro-
ceedings of the 24rd USENIX Security Symposium (USENIX Security) (August 2015)

39. Gu, G., Yegneswaran, V., Porras, P., Stoll, J., Lee, W.: Active botnet probing to identify
obscure command and control channels. In: Proceedings of 2009 Annual Computer Security
Applications Conference (ACSAC’09) (December 2009)

40. Guarnieri, C.: Cuckoo sandbox. https://cuckoosandbox.org/ (2010)
41. Haq, I.U., Chica, S., Caballero, J., Jha, S.: Malware Lineage in the Wild. Computers &

Security 78(C), 347–363 (August 2018). https://doi.org/10.1016/j.cose.2018.07.012
42. Infosecurity Magazine: Cybercrime costs global economy $2.9m per minute.

https://www.infosecurity-magazine.com/news/cybercrime-costs-
global-economy/ (2019)

43. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: Bare-metal analysis-based eva-
sive malware detection. In: 23rd USENIX Security Symposium (USENIX Se-
curity 14). pp. 287–301. USENIX Association, San Diego, CA (Aug 2014),
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/kirat

18

https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1145/2338965.2336768
www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Publications/catena-v3.1.pdf
www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Publications/catena-v3.1.pdf
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
https://www.infosecurity-magazine.com/news/evasive-malware-rise-decline/
https://www.infosecurity-magazine.com/news/evasive-malware-rise-decline/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1145/1455770.1455779
https://iperf.fr/
https://cuckoosandbox.org/
https://doi.org/10.1016/j.cose.2018.07.012
https://www.infosecurity-magazine.com/news/cybercrime-costs-global-economy/
https://www.infosecurity-magazine.com/news/cybercrime-costs-global-economy/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kirat

44. Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative
execution. In: 40th IEEE Symposium on Security and Privacy (S&P’19) (2019)

45. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other sys-
tems. In: Proceedings of the 16th Annual International Cryptology Conference on Advances
in Cryptology. p. 104–113. CRYPTO ’96, Springer-Verlag, Berlin, Heidelberg (1996)

46. Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector gadget: Automated extraction
of proprietary gadgets from malware binaries. In: 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA. pp. 29–44.
IEEE Computer Society (2010). https://doi.org/10.1109/SP.2010.10, https://doi.org/
10.1109/SP.2010.10

47. Kotzias, P., Bilge, L., Caballero, J.: Measuring PUP Prevalence and PUP Distribution through
Pay-Per-Install Services. In: Proceedings of the 25th USENIX Security Symposium (2016)

48. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer: us-
ing system-centric models for malware protection. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010. pp. 399–412.
ACM (2010). https://doi.org/10.1145/1866307.1866353, https://doi.org/10.1145/
1866307.1866353

49. Larimer, D.: Momentum–a memory-hard proof-of-work via finding birthday collisions.
Tech. rep. (2014)

50. Lastline Inc.: Not so fast my friend – using inverted timing attacks to bypass
dynamic analysis. www.lastline.com/labsblog/not-so-fast-my-friend-using-inverted-timing-
attacks-to-bypass-dynamic-analysis/ (2014)

51. Laurie, B., Clayton, R.: Proof-of-work proves not to work; version 0.2. In: Workshop on
Economics and Information, Security (2004)

52. Li, L.W., Duc, G., Pacalet, R.: Hardware-assisted memory tracing on new socs embedding
fpga fabrics. In: Proceedings of the 31st Annual Computer Security Applications Confer-
ence. p. 461–470. ACSAC 2015, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2818000.2818030, https://doi.org/10.1145/
2818000.2818030

53. Lindorfer, M., Kolbitsch, C., Comparetti, P.M.: Detecting environment-sensitive malware. In:
International Workshop on Recent Advances in Intrusion Detection. pp. 338–357. Springer
(2011)

54. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S.,
Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading kernel memory from
user space. In: 27th USENIX Security Symposium (USENIX Security 18) (2018)

55. LLVM: Clang: a c language family frontend for llvm. https://clang.llvm.org/
(2020)

56. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe unpacking
of malware. In: ACSAC07 (2007)

57. Martignoni, L., Paleari, R., Fresi Roglia, G., Bruschi, D.: Testing CPU emulators. In: Pro-
ceedings of the 2009 International Conference on Software Testing and Analysis (ISSTA).
pp. 261–272. ACM, Chicago, Illinois, USA (2009)

58. Martignoni, L., Paleari, R., Fresi Roglia, G., Bruschi, D.: Testing system virtual machines. In:
Proceedings of the 2010 International Symposium on Testing and Analysis (ISSTA). Trento,
Italy (2010)

59. Miramirkhani, N., Appini, M.P., Nikiforakis, N., Polychronakis, M.: Spotless sand-
boxes: Evading malware analysis systems using wear-and-tear artifacts. In: 2017
IEEE Symposium on Security and Privacy (SP). pp. 1009–1024 (May 2017).
https://doi.org/10.1109/SP.2017.42

60. Moser, A., Krügel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23
May 2007, Oakland, California, USA. pp. 231–245. IEEE Computer Society (2007).
https://doi.org/10.1109/SP.2007.17, https://doi.org/10.1109/SP.2007.17

19

https://doi.org/10.1109/SP.2010.10
https://doi.org/10.1109/SP.2010.10
https://doi.org/10.1109/SP.2010.10
https://doi.org/10.1145/1866307.1866353
https://doi.org/10.1145/1866307.1866353
https://doi.org/10.1145/1866307.1866353
https://doi.org/10.1145/2818000.2818030
https://doi.org/10.1145/2818000.2818030
https://doi.org/10.1145/2818000.2818030
https://clang.llvm.org/
https://doi.org/10.1109/SP.2017.42
https://doi.org/10.1109/SP.2007.17
https://doi.org/10.1109/SP.2007.17

61. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,” http://bitcoin.org/bitcoin.pdf
62. Nappa, A., Xu, Z., Rafique, M.Z., Caballero, J., Gu, G.: Cyberprobe: Towards internet-scale

active detection of malicious servers. In: Proceedings of the 21st Annual Network and Dis-
tributed System Security Symposium (NDSS’14) (February 2014)

63. Oprişa, C., Ignat, N.: A measure of similarity for binary programs with a hierarchical struc-
ture. In: 2015 IEEE International Conference on Intelligent Computer Communication and
Processing (ICCP). pp. 117–123 (2015). https://doi.org/10.1109/ICCP.2015.7312615

64. Oreans: Advanced windows software protection system. https://www.oreans.com/
themida.php (2020)

65. organization, T.B.: Boost c++ libraries. https://www.boost.org/ (2020)
66. Ozarslan, S.: Online malware sandboxes. www.medium.com/@su13ym4n/15-

online-sandboxes-for-malware-analysis-f8885ecb8a35 (2016)
67. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: How to auto-

matically generate procedures to detect cpu emulators. In: Proceedings of the 3rd USENIX
Conference on Offensive Technologies. p. 2. WOOT’09, USENIX Association, USA (2009)

68. Protocol Labs: Filecoin: a decentralized storage network. https://filecoin.io/
(2020)

69. Red Hat Inc.: Ansible it automation. https://github.com/ansible (2020)
70. Rutkowska, J.: Red pill ... or how to detect VMM using (almost) one CPU instruction.

https://securiteam.com/securityreviews/6z00h20bqs/ (2004)
71. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of mal-

ware emulators. Security and Privacy, IEEE Symposium on 0, 94–109 (2009).
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SP.2009.27

72. Tanabe, R., Ueno, W., Ishii, K., Yoshioka, K., Matsumoto, T., Kasama, T., Inoue, D., Rossow,
C.: Evasive malware via identifier implanting. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.)
Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 162–184. Springer
International Publishing, Cham (2018)

73. Tromp, J.: Cuckoo cycle: a memory bound graph-theoretic proof-of-work. In: International
Conference on Financial Cryptography and Data Security. pp. 49–62. Springer (2015)

74. Tuwiner, J.: Bitmain antminer s9 review. https://
www.buybitcoinworldwide.com/mining/hardware/antminer-s9/ (2017)

75. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: Sok: Deep packer inspection:
A longitudinal study of the complexity of run-time packers. In: 2015 IEEE Symposium on
Security and Privacy. pp. 659–673 (May 2015). https://doi.org/10.1109/SP.2015.46

76. VirusShare: Virusshare.com - because sharing is caring. https://virusshare.com/l
(2020)

77. Wang, T., Wei, T., Gu, G., Zou, W.: Taintscope: A checksum-aware directed fuzzing tool for
automatic software vulnerability detection. In: Proceedings of the 31st IEEE Symposium on
Security and Privacy (Oakland’10) (May 2010)

78. Wikipedia: Wannacry ransomware hits prevalently windows. https://
en.wikipedia.org/wiki/WannaCry_ransomware_attack/ (2017)

79. Wong, D.: Np complexity. https://www.cryptologie.net/article/43/np-
complexity/ (2013)

80. Xu, Z., Nappa, A., Baykov, R., Yang, G., Caballero, J., Gu, G.: AutoProbe: Towards Auto-
matic Active Malicious Server Probing Using Dynamic Binary Analysis. In: Proceedings of
the 21st ACM Conference on Computer and Communication Security (2014)

81. Yokoyama, A., Ishii, K., Tanabe, R., Papa, Y., Yoshioka, K., Matsumoto, T., Kasama, T.,
Inoue, D., Brengel, M., Backes, M., Rossow, C.: Sandprint: Fingerprinting malware sand-
boxes to provide intelligence for sandbox evasion. In: Monrose, F., Dacier, M., Blanc, G.,
Garcia-Alfaro, J. (eds.) Research in Attacks, Intrusions, and Defenses. Springer International
Publishing (2016)

20

https://doi.org/10.1109/ICCP.2015.7312615
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
https://www.boost.org/
www.medium.com/@su13ym4n/15-online-sandboxes-for-malware-analysis-f8885ecb8a35
www.medium.com/@su13ym4n/15-online-sandboxes-for-malware-analysis-f8885ecb8a35
https://filecoin.io/
https://github.com/ansible
https://securiteam.com/securityreviews/6z00h20bqs/
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SP.2009.27
https://www.buybitcoinworldwide.com/mining/hardware/antminer-s9/
https://www.buybitcoinworldwide.com/mining/hardware/antminer-s9/
https://doi.org/10.1109/SP.2015.46
https://virusshare.com/l
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack/
https://www.cryptologie.net/article/43/np-complexity/
https://www.cryptologie.net/article/43/np-complexity/

	PoW-How: An enduring timing side-channel to evade online malware sandboxes

