
SERVAS! Secure Enclaves via RISC-V Authenticryption Shield

Stefan Steinegger
Graz University of Technology

David Schrammel
Graz University of Technology

Samuel Weiser
Graz University of Technology

Pascal Nasahl
Graz University of Technology

Stefan Mangard
Graz University of Technology

Lamarr Security Research

Abstract
Isolation is a long-standing challenge of software security.
Traditional privilege rings and virtual memory are more and
more augmented with concepts such as capabilities, protec-
tion keys, and powerful enclaves. At the same time, we are
evidencing an increased need for physical protection, shifting
towards full memory encryption schemes. This results in a
complex interplay of various security mechanisms, increasing
the burden for system architects and security analysts.

In this work, we tackle the isolation challenge with a new
isolation primitive called authenticryption shield that unifies
both traditional and advanced isolation policies while offer-
ing the potential for future extensibility. At the core, we build
upon an authenticated memory encryption scheme that gives
cryptographic isolation guarantees and, thus, streamlines the
security reasoning. We showcase the versatility of our ap-
proach by designing and prototyping SERVAS – an innovative
enclave architecture for RISC-V. Unlike current enclave sys-
tems, SERVAS facilitates efficient and secure enclave memory
sharing. While the memory encryption constitutes the main
overhead, entering or exiting a SERVAS enclave requires only
3.5x of a simple syscall, instead of 71x for Intel SGX.

1 Introduction

Modern IT systems need to secure a multitude of applications
against software attacks. Unfortunately, software vulnerabil-
ities penetrate the whole software stack, affecting not only
application software [12,19,80,82] but also the operating sys-
tem (OS) itself [10,20,28,33,36]. In the worst case, attackers
can gain full control over the device [10, 33, 36].

To reduce the impact of vulnerability exploitation, different
isolation mechanisms are deployed on all levels, e.g., to sep-
arate privileges [23], isolate individual processes [103], pro-
tect virtual machines [1, 2, 25, 48], and segregate applications
into smaller parts, also denoted as in-process isolation. Typ-
ical in-process isolation mechanisms are segmentation [43]
and capabilities [95], memory coloring using, e.g., protection

keys [40, 77, 86], or enclaves. Enclaves give strong security
guarantees even in the event of a system compromise and
found ample resonance both in academia [9, 13–15, 22, 31, 32,
38, 53, 57, 62, 70, 73, 81, 83, 90, 100] and industry [6, 7, 34, 64].

In addition, cloud computing scenarios increasingly de-
mand physical protection, for which transparent memory en-
cryption is being deployed on modern CPUs [2, 64]. While
memory encryption works well for small workloads, worst-
case throughput penalties surpass 400% for Intel SGX [37].

Unfortunately, reasoning about the security of the interplay
between these mechanisms is becoming more and more com-
plex when considering the whole zoo of isolation mechanisms.
For example, the security of an application might depend on
protection keys in combination with the Memory Manage-
ment Unit (MMU) and the memory mappings configured by
the operating system [47, 54, 103]. Unifying these isolation
mechanisms is desirable from a security standpoint. On the
other hand, most isolation mechanisms cover only a subset of
isolation challenges. For example, SGX enclaves can isolate
small portions of unprivileged user code, but their underlying
memory encryption is not utilizable for other purposes.

In this work, we pursue a three-fold goal: First, we simplify
the overall security reasoning by introducing a strong and
generic isolation primitive. Second, we explore the synergies
and features our isolation primitive offers over traditional iso-
lation mechanisms. Third, we design a secure and feature-rich
enclave architecture – arguably the most intricate endeavor.
New Isolation Primitive. We introduce a new isolation prim-
itive that unifies various isolation policies and is denoted as
RISC-V Authenticryption Shield (RVAS). At its core, RVAS
uses memory encryption to map isolation properties to the
well-studied field of cryptography, counteracting both phys-
ical and software attacks. More specifically, if decryption
succeeds, we know that the CPU and the memory are in a
particular state. Thus, RVAS achieves memory isolation with
cryptographic guarantees.

We design RVAS as an extension to the RISC-V instruc-
tion set architecture (ISA). RVAS builds upon an authenti-
cated memory encryption scheme whose associated data input,

1

ar
X

iv
:2

10
5.

03
39

5v
1

 [
cs

.C
R

]
 7

 M
ay

 2
02

1

which we call encryption tweak, is exposed to software. By
controlling the encryption tweak, one can achieve domain
separation and, thus, enforce a variety of different isolation
mechanisms simultaneously, e.g., privilege separation, pro-
cess isolation and virtual memory protection, segmentation,
and page coloring. Traditionally, each of these mechanisms
requires to securely store and manage trusted metadata (e.g.,
the address mapping or the page colors). RVAS implicitly
secures this metadata by feeding it into the encryption tweak.

Achieving a proper generalization of encryption tweaks is
non-trivial, however. Hence, RVAS composes the tweak of
both critical CPU-internal data and software-defined values
to account for a broad range of use cases.
SERVAS Enclaves. To showcase the versatility of RVAS, we
use it to design a novel enclave system dubbed SERVAS,
which has several advantages over existing enclave systems:

SERVAS protects enclaves against software and physical
attacks by relying on a single mechanism, namely RVAS’
cryptographic isolation. In contrast, Intel SGX protects en-
claves against physical attacks via memory encryption while
also preventing software attacks through a trusted metadata
storage (i.e., the so-called EPCM [43]). The EPCM needs to
be maintained for each enclave page and kept in sync with the
Translation Lookaside Buffer (TLB), for which SGX requires
TLB flushes upon enclave invocations [21].

Our RVAS design makes the EPCM trusted metadata stor-
age obsolete, which yields three advantages: First, we avoid
TLB flushes and thus, achieve better enclave invocation perfor-
mance. Second, we remove trust from the entire address trans-
lation, i.e., the MMU and the TLB configuration, such that our
security reasoning boils down to a proper encryption tweak
management. Third, Intel SGX fixes the amount of encrypted
enclave memory at boot time to typically 128 MB [35]. RVAS
encryption, in contrast, can be applied to the whole DRAM
and also to non-enclave code.

SERVAS introduces the novel concept of secure sharing
of enclave memory. Secure sharing is a key requirement for
many application scenarios, but it is impractical with current
enclave systems (e.g., Intel SGX). Thus, enclave-to-enclave
communication currently demands costly encryption and
copying operations in software. SERVAS enables zero-cost
secure data exchange by sharing specific encryption tweaks
between eligible enclaves. Moreover, selective code dedu-
plication reduces memory demands if the same enclave is
invoked multiple times.

SERVAS is compatible with advanced enclave features
such as dynamic enclave memory, swapping, and multithread-
ing. As a proof of concept, we prototype RVAS on an FPGA
by using the CVA6 RISC-V CPU together with an openly
available encryption core. A small stateless Security Moni-
tor (SM) running in RISC-V machine mode1 ensures a proper
tweak configuration for strongly-protected SERVAS enclaves.

1This is loosely comparable to CPU microcode used for Intel SGX logic.

We show that entering and exiting SERVAS enclaves only
takes 3.5x the time of a syscall. Our evaluation indicates an
overhead between 16.7 % and 24.5 % over the used encryp-
tion core for a broad selection of macrobenchmarks. We plan
to open-source our prototype.

In summary, our contributions are as follows:
• A generic isolation primitive using authenticated memory

encryption denoted as RISC-V Authenticryption Shield.
• A novel enclave architecture called SERVAS that lever-

ages the RISC-V Authenticryption Shield.
• A novel and fast and secure memory sharing mechanism

between enclaves.
• An evaluation of SERVAS in a set of micro- and mac-

robenchmarks.
Outline. The remaining paper is structured as follows: In
Section 2, we discuss challenges of memory isolation. In
Section 3, we discuss our generic isolation primitive RVAS.
In Section 4, we present our SERVAS design, discuss how
we use our components to build enclaves, and elaborate key
points of their life-cycle. Section 5 gives implementation de-
tails of RVAS and SERVAS. It elaborates on the specifics of
the instruction set extension, the construction of the tweak,
and the API of our Security Monitor. Additionally, this section
discusses how tweaks are cached and the benefits of separat-
ing them into a tweak cache. In Section 6, we give a security
analysis. We evaluate our prototypes of RVAS and SERVAS
in Section 7. We discuss related work in Section 8, future
work in Section 9, and conclude the paper in Section 10.

2 Challenges of Memory Isolation

The fragmentation of isolation mechanisms makes it hard to
analyze their security, especially if multiple mechanisms are
combined. In this section, we give an overview of the most
widely used isolation schemes and present their challenges
concerning security and functional limitations we want to
overcome. This overview paves the way for understanding
how the RVAS design can solve these challenges in general
(cf. Section 3) and for enclaves in particular (cf. Section 4).

2.1 Process Isolation
Process isolation comprises separating privileges between an
operating system and user processes and isolating processes
from each other. Privilege separation is achieved via privilege
rings – one of the coarsest protection mechanisms available
in CPUs that protect privileged CPU resources from unprivi-
leged access. However, to be secure, privileged software also
needs to protect its own memory and user memory using the
virtual memory subsystem, as follows:

Challenge C1: “The privileged software must ensure that
the virtual memory mappings of all unprivileged processes
(i) cannot access privileged memory, and (ii) are not uninten-
tionally aliasing with each other.”

2

Unfortunately, analyzing the security of process isolation is
far from trivial [47,54,103] and requires a deep understanding
of the memory management facilities of modern operating
systems. Moreover, the virtual memory mapping is a favored
attack target [24] since a single bit flip in the page tables can
suffice for privilege escalation attacks [87].

2.2 In-Process Isolation
Segmentation is an isolation mechanism to more finely sepa-
rate parts within an application from each other. It usually con-
fines memory accesses within predefined address ranges. Seg-
mentation also forms the basis of hardware capabilities [95].
However, these systems are not suitable for enforcing policies
across application boundaries. E.g., a segment to protect an
application’s cryptographic key is typically not respected by
other applications (in case of shared memory) or by the OS.

Challenge C2: “Segmentation should also allow flexible
cross-application policies.”

Memory Coloring is another in-process isolation mecha-
nism labeling each memory block with a different “color”.
The memory only becomes accessible to the application if
the corresponding color is loaded in a special register. Un-
fortunately, the number of colors is often quite limited [72],
inhibiting fine-grain use cases. Moreover, memory coloring
is not enforced across application boundaries, making it un-
suitable for sharing data with other applications.

Challenge C3: “Memory coloring should provide signifi-
cantly more colors and also allow cross-application policies.”

2.3 Enclaves
Memory Mapping. Enclaves present an inverse problem of
process isolation: an unprivileged software – the enclave –
wants to protect itself from privileged software that manages
the enclave’s virtual memory mapping. This leads to:

Challenge C4: “The memory mapping of enclaves must be
protected against privileged software.”

Protecting memory mappings against privileged attackers
is challenging because privileged software is in legitimate
charge of managing memory. For example, if the OS maps
memory to a wrong location, the enclave could be tricked into
accessing the wrong buffer, leaking secrets, or corrupting its
sensitive memory. Also, by mapping code pages in a bogus
way, the enclave could be forced to execute unintended func-
tions or bypass security checks. Furthermore, manipulation of
page table attributes could violate security assumptions and,
e.g., cause data pages to become executable. Three security
invariants need to hold, to prevent such attacks:

Attribute Invariant IA: “Enclave pages must only be
mapped with their intended page table attributes.”

Spatial Invariant IS: “A physical enclave page must
only be mapped to its corresponding virtual page.”

Temporal Invariant IT : “At any time for every virtual
enclave page, there must be at most one valid physical page
mapping.”

The temporal invariant specifically addresses double map-
ping attacks: If an attacker obtains two valid mappings for
the same virtual enclave page, the OS could silently replace
the underlying physical page in order to replay old data to the
enclave and, thus, tamper with its execution. This is especially
relevant for dynamic enclave memory, swapping, and shared
memory, where the memory utilization varies over time.

Protected Sharing is an important feature required for the
interaction between applications. In an unprotected setting,
this interaction is achieved via shared memory. However, in
the context of enclaves, there is a hard isolation boundary that
prohibits secure, shared memory by design. In Intel SGX, data
exchange is only possible via untrusted application memory,
and enclaves need to manually encrypt data being sent.

Challenge C5: “Shared memory must allow for efficient
and confidential interaction between different enclaves.”

2.4 Memory Encryption
Apart from these architectural challenges, the DRAM presents
a substantial physical attack surface, allowing passive [5, 39,
60] and active [50] attacks to infer or tamper with secret data
stored in memory. To isolate data from physical attacks and
ensure its integrity, encrypting and authenticating the DRAM
is necessary. Memory encryption should not be restricted to
specific code (e.g., enclaves) or specific parts of the DRAM.

Challenge C6: “The DRAM shall be hardened against ac-
tive and passive physical attacks.”

3 RISC-V Authenticryption Shield (RVAS)

RVAS harnesses authenticated memory encryption as a sin-
gle, generic mechanism to cryptographically enforce the chal-
lenges for memory isolation expressed in Section 2. At its
core, we use a Memory Encryption Engine (MEE) for en-
crypting the DRAM and incorporate a security context into
its tweak input (i.e., the associated data). If encrypted data is
accessed with the wrong security context, the MEE triggers
an authentication error. Since the MEE gives cryptographic
security guarantees for detecting authentication issues, the se-
curity argumentation for all the isolation policies boils down
to one question: Who controls the security context?

The composition of the security context arguably lies at
the heart of RVAS. For readability, we also call it “tweak” in
the rest of the paper. The tweak consists of both software-
and CPU-defined components, allowing for fine-grained, un-
forgeable isolation. We designed an Instruction Set Architec-
ture (ISA) extension for configuring the tweak (cf. Section 5),
which makes RVAS a powerful and generic isolation primitive
based on strong cryptographic segregation.

3

In this section, we first discuss the composition of the
RVAS tweak. Second, we sketch how RVAS solves the chal-
lenges defined in Section 2. We will concretely instantiate
and analyze SERVAS enclaves addressing challenges C2– C6
in Sections 4 and 6. Finally, we highlight requirements for
the MEE to support RVAS.

3.1 RVAS tweak design
A core contribution of RVAS lies in the way we compose the
tweak used by the Memory Encryption Engine (MEE) from
both software-defined values and CPU-defined security state.

Our tweak design is depicted in Figure 1 and comprises
hardware-managed integrity counters, segment and address
information, privilege levels, page table attributes, as well
as software-defined memory colors. All tweak components
can be selectively enabled, depending on the specific use
case (e.g., unprotected applications, privilege separation only,
enclaves).
Integrity Counter. The MEE maintains integrity counters
for each memory block, which it increments at each write
operation. Integrating the counter into the tweak ensures that
the correct memory block is used at any time. This counter
prevents replay attacks where an attacker with access to the
physical memory reverts a memory block to its former state.
Segmentation & Address Information. This part of the
tweak holds metadata about the address being accessed and
whether it matches software-defined segments that can be
configured at each privilege level. The address information
can hold an absolute address or an address offset relative to
one of the segments. The segment information is represented
as a segment bitmap indicating whether an address lies within
one or multiple segments.
Privilege Level. This part of the tweak holds the current CPU
privilege level (e.g., M-mode, S-mode, U-mode) and ensures
that memory is only accessible at a specific level.
Page Table Attributes cover read, write and execute per-
missions, amongst others. The inclusion of the page table
attributes in the tweak ensures that the page mapping cannot
be altered without being detected.
Memory Color. This field is extremely versatile and can be
configured by software on each privilege level. By choos-
ing appropriate colors, one can segregate memory pages at
runtime and also facilitate sharing across security domains.

3.2 Solving the Challenges
Process Isolation with RVAS’ cryptographic strength could
significantly enhance the security of processes inside en-
crypted virtual machines (cf. [2]). To solve challenge C1,
we incorporate two tweak components: First, privilege separa-
tion is achieved via the privilege bits in the tweak. The CPU
implicitly provides the privilege level. Thus privileged mem-
ory is inherently separated via encryption from unprivileged

Integrity
Counter

Segment/Addr.
Information

Privilege
Level

Memory
Color

Page Table
Attributes

Figure 1: Overview of the RVAS tweak composition.

software without the need for inspecting page tables. Second,
to also isolate different processes, one can include a process
identifier in the memory color field, which cryptographically
separates them.

For process isolation, the memory color is chosen by the OS.
To grant it occasional access to user memory (e.g., for syscall
handling), one can tie the privilege level to the so-called
RISC-V Supervisor User Memory (SUM) bit, which is com-
parable to x86 Supervisor Mode Access Prevention (SMAP).
That is, the OS can temporarily increase the privilege level to
U-mode.
In-process Isolation. To solve the challenge C2 for segmen-
tation, the tweak’s Segment and Address Information field can
be used. By including segmentation registers from all privi-
lege levels, we can enforce cross-privilege policies. We use a
segment-relative address offset in the tweak such that segmen-
tation policies can be portable between different applications,
as we will show for cross-enclave shared memory.

To solve the challenge C3 for memory coloring, our mem-
ory color field of the tweak facilitates a huge number of col-
ors (e.g., 280 as opposed to 16 for Intel MPK). Thus, RVAS
makes trusted metadata storages for memory colors (i.e.,
tagged memory) obsolete [102]. Having so many unique col-
ors available even gives brute-force resistance when used as
a shared secret, as we will demonstrate. Furthermore, RVAS
can choose between memory colors from all privilege levels.
Enclaves are the most involved isolation mechanism ad-
dressed in this paper, touching upon the challenges C2– C6. In
the following, we sketch how RVAS solves the challenges C4
and C5. A more detailed explanation will be given in Section 4
and Section 5, followed by a security evaluation in Section 6.

Current enclave systems like Intel SGX [64] use trusted
metadata stores, i.e., the Enclave Page Cache Map (EPCM),
for shadowing page table entries for each enclave page, along
with an enclave identifier. During an access, the EPCM is
checked to verify that the page mapping has not been manipu-
lated, thus ensuring the attribute invariant IA and the spatial
invariant IS. However, the EPCM has a few drawbacks: (1)
It increases the Trusted Computing Base (TCB). (2) It takes
up memory. (3) The enclave’s TLB entries must be flushed
during context switches [21, 43]. (4) It permits only a sin-
gle owner enclave for each page, precluding flexible enclave
memory sharing by design.

To overcome these limitations and solve challenge C4, we
leverage RVAS and make the EPCM obsolete: First, we use
the page table attribute field in the tweak to uphold IA. Sec-
ond, the address and segmentation information field links
between the virtual offset of the enclave and its physical page.
Moreover, we use the memory color field to label enclave

4

pages with a unique enclave identifier. This identifier ensures
our spatial invariant IS, since pages can only be mapped
correctly to their legitimate enclave. Note that for the rele-
vant parts of the tweak we use M-mode privileges such that
only a trusted software entity can initialize enclave pages in
this particular way. Since the temporal invariant IT involves
dynamic memory management, we will discuss it later.

To overcome the protected sharing challenge C5, the mem-
ory color field of the tweak (C3) can be combined with an
enclave-defined segment (C2). The segment specifies the
shared memory. The relative addressing of segments allows
the enclave to choose the exact location of shared memory.
The memory color essentially comprises a shared secret es-
tablished between two or more enclaves. Only if the memory
color is exactly the same, the enclaves will have the same
encryption tweak and, thus, can access the shared memory.
Memory Encryption guarantees protection against active
and passive physical attacks, thus solving challenge C6. For
RVAS, a MEE needs to fulfill three basic properties: (1)
confidentiality, authenticity, and integrity of the data, (2) of-
fer replay protection, (3) the used cryptographic primitive
must be tweakable with tweak_len bits. Integrity is typi-
cally ensured by storing authentication codes in a tree struc-
ture. The replay protection from (2) is usually done with
some data structure incorporating authenticated counters. The
counters are typically fed into the encryption scheme as a
tweak or nonce [21, 30, 85, 92, 94]. To fulfill (3), we require a
tweakable block cipher or authenticated encryption scheme
with sufficiently large tweak size or associated data, such
as [4, 27, 96–98]. SGX’s underlying MEE is more explicit
about the used cryptographic primitives and would require
changes to fulfill the third property.

4 SERVAS

This section introduces our SERVAS enclave architecture to
highlight the most complex use case of RVAS. We first give
an overview of the design, then describe the threat model, and
finally, explain how we enable secure enclaves on top of the
authenticryption shield.

4.1 Overview
SERVAS is an innovative and highly flexible isolation mech-
anism for securely executing enclaves. As shown in Fig-
ure 2, SERVAS consists of the RISC-V Authenticryption
Shield (RVAS) and a software Security Monitor (SM) that
manages the whole enclave’s lifecycle.

Our SERVAS system follows SGX’s design choices to keep
a minimal TCB while simultaneously avoiding the drawbacks
of large trusted metadata storages (i.e., the EPCM). Instead,
we feed the relevant security metadata into the RVAS tweak.
By carefully controlling the encryption tweak, SERVAS main-
tains cryptographic segregation of various security domains.

App E E

Protected

E

DRAM

OS

App

Unprotected

Security Monitor

SoC

SERVAS

U-mode

S-mode

M-mode

Off-chip

RVAS
Tweak

CPU

Figure 2: Overview of SERVAS: Thunderbolts show the
physical and software attack surface. App. denotes un-
protected user-mode applications and E denotes enclaves.
RVAS encrypts and authenticates pages in the untrusted
DRAM. Pages with a lock symbol belong to enclaves.

Additionally, SERVAS also enables dynamic enclave mem-
ory and natively supports secure sharing of enclave memory,
avoiding costly software-based encryption [3].

In our design, the Security Monitor (SM) is the trusted
intermediary that acts as a universal entry and exit point for
enclaves. Hence, any interactions between untrusted software
components and enclaves are safeguarded by the SM. More-
over, the SM is responsible for loading enclaves, initializing
their memory pages, handling syscalls and interrupts, shared
memory, and swapping. To perform its tasks, the SM is capa-
ble of controlling most parts of the tweak.

In the following, we discuss our threat model and show
how RVAS helps us build an enclave architecture.

4.2 Threat Model

SERVAS protects enclaves that consist of security-sensitive
code and perform operations on sensitive data. Our threat
model is mostly in line with Intel SGX [21, 64] and con-
siders a powerful, privileged software and physical attacker.
Software running outside the enclave (i.e., the OS and user
applications) is viewed as untrusted and might be subject to
compromise. We assume the adversary has full control of the
OS and can launch rogue applications and enclaves. Unlike
SGX, the adversary can tamper with the memory mapping
of enclaves (e.g., page tables) and also exercise unrestricted
software access to the physical DRAM.

Our Trusted Computing Base (TCB) comprises both soft-
ware and hardware components. On the software side, we
only trust the enclaves themselves and a small Security Moni-
tor (SM) for enclave management. The enclave developer is
responsible for adequately implementing enclaves. Vulner-
abilities in the enclave itself cannot be prevented by SER-
VAS [11, 58]. Also, malicious enclaves [78] are outside
our threat model but could be addressed by orthogonal de-
fenses [89].

5

The SM is running in RISC-V M-mode and can also be
viewed as an integral part of our CPU hardware. For example,
Intel SGX implements its enclave management via CPU mi-
crocode [21]. We assume that the SM is stored on a trusted
on-chip ROM or verified as part of a secure boot process [56].

On the hardware side, the TCB covers our System on
Chip (SoC), including the CPU core and RVAS. Anything
outside the SoC is untrusted. In particular, the attacker can
tamper with the DRAM and mount bus probing or cold-boot
attacks [60]. SERVAS effectively removes CPU components
involved in the page mapping and address translation from
the TCB: unlike SGX, which needs to store trusted metadata
in the EPCM [21], SERVAS avoids having an EPCM, thus
slightly decreasing the TCB complexity of our SoC.

Denial-of-service attacks are outside of our threat model.
It is up to the OS and the applications to invoke an enclave.

Side-channel attacks, whether performed in software or in
hardware, are an orthogonal challenge, for which plenty of lit-
erature is available that could also be applied to SERVAS. We
will discuss side-channel security in Section 6. Fault attacks
on the encrypted DRAM [45] are detected by RVAS’ authen-
ticated encryption, while fault attacks on the SoC [49, 68] are
outside our scope.

4.3 Building Enclaves

SERVAS enclaves are built on top of RVAS with the assis-
tance of our Security Monitor (SM). The SM uses the RVAS
ISA extension to configure the tweak and enforce our spatial-
(IS), temporal- (IT), and attribute invariant (IA), as spec-
ified in Section 2.3 over the lifecycle of an enclave.

We ensure that enclaves are separated even across other-
wise identically structured processes, as follows: We include
address information, to confine enclave execution, such as
page mappings, page permissions and virtual address range
checks as part of RVAS’ segmentation and address informa-
tion, privilege level and page table attributes fields. We further
embed page ownership information as part of the memory
color.

In total, we define four different page types for specific use-
cases in SERVAS: PT_ENCLAVE denotes general-purpose
memory for private enclave code and data. It must reside in
an enclave-specific virtual memory range. PT_SHCODE en-
ables different instances of the same enclave to deduplicate
read- and execute-only pages. Thus, it can reduce the memory
overhead significantly. We also define PT_SHDATA, a page
type that allows enclaves to set up secure cross-enclave data
sharing by providing a shared secret before the access. Finally,
the SM exclusively uses PT_MONITOR pages to store infor-
mation about the loaded enclaves in memory. This page is
referenced when switching to an enclave to load the enclave’s
state or save its register content if interrupted (e.g., by a timer
interrupt). In the following, we present how the page types
link to different types of memory.

Secure Static Page Mapping. To keep IS and assure a se-
cure virtual-to-physical page mapping of any enclave-related
page, we initialize the page with mapping information in the
tweak. Moreover, segment and address information, and page
table attributes assure that the mapping is only valid for a spe-
cific virtual address and well-specified access permissions.

For private enclave memory, we use a unique Runtime Iden-
tifier (RTID) of the enclave as the tweak’s memory color to
bind the page to its enclave. This single ownership principle
helps to distinguish enclave instances and satisfies the tempo-
ral invariant IT . PT_MONITOR memory solely belongs to
the SM, which we enforce by including the privilege mode in
the tweak.

To share enclave code or read-only enclave data and to
help reduce memory load and TLB pressure, developers can
mark pages as PT_SHCODE. In this case, a so-called En-
clave Identifier (EncID) substitutes the RTID. The EncID
uniquely identifies an enclave codebase or binary via a cryp-
tographic authentication code. Since multiple owners exist,
PT_SHCODE pages need to be read-only to enforce IT .
Secure Dynamic Page Mapping. SERVAS enclaves may
use dynamic memory, which has been allocated by the host
user-mode application. To do so, the enclaves ask the SM to
cryptographically initialize the memory as before.

While static enclave mappings are secured by the SM, dy-
namic mappings that change at enclave runtime demand spe-
cial care. To prevent double mapping attacks and enforce the
security invariant IT , we first require the enclave (runtime)
to keep track of all of its valid page mappings in a private
bitmap (similar to SGX [63]). Thus, when the enclave re-
ceives new memory from the host, it can consult its private
bitmap and refuse this memory if it is already in use. Second,
if an enclave releases dynamic memory, it explicitly invokes
the SM, which invalidates the page by destroying its integrity.
This invocation prevents use-after-free scenarios and upholds
IT . Note that the private bitmap only needs to enumerate
pages inside the enclave’s address range.
Enclave Data Sharing. SERVAS introduces a novel concept
of enclave data sharing. PT_SHDATA memory is writable and
can be used for data exchange at native speed (i.e., without
copying or re-encryption [3]). As with dynamic memory, the
SM performs the setup of shared data pages for enclaves and
requires that the respective enclaves acknowledge any mapped
page. PT_SHDATA memory is identified by a shared secret
that is directly managed by the enclaves. The SM can further
assist in establishing a shared secret between the two enclaves
by acting as a trusted entity attesting the respective enclaves
to each other.

Upholding our security invariants for data sharing is critical
and highlights the versatility of our RVAS design. Enclaves
can enforce IS by simply keeping the shared secret confiden-
tial, that is, by securely generating and distributing shared se-
crets with the help of SM. Data sharing also seamlessly scales
to multiple enclaves. A user-mode range register points to the

6

desired shared virtual memory range to uphold IT , by pre-
venting double mapping attacks (e.g., aliasing PT_SHDATA
with existing PT_ENCLAVE pages)
Enclave Life Cycle. The Security Monitor (SM) is respon-
sible for the whole enclave life cycle and is loaded as part
of a secure boot procedure. This procedure is part of the on-
going work of the RISC-V groups [56]. In line with other
enclave designs [57], our SM provides an API for managing
all aspects of an enclave’s lifetime: loading, entering, exit-
ing, interruption, managing, and initializing memory for the
enclave’s code, stack, dynamic memory, shared memory and
swapping. Furthermore, it provides functionality for local at-
testation and sealing. To perform operations involving the
enclave’s virtual memory, the SM can override most parts of
the tweak that is passed to RVAS. Thus, the SM can initialize
enclave memory as if the enclave itself did it. For the detailed
API description, we defer to Appendix A.

Enclaves can be distributed as encrypted binaries to prevent
the host application from accessing the enclave’s code or
data. A user-mode application can choose to load and run an
enclave within its own virtual address space. Enclave binaries
are then decrypted (if necessary) and authenticated within the
SM, where their code and data are initialized with the page
type PT_ENCLAVE or PT_SHCODE. A loaded enclave can
be entered at its single developer-specified entry point.

For encrypted enclaves and use-cases that require deploy-
ment on specific systems, an AEAD encryption scheme (e.g.,
ASCON [27]) with a developer key derived from a per-CPU
key can be used. Encryption eliminates the need for code ob-
fuscation [61] to prevent theft of intellectual property. Addi-
tionally, secrets can be directly embedded in the enclave code.
The decryption happens in software within the SM. Loading
an enclave also authenticates it and generates a load-time hash
forming the EncID, achieving load-time attestation. To store
enclave secrets, the SM provides a sealing functionality.
Swapping is essential to handle out-of-memory situations.
Enclave systems like Intel SGX can only use a limited phys-
ical memory. In contrast, SERVAS allows using all of the
available memory for enclaves, making out-of-memory sit-
uations happen less frequently. Nevertheless, for real-world
workloads, a swapping mechanism is key. Swapping of en-
clave pages requires interaction between the OS and the SM.
To ensure the SM’s correct operation and maintain our secu-
rity invariants, we exclude PT_MONITOR and PT_SHDATA
pages from being swapped. When the OS selects an enclave
page to be swapped out, it provides a temporary page to the
SM to safely move the page to. The SM will then re-encrypt
the page-to-swap to this temporary page by using an AEAD
encryption scheme.

Afterward, to uphold IT , the SM invalidates the original
physical enclave page. The involved metadata (i.e., AEAD-
tag, used nonce, virtual address, range information, and page
permissions) are saved on a per-enclave PT_MONITOR page.
This metadata ensures that only the one specific version of

the page can later be swapped in and prevents any roll-back
attacks. The OS can then write the temporary page safely to
the disk and repurpose it for other applications.

5 SERVAS Implementation Details

In this section, we detail the implementation and parameter-
izations of our prototype implementation of SERVAS. An
overview of how SERVAS uses RVAS for this matter can be
seen in Figure 3a. First, we highlight the required ISA exten-
sions and then show how the tweak for RVAS is assembled.
Second, we detail the new page types introduced by SERVAS
and describe the security monitor managing the enclaves. Fi-
nally, we explain how a tweak cache can reduce the hardware
footprint of SERVAS.

5.1 Instruction Set Extension Details

Realizing SERVAS only requires minimal changes. First, we
extend the existing RISC-V ISA with additional Control and
Status Registers (CSRs) to set the tweak of RVAS in software.
Second, we add a so-called authentication exception, which
is raised by the RVAS whenever the decryption fails with an
integrity check error during a read, write, or fetch operation.
Handling this exception in our SM is a key ingredient for the
security of SERVAS.

The additional Control and Status Register (CSR) for the
machine- (M), supervisor- (S), and user- (U) mode that we
refer to as MRange, SRange, and URange, can be seen in Fig-
ure 3b. The ranges consist of a base address and a size and
specify regions in the virtual address space, which allows us
to differentiate between memory accesses. Any access to an
xRange must pass RVAS. The MRange is used by the SM to
declare the memory of the enclave. The SRange and URange
give enclaves control over additional encrypted ranges for
enclave-specific needs like shared memory.

To include software-controllable Session Identifiers (SIDs)
in the tweak, we add two CSRs for each privilege mode,
namely xSID0 and xSID1. To decide which of the two SID
registers is used for the tweak, we repurpose two additional
selector bits in the currently unused most significant bits part
of the PTEs as tweak-select (TS).
Tweak Override. Moreover, we define special load- and
store-tweak registers, which are only accessible in machine
mode to our SM. These registers can be used to override any
tweak parameters used by RVAS and also disable them, ex-
cept for the RVAS-managed integrity counters. This “tweak
override” allows the SM to cryptographically initialize a page
in lieu of the enclave without trusting the OS-supplied page
mapping. Any further accesses by the lesser-privileged modes
must adhere to the same tweak used for initialization, which
is cryptographically enforced by RVAS.

7

D
R

A
M

Data

paddr
vaddr

Memore Encryption
Engine (MEE)

SoC

Tweak

Data

paddr

M
R

an
g
e

U
R

an
g
e

V
ir

tu
al

 A
d

d
re

ss
 S

p
ac

e

S
R

an
g
e

Key

CSRs

MMU

PRV

RVAS

(a) Blocks with black corners show components
that are part of RVAS.

Cache-Tag
192 134 133 92 91 87 86 80 79 0

Counter voffset

M
R

a
n
g

e

S
R

a
n
g

e

U
R

a
n
g

e

PRV TS U G R W X
Session

Identifier

M
S
ID

0

M
S
ID

1

S
S
ID

0

S
S
ID

1

U
S
ID

0

U
S
ID

1

0 0

MRange
base+mask

URange
base+mask

SRange
base+mask

voffset calc
Range Selector

vaddr

Page Table Entry

Highest matching
xRange privilege

(b) Composition of the RVAS tweak fed into the MEE. The counter
is part of RVAS’s replay protection. TS denotes our tweak-select
bits stored in the page table entry (PTE).

Figure 3: Overview of RVAS and the tweak construction for the MEE. PRV denotes the current privilege mode.

Lastly, we assume an additional per-CPU key for encrypted
loading of enclave binaries, which is fused into the chip and
only accessible to our SM via CSRs.

5.2 Tweak
RVAS uses the tweak to incorporate additional information
about the CPU state into its MEE, allowing us to achieve
a strong software-defined cryptographic separation between
enclaves. As shown in Figure 3b, the tweak incorporates
integrity counters, page mapping information, privilege in-
formation, range checks, and software-controllable session
identifiers. For SERVAS, we propose to use RVAS with a
tweak size of 192 bits in total. It is structured as follows:
Counter. Similar to SGX’s 56-bit counters, we reserve 58 bits
of the tweak for the integrity counter to guarantee freshness
and protect against replay attacks [21, 75, 85]. The counters
are managed inside RVAS and not exposed to software.
xRange. We use 3 bits to encode whether the accessed address
is within URange, SRange, or MRange, respectively. These bits
constitute the bitmap in the segment and address information
field of the RVAS tweak design. The range boundaries can be
set from their respective privilege levels via the xRange regis-
ters. If an address matches an xRange register, its tweak bit is
set to one. This matching enforces a strong domain separation
between the specified memory ranges. The rightmost xRange
bit set to one determines the voffset calculation and the
choice of the xSID registers (e.g., URange has precedence).
voffset is the virtual address offset and complements xRange
as part of RVAS’ segment and address information field. The
voffset is computed from the base address of the rightmost
matching xRange register at cache line granularity. For 48-bit
virtual addresses [88] and 64 B cache lines [21], the bit field
is 48− log2(64) = 42 bits.
PRV encodes the current privilege mode of the CPU in two
bits. Having these bits in the tweak gives us a strong privilege

separation. This field corresponds to the privilege level field
in the RVAS tweak design.
PTE. Since the untrusted OS manages the page mapping, we
include seven bits from the PTE in the tweak. These PTE bits
includes the U bit, deciding whether a page is accessible in
user mode, the G bit, defining if it is a global mapping, and the
three RWX bits, stating the read, write and execute privileges
of the page. We also include two of the software-defined
reserved tweak select TS bits in the tweak for selecting which
of the SID registers are used. The PTE maps to the page table
attributes field of the RVAS tweak design.
SID. We allocate 80 bit for the Session Identifier (SID), which
corresponds to the memory color field in the RVAS tweak
design. The rightmost matching xSID register determines
whether MSID, SSID, or USID is used. TS determines whether
one or both xSID0 and xSID1 registers are used. If both are
used (i.e., TS = 11b), the resulting SID is truncated to 80 bit.

5.3 Page types
SERVAS defines various page types, which use a specific
combination of the tweak components, as seen in Table 1.
PT_NORMAL marks any untrusted page. This page type is
located outside of any of the xRange regions and is accessible
from any privilege level with the page permission configured
in the PTE. While RVAS can also encrypt PT_NORMAL
memory, one could bypass encryption to achieve native per-
formance for non-enclave applications.
PT_ENCLAVE denotes pages in the MRange and is intended
to be used with a single enclave instance from user mode.
The pages can have any combination of page permissions,
as specified by the PTE. The TS bits specify the use of the
MSID0 register that holds the unique, SM-defined, RTID
value for the enclave instance.
PT_SHCODE can be used to share non-writable pages be-
tween different instances of the same enclave. This shar-

8

ing allows to reduce memory requirements and TLB pres-
sure significantly. This page type adheres to the MRange and
uses the MSID1 CSR, which holds a unique Enclave Identi-
fier (EncID) for the loaded binary.
PT_SHDATA can be used to safely share data between in-
stances of enclaves, also between different enclaves. Such
pages can only reside in the URange, which the SM assures
at initialization time. For memory inside the URange, RVAS
feeds the virtual address offset relative to the URange base into
the tweak. This relative offset ensures cross-address-space
accessibility of the shared memory. To counteract runtime
attacks, PT_SHDATA pages can never be executable.

The TS bits from the page table indicate that both USID
registers are used for the SID. Enclaves load the shared se-
cret to the USID0 and USID1 registers before accessing the
shared memory region. With the help of the SM, two or more
enclaves can agree on an 80-bit shared secret, which separates
different shared-memory regions from each other. By speci-
fying URange appropriately, an enclave can constrain shared
memory to a particular region and, thus, prevent accidental
double mapping attacks.
PT_MONITOR denotes pages used by the SM to store meta-
data for each enclave and thread. PT_MONITOR must only
be accessible by the SM, i.e., in the M mode.

5.4 Security Monitor (SM)

The SM manages enclaves and their transitions between the
different privilege modes. It runs with machine-mode privi-
leges, stores its tiny code base and the stack on-chip, and is
loaded as part of a secure boot process. Both areas are pro-
tected using a Physical Memory Protection (PMP) such that
only the SM can access it.
Stateless SM. In principle, the SM can run completely state-
less and only requires a small (approx. 1KiB) stack during
operation. No static state needs to be kept between SM in-
vocations since all enclave management data is stored inside
dynamically allocated PT_MONITOR pages managed by the
operating system. The SM also allocates a unique RTID to
each enclave instance. Our prototype currently stores the pre-
viously allocated 64-bit RTID in memory and increments it for
each new enclave to guarantee uniqueness. To remove this tiny
64-bit state, one could simply sample the RTID from one of

Table 1: Tweak decision table: • denotes an arbitrary
value, ugrwx and TS correspond to the respective PTE
bits, and PRV holds the current privilege level.

MRange SRange URange PRV PTE TS SID Label
0 0 0 • • • • PT_NORMAL
1 0 0 U • 01 MSID0 PT_ENCLAVE
1 0 0 U !W 10 MSID1 PT_SHCODE
0 0 1 U !X 11 USID0+1 PT_SHDATA
• • • M rw • 0 PT_MONITOR

the RISC-V hardware performance counters, e.g., the elapsed
CPU cycles mcycle or other CPU events mhpmcounter. The
SM only needs to ensure that they are monotonically counting
CPU-global events that assuredly occur between two enclave
creations (e.g., memory accesses). For a worst-case estimate,
we use mcycle incrementing at 5GHz speed. Thus, it will
overflow the 64-bit range only after 117 years of continuous
operation. After the device reboots, no enclave is running, and
we can sample the RTID freshly.
Enclave metadata is stored in OS-managed but RVAS-
protected per-enclave and per-thread PT_MONITOR pages.
In order to access PT_MONITOR pages, the SM leverages
the tweak override feature to ensure its exclusive access.
Other pages are similarly initialized by the SM using the
tweak override to force their page type (e.g., PTE bits, privi-
lege mode, and other tweak-associated CSRs such as xRange
and xSID{0,1}).
API The SM provides an API that works like syscalls but
trap into the SM instead. The API allows to manage the life-
cycle of the enclave or interact with the SM, i.e., creating,
entering, exiting, page preparation, page destroying, in-place
re-encryption, and acquiring a sealing key. A detailed descrip-
tion of the API can found in Appendix A.
SM Prototype. Our prototype implements all of the above
API functionality. In total, our SM has a very small code size
of 1232 Lines of Code (LoC). Of this, 381 LoC are taken
up by the ASCON implementation, which is used for loading
encrypted enclaves, and deriving the sealing key.

5.5 Caching

For SERVAS, we extend the cache to store the tweaks next
to each cache line, referred to as the inline variant. This
extension allows us to compare the tweak stored in the
cache line to the tweak for the access and ensures that the
entire tweak can be reconstructed for any write-back op-
erations. Our tweak design described in Section 5.2 con-
sists of 192 bit. However, as the MEE of RVAS manages
the 58 bit integrity counter, we only need to store the re-
maining bSERVAS 134 bit tweak in our extended cache. These
remaining bits b consist of bxrange bit for URange, SRange,
and MRange, bpte bits from the PTE, bprv bits from the privi-
lege level, bsid bits for the SID and bvo f f set bits for the voff-
set. Each of the Ncache cache lines in the data- and instruc-
tion cache are augmented with the tweak. Note, that Ncache
might vary between the two caches. Therefore, the required
storage STotal can be calculated as the sum of additionally
stored bits in the data- (SData) and instruction cache (SInstr).

bSERVAS = bvo f f set +bxrange +bprv +bpte +bsid (1)
SData = SInstr = bSERVAS ·Ncache (2)
STotal = SData +SInstr (3)

Cache Optimization. For many real-world scenarios, we

9

212 214 216 218 220 222 224

Cache size in Bytes

211

213

215

217

219

221

223

225

Ad
di

tio
na

l c
ac

he
d

m
et

ad
at

a
in

 B
its

Overhead for storing tweaks

No tweak cache
Ntweak=8 bvoffsetL=6
Ntweak=8 bvoffsetL=20
Ntweak=8 bvoffsetL=42
Ntweak=32 bvoffsetL=6

Ntweak=32 bvoffsetL=20
Ntweak=32 bvoffsetL=42
Ntweak=128 bvoffsetL=6
Ntweak=128 bvoffsetL=20

Ntweak=128 bvoffsetL=42
Ntweak=512 bvoffsetL=6
Ntweak=512 bvoffsetL=20
Ntweak=512 bvoffsetL=42

Figure 4: Overhead of the tweak cache in bits compared
to the inline variant for a different number of tweak
cache entries Ntweak. bvo f f setL denotes whether 6, 20 or 42
bits of the voffset are stored in the main cache. The cache
line size is 512 bit.

only have a limited number of different tweaks, which could
be deduplicated in a separate Tweak Cache (TC) [46]. This
deduplication would help to significantly shrink the tag size
in the caches and, thus, the area overhead. For simplicity, we
refer to the data and instruction caches as the main caches.
For our design, such a TC could be implemented using an
index-based indirection in the main cache and a separate
TC, whereas the index is stored along the cache line to link
the cache and TC. Appropriately sizing a cache is generally
tightly coupled to the system’s expected workload. In the case
of the TC, it also depends on the expected number of enclaves
running in parallel. Therefore, a precise parameterization of
such a cache exceeds the scope of this paper. However, in the
following, we want to discuss the parameters that can be used
to tune the cache and their effects.

First, insertion into the TC can be handled by using a
non-linear function like a lightweight cryptographic hash-
or permutation-based function to derive the set index from
the tweak pseudorandomly, similar to [79, 91]. This index
generation makes finding the correct index for already present
tweaks in the TC efficient. Moreover, since the TC index can
be computed in parallel to the main cache lookup, the latency
can be mostly hidden by choosing a primitive matching the
cache latency. Therefore, only one additional cycle for the
tweak comparison may be required. For tweak replacements
in the TC, all associated cache lines, i.e., all cache lines with
that specific index, need to be flushed. Each time a new tweak
is inserted into the cache, there is a probability that another
cache line is evicted. To reduce the probability of two or more
tweaks taking turns in evicting each other, the cache can be:

(1) made larger or (2) be split into multiple ways [41]. A more
detailed analysis and simulation can be found in Appendix B.

Next, we define a range in virtual memory that uses the
same tweak (except for bvo f f setL bits of the voffset) as a tweak
zone that each enclave has a number of. In general, the main
cache stores more cache lines than the TC stores tweaks.
Hence, if the expected size of tweak zones is relatively small,
additional bvo f f setH bits of the upper voffset can be stored
more cheaply in the TC, than the main caches.

Moreover, to size the TC to improve upon the inline variant,
we must take two main constraints into account: (1) additional
ways in the TC require additional parallel comparator logic
and (2) the stored bits in the TC and the additional bits in
the main cache must be smaller than the inline variant. For
the inline variant, the tweak is compared in parallel to the
cache tag. Hence, to handle (1) there should be fewer ways
in the TC than in the main cache to reduce the overhead of
comparators. Addressing (2) is more difficult since it relies
on assumptions on the size of tweak zones, the size of the
main caches and the TC’s desired size. We need to reconstruct
the tweak bSERVAS from Equation (1), but the voffset can be
split into an upper bvo f f setH and a lower part bvo f f setL, with
the latter being stored along the cache line in the main cache.
Additionally, btweakidx bits are required in the main cache to
link the correct entry in the TC, the width of which depends
on the number of entries Ntweak in the TC. The remaining bits
stem from the Ntweak entries in the TC times the rest of the
tweak and a valid bit bvalid . The overhead in each cache can
then be aggregated into STotalOpt :

bvo f f set = bvo f f setH +bvo f f setL = const. (4)
btweakidx = log2(Ntweak) (5)
SDataOpt = SInstrOpt = (bvo f f setL +btweakidx) ·Ncache (6)

Stweakcache = (bvalid +bSERVAS−bvo f f setL) ·Ntweak (7)
STotalOpt = SDataOpt +SInstrOpt +Stweak (8)

We evaluate the number of additional bits required as a
function of the main cache size and 512 bit cache lines in
Figure 4. The graph shows the number of additional cached
tweak bits for the inline variant as the top line. The other
lines represent TC configurations that differ in the number
of tweak entries Ntweak and the split between bvo f f setL and
bvo f f setH . One can observe that the break-even point for each
Ntweak is when the TC has as many tweaks as the main cache
has cache lines. After that, the fewer bits are stored in the
increasingly large main cache, i.e., the smaller the bvo f f setL,
the smaller this overhead becomes. Additionally, with larger
caches the bvo f f setL quickly becomes the dominating factor
and clusters them into groups. For the same reason btweakidx
also contributes to this, but due to its smaller size, the effect
is less pronounced.

10

5.6 Encryption Bypass Optimization
Our prototype implementation encrypts the whole system’s
physical memory. However, in the future we intent to make
it configurable, such that the MEE only encrypts pages that
require this protection, e.g., enclaves. Hence, SERVAS can
also be used as an extension for enclaves only. This variant
can be achieved with some logic in RVAS that uses informa-
tion from the xRange registers to decide if a request has to go
through the MEE or access the memory directly. Some MEEs
like MEMSEC read and verify the integrity of data before
new data is written to a location. In a bypass implementation,
this verification would cause issues when initialization en-
clave pages since the MEE attempts to verify the integrity of
unprotected memory locations. However, when initializing
encrypted pages, the SM is already able to override any sup-
plied tweak information. One would need to simply extend
this initialization mechanism by intermittently ignoring any
integrity violations.

A limitation of the performance bypass is that the inherent
overhead of the integrity protection trees introduced by the
MEE persists. While sparse integrity trees could address this
problem, no open-source memory encryption schemes with
sparse integrity trees have been proposed to the best of our
knowledge.

6 Security Analysis

In this section, we analyze the security of SERVAS and its
interaction with RVAS. RVAS cryptographically enforces the
tweak (cf. Section 2) and solves the challenges of memory
isolation C1-C6. Moreover, only the trusted SM can override
the tweak, effectively preventing forgery, thus, enforcing the
domain separation. However, attacks might aim at breaking
the spatial- (IS) and temporal invariant (IT). In the fol-
lowing, we discuss how SERVAS upholds these variants in a
number of attack scenarios.

6.1 Side-channel Attacks and Defenses
Our threat model explicitly excludes side-channel attacks to
adopt Intel SGX’s threat model. Additionally, we see micro-
architectural attacks as specific to the underlying hardware
implementation of the CPU which needs to be fixed for en-
clave and non-enclave code alike, hence, is out of scope of
this paper. However, in the following, we want to briefly dis-
cuss several attacks a system equipped with SERVAS might
encounter.
Physical Attacks such as differential power analysis [52]
could break RVAS. RVAS can use more expensive memory
encryption schemes such as MEAS [85] to protect from phys-
ical attacks on the memory encryption.
Enclave Shared Memory opens a harmless side-channel,
allowing Flush+Reload attacks on the shared memory. For

data sharing, enclaves need to trust each other anyways and
can access the shared memory directly rather than via a side-
channel. For code pages, we ensure that only instances of the
same enclave can optionally deduplicate code.
Controlled-channel Attacks [99] extract side-channel infor-
mation from an application’s inability to access certain mem-
ory locations, e.g., by leveraging the OS’s ability to keep
control over page tables, thus, unmapping pages to trace ac-
cesses. Attacks have been shown on Intel SGX Enclaves
(SGXStep [16], CopyCat [67]). For SERVAS, these types of
attacks also apply. However, provably secure interruptibil-
ity [17] and constant-time code can be used as a mitigation
technique
Cache Attacks Modern CPUs involve many microarchitec-
tural buffers, all of which could present a side-channel. To
close them in software, one can flush core-local buffers when
entering or leaving the enclave [93] or use constant-time code.
For securing cross-core buffers such as last-level caches, many
partitioning schemes [26, 42] and randomization-based ap-
proaches [74, 76, 84, 91] exist to provide protection on a hard-
ware level.
Transient Execution Attacks [18, 51] present a threat for
many modern high-performance CPUs in both enclave and
non-enclave execution mode. To combat this threat, we can
use techniques and additional instruction as proposed by
MI6 [14]. Furthermore, Wistoff et al. [93] have shown how
transient execution attacks on the CVA6 RISC-V CPU can be
prevented with the addition of a single instruction.

6.2 Attacks on Physical Memory

Both the OS and a physical attacker can attempt to access
enclave data stored in physical memory. While a physical at-
tacker could read out enclave memory via bus probing attacks
or cold-boot attacks [60], the OS has direct access to physical
memory. However, the OS cannot provide all the necessary
tweak information. Hence, the attack is mitigated by RVAS
detecting the integrity corruption.

Finally, an attacker could install a tampered DRAM mod-
ule that duplicates the memory on each address and allows
to toggle between the two. This results in a violation of the
invariant IT , and allows for roll-back attacks. Similarly, the
OS could move around encrypted enclave data and their au-
thentication codes in order to replay stale data. However, the
integrity counters of RVAS protect against roll-back attacks.

6.3 Attacks on Virtual Memory

Memory Isolation. Enclaves run in the virtual memory of a
host application. Thus, the host application or the OS could try
to access enclave data via its virtual address space. SERVAS
mitigates these attacks by supplying the memory color field
of RVAS with data that is either unforgeable by the OS (e.g.,

11

MRange, MSID) or secret, i.e., only known by the enclave.
Without a correct tweak, RVAS fails and traps to the SM.
Page Mapping Attacks. The OS has full control over the
page table entries (PTEs) and can arbitrarily map pages and
page permissions. Noted as the memory mapping challenge
C4 (cf. Section 2), this allows for a range of attacks.
Downgrade Attack. A compromised OS can map an unpro-
tected page to an address in the MRange of an enclave and trick
it into writing secrets to this unprotected rogue page. How-
ever, when entering the enclave, the SM sets its respective
MRange registers. This register changes the address and seg-
ment information supplied to RVAS. Additionally, the rogue
page has not been initialized by the SM. Thus, the integrity
of the page is violated, and the decryption fails.
Page Remapping Attacks. The OS can attempt to violate
invariants IS and IT in various ways. It could remap en-
clave pages to a different enclave or change the mapping order
within an enclave’s range. This remapping allows to manipu-
late the control flow or divert the data access to different parts
of the enclave, i.e., to set an encryption key to zero. Further,
since the PTEs also hold the page’s permission bits, the OS
could make a data page executable and, for example, exploit
a vulnerability in the enclave itself to divert the control flow.

To counteract these attacks, the RVAS tweak includes all
relevant mapping information, including a session identifier
(e.g., the Runtime Identifier (RTID) or the Enclave Identi-
fier (EncID)), the virtual page offset within an enclave as well
as the page permission bits specified by the enclave devel-
oper. Thus, any deviation from the intended memory mapping
results in a decryption error and denies the access.
Swapping Attacks. The OS can attempt to swap out enclave
pages while maintaining the original page intact. Without
the updated PTE, the MMU will not raise a page-fault during
access by the enclave. Thus, the OS would have two copies
of the same virtual enclave page, which clearly violates our
temporal invariant IT . SERVAS prevents this as follows: the
SM overwrites and, thus, invalidates the original page before
the swapped-out copy is released to the OS.

The OS could try to misuse the swapping mechanism to
violate IT . When the attacker requests a page to be swapped,
the SM invalidates the physical page and hands over an en-
crypted copy to the OS. Now, the OS swaps the page in but
keeps the old copy of the swapped page on disk. The attacker
then requests to swap out the same page again. Upon the next
swap-in operation, the OS replays the first copy to perform a
roll-back attack. To counteract this attack, the swapped pages
are protected with an AEAD scheme. The authentication tag
is linked to the page’s virtual address and securely stored on
a per-enclave PT_MONITOR page. To enforce IT , the tag
is checked during swap-in, preventing any replays.
Shared Data Page Attacks. Enclave shared memory opens
a new attack vector, where the OS could replace an arbitrary
enclave page with a shared memory page (using the zero key),
thus tricking the enclave into leaking its secrets. We close this

attack as follows: Accessing shared memory is only possible
within the URANGE register, which is initially disabled. Thus,
the enclave has to explicitly configure the URANGE register
(after configuring the shared memory key).

The security of shared memory further depends on the
80 bit shared key stored in the USID{0,1} CSRs. A mali-
cious OS could start a malicious enclave and map the pages
of an existing shared memory range to its virtual memory.
This enclave then sets its range registers and brute-forces the
shared key as part of an online attack. Note that this attack
can only target shared memory, as the xRange separates other
enclave page types.

Our SM can prevent brute-force attacks: (1) The SM can
terminate the enclave that used the wrong shared key after
one or a few access attempts. As spawning a new attacker
enclave takes time, this acts as dynamic rate-limiting. (2) The
SM can perform explicit rate-limiting in its exception handler,
thus further reducing the speed of the brute-force attack.
Shared Code Page Attack. SERVAS allows different in-
stances of the same enclave to share non-writable pages to
deduplicate code and minimize memory usage. This dedupli-
cation is achieved using the Enclave Identifier (EncID) in the
tweak as a memory color. An attacker might try to generate
an enclave which yields the same EncID as the victim en-
clave. This challenge refers to finding a second pre-image to
a cryptographic authentication code. In a first attack scenario,
the attacker could generate a large number of enclaves in an
offline brute-force search until the EncID collides with the
victim enclave. Full cryptographic strength (e.g., 128 bit secu-
rity) for the EncID, prevents this attack. However, SERVAS
only supports a 80 bit SID inside the tweak, which requires
truncating the full EncID. A simple truncation would dras-
tically facilitate this offline attack. To counteract this, our
SM performs a key derivation on the EncID that involves the
secret CPU key, before truncating it. In a second scenario, the
attacker performs an online brute-force attack by mapping the
shared code pages of a victim enclave into the attacker’s en-
clave address space at the same virtual offset. If the truncated
EncIDs match, the attacker enclave can access the shared
code pages. If not, an authentication exception is raised, and
the attacker can retry with a new enclave yielding a different
EncID. As before, the SM can terminate the attacking enclave
and apply a time penalty for each authentication exception.

7 Evaluation

Our prototype is based on the CVA6 [101] platform consisting
of a 64-bit RISC-V CPU. For SERVAS, we extended this plat-
form with the RVAS ISA extensions, the storage of tweaks in
the cache, and a MEE for RVAS. The ISA extensions of SER-
VAS allow the security monitor to set the tweak in software.
Here, we endow CVA6 with additional CSRs and a tweak
logic, as depicted in Figure 3. We further extend the write-
through cache to handle the tweak, i.e., storing these bits next

12

Beebs Coremark Lmbench 1/Throughput

100

101

M
ea

n
Ti

m
e

R
at

io

Unprotected
MEMSEC
RVAS

(a) Benchmark results for the CVA6 core using no mem-
ory encryption, MEMSEC, or RVAS. Numbers in red are
given as ratios to the unprotected configuration.

to the data entries and considering the tweak in the hit logic.
We increased the default cache line size from 16 B to 64 B, a
common choice for many CPUs. We use MEMSEC [92], an
open-source, AXI compatible framework supporting various
encryption schemes for the MEE. To fulfill our requirements
(cf. Section 3), we configured MEMSEC to use ASCON-128.
We use this cryptographic primitive for RVAS because it is
the only cipher that is supported by the MEMSEC framework
in TEC-Tree mode. Furthermore, we extend MEMSEC to
process the tweak as ASCON’s associated data. MEMSEC is
placed between the cache and the memory controller to trans-
parently encrypt all data leaving the processor. We transport
the tweak from the core to MEMSEC using the user-defined
signals of the AXI4 communication fabric.

7.1 Performance Overhead
To measure the performance overhead introduced by RVAS,
we deployed it on a Xilinx Kintex-7 FPGA KC705 board
and ran a variety of macrobenchmarks on a Linux 5.10 ker-
nel. To simulate different workloads, we use BEEBS [71] and
CoreMark [29]. For BEEBS, we excluded the crc32, ludcmp,
st, matmult-float, and rijndael benchmarks, since they
caused lockups on the unmodified CVA6 CPU. For the results
in Figure 5a, we aggregated all BEEBS benchmarks into a sin-
gle metric by using the geometric mean, while the full BEEBS
results are given in the Appendix C in Figure 12. For the fast-
running CoreMark, we plot the mean over 1 000 runs, while
for the slower BEEBS, we average over 25 runs. For each
run, CoreMark uses 10 internal iterations, while for BEEBS,
we use 4 internal iterations. Due to the resource-constrained
prototype (256 MB accessible DRAM and 50 MHz CPU fre-
quency), we cannot run more heavyweight benchmarks.

Figure 5a depicts the results of our evaluation normalized
to an unprotected baseline, i.e., the CVA6 core without any
memory encryption. The use of stock MEMSEC configured
for an authentication tree constitutes the main overhead for all
benchmarks. As we will discuss in Section 7.3, the memory

10−3 10−2 10−1 100 101

MB

102

103

ns

Unprotected
MEMSEC
RVAS

(a) Memory read-write latency.

Figure 7: Benchmarking and memory latency results on
the CVA6 platform in an unprotected, MEMSEC and
RVAS configuration.

encryption overhead can be significantly reduced in practice.
The overhead of RVAS over MEMSEC is caused by the addi-
tional rounds of ASCON we use to process the tweak as part
of its associated data. Here, RVAS adds two additional calls
to ASCON’s permutation function in the MEE. The RVAS
prototype adds an overhead between 16.7 % for CoreMark,
20.0 % for LMbench [65] and 24.5 % for BEEBS compared
to MEMSEC. Figure 6a shows the results of the read-write
latency test of LMbench for different configurations. More
concretely, this benchmark measures the read-write latency
for different sized data chunks and visualizes the impact of the
32 kB L1 data cache of CVA6 and the latency of the external
DDR3 memory. While MEMSEC increases the average read-
write latency for a memory access from 850 ns to 3300 ns,
the two additional rounds of RVAS only increase the latency
by additional 290 ns on average. These results are encour-
aging, given that we instantiated our RVAS prototype with
the general-purpose MEMSEC encryption framework. An
encryption engine that is tailored towards RVAS (e.g., by op-
timizing block sizes) will further reduce the overhead. We
discuss possible optimizations in Section 7.3.

Table 2: Micro-benchmarking results for SERVAS.

cycles median relative to getpid
Syscall getpid 10 353 1.0x
SERVAS SM Call “null” 9 029 0.9x
SERVAS Enter 18 866 1.8x
SERVAS Exit 17 393 1.7x
SERVAS Create 438 841 42.4x
Context Switch Sem. 757 301 73.1x

Furthermore, we evaluate SERVAS using the microbench-
marks shown in Table 2 on CVA6 equipped with RVAS. To
reduce the scheduling- and cache-related differences in the
measurement results, we repeat each test 10 000 times. To get
a sense of the switching overhead of SERVAS, we measure
the number of cycles an eenter/eexit takes and compare

13

it with a simple “getpid” system call. The “null SM call” is
the equivalent of a getpid system call, but instead of calling
into the OS, we invoke the SM. Any SM-related action (e.g.,
eenter/eexit) also includes this baseline overhead for an
SM call. Calling an enclave function only takes 3.5x the time
of a simple system call. This call includes the time for enter-
ing (18 866 cycles), executing a simple function within the
enclave which only returns a fixed value, as well as exiting
(17 393 cycles) the enclave. We implemented a context-switch
benchmark using a semaphore and shared memory for syn-
chronization to compare this with traditional process-based
isolation. Process-based context switching takes 73.1x of a
simple system call. For comparison, entering and exiting an
Intel SGX enclave takes 71x the time of a system call [55],
thus being twenty times slower than invoking a SERVAS
enclave. This result highlights the benefit of SERVAS not
requiring an expensive TLB flush [21, 43] when invoking an
enclave.

7.2 Hardware Overhead
The hardware overhead of RVAS consists of the MEE, the
ISA extension, and the cache with the additional tweak bits.
We synthesize our modified CVA6 for a Xilinx Kintex-7 se-
ries FPGA. Compared to the default CVA6, the design in-
creases by 20.27 % in terms of lookup tables (LUTs) and
19.13 % in terms of flip-flops. From these 20.27 % additional
LUTS, 61.84 % result from the introduced MEE, 37.26 % of
the extended cache, and the rest by the ISA extension. RVAS
requires that each cache line is tagged with 125 bit for the
memory encryption tweak due to CVA6 implementing 39 bit
virtual address spaces. While the tag overhead depends on the
design of the cache and the size of the cache lines, for our 512-
bit cache lines, the overhead is 25 %. However, this overhead
could be reduced using the optimizations in Section 5.5.

7.3 Prototype Limitations
Our RVAS design, as a prototype implementation, is not op-
timized for performance. Due to a lack of openly available
high-performance MEE that support authentication, we used
the MEMSEC [92] framework. As seen in Figure 5a, the MEE
is significantly responsible for the overall performance over-
head. According to ARM, full memory encryption induces a
runtime overhead of 7.5 % to 25 % and a storage overhead of
7.8 % to 26.7 % [75]. Different workloads on Intel SGX may
run up to 3–19x slower [66]. Given recent advances in the
RISC-V community, we also expect high-performance MEEs
to become openly available in the future. Currently, our pro-
totype transparently encrypts the whole external DRAM. An
encryption bypass could selectively disable encryption for
unprotected data and improve the system performance.
Caches. The CVA6 platform we used for the evaluation fea-
tures a write-through cache that slows down write operations

on encrypted memory. Adopting a write-back cache could
significantly improve write performance. In our current proto-
type implementation, every cache line is tagged with the full
tweak, yielding the area overhead mentioned in Section 7.3.
To reduce this storage overhead to a minimum, a dedicated
Tweak Cache, as elaborated in Section 5.5, could be installed.

8 Related Work

Intel SGX [21,64] is a set of instructions to manage and inter-
act with enclaves on the x86 platform. While SGX enclaves
use the same userspace virtual memory as the accompanying
application, the pages, which can be up to 128 MB and are
only accessible by the enclave, are located in the Processor
Reserved Memory (PRM) region in the memory. The PRM
holds the 4 kB pages belonging to the enclave in the Enclave
Page Cache, and the Enclave Page Cache Map (EPCM) is a
trusted metadata storage storing the state of the EPC. In con-
trast to SGX, SERVAS is not limited to a statically allocated
memory region (i.e., the PRM) but dynamically reuses the
whole physical memory for both unprotected code and en-
claves. Furthermore, our approach does not require a trusted
metadata storage such as the EPCM but instead feeds this
metadata directly into the encryption. Finally, SERVAS does
not require flushing of the TLB.
CrypTag [69] assures safety for memory allocations by uti-
lizing the unused upper bits of pointers to supply a tag to a
memory encryption for specific instruction or data accesses.
In contrast, RVAS supports various policies and incorporates
information on the CPU state or specified by a SM (cf. Sec-
tion 3). On the hardware side, RVAS adds all the necessary
logic to enforce these policies. The cache area overhead of
CrypTag is up to 20 %, which is comparable with RVAS.
VAULT [83] aims to reduce the paging overhead by making
the EPC of Intel SGX available to the full system memory.
Unlike SERVAS, VAULT does not overcome the limitation
of SGX regarding efficient shared memory.
SMARTS [94] implements a Memory Protection Unit (MPU)
as a framework that can perform partial memory encryption.
The physical DRAM is partitioned into an untrusted, a trusted,
and a metadata region. In contrast to SMARTS, SERVAS is
not bound to a static boot-time memory configuration and al-
lows fully dynamic management of enclave pages at runtime.
AMD Secure Encrypted Virtualization (SEV) [1,2,25,48]
is a set of CPU extensions to execute virtual machines in
untrusted environments. AMD SEV [1] comprises secure
memory encryption (SME) [25], SEV-encrypted state (SEV-
ES) [48], and SEV-secure nested paging (SEV-SNP) [2]. Com-
bined, they allow for protection against memory replay, data
corruption, memory aliasing, and memory re-mapping attacks.
In contrast to AMD-SEV, SERVAS focuses on enclaves rather
than virtual machines. Moreover, AMD-SEV does not offer
integrity protection against physical attacks.

14

Intel MKTME [44] is a proposal to transparently encrypt
memory pages. Based on the PTE, one out of 64 different
encryption keys can be selected. Similar to SEV, MKTME
does not provide cryptographic authentication. Unlike SEV,
it needs to rely on a trusted hypervisor.
Other systems. Sanctum [22], Keystone [57], CURE [9], and
TrustZone [6] are other recent enclave and TEE designs tack-
ling challenges such as cache-based attacks and enclave-to-
peripheral binding. However, in contrast to SERVAS, all these
designs do not explicitly protect the external memory from
physical attacks using memory encryption.

9 Future Work

We see usage scenarios of RVAS beyond traditional enclaves
to provide, for example, fine-grained intra-enclave isolation,
and system-level enclaves. SERVAS could be used to super-
sede other protection mechanisms such as memory protection
keys [43], pointer authentication [59], pointer tagging [8],
and memory coloring [69]. Furthermore, RVAS presents a
building block that could be used to enable secure virtual-
ization (cf. AMD-SEV) without the need for different en-
cryption keys and with additional protection against physical
attacks. SERVAS specifies a number of configuration reg-
isters on each privilege level. These registers can allow for
additional protection in the kernel by creating kernel-level
enclaves. Our current prototype implementation uses ASCON
as it is a lightweight cryptographic primitive already available
in MEMSEC. However, realizing RVAS with other encryp-
tion primitives, such as AES, would be possible but requires
additional analysis, which we leave open for future work.
Protection against malicious enclaves. While outside the
threat model of enclaves, the host application can be protected
from a potentially malicious enclave [78] using techniques
similar to SGXJail [89]. RVAS’ memory colors could be
leveraged for this purpose.

10 Conclusion

This paper presented an innovative isolation primitive called
authenticryption shield that unifies traditional and advanced
isolation policies and offers potential for future security ap-
plications. We illustrated how it streamlines security reason-
ing by building on top of a tweakable memory encryption
scheme, thus giving cryptographic isolation guarantees. We
demonstrated how the versatility of our approach allowed us
to design and prototype an innovative and novel enclave ar-
chitecture for RISC-V called SERVAS, that even also allows
for native and secure sharing between enclaves. As a generic
extension for the RISC-V ISA and a small Security Monitor,
we showed how SERVAS, at a size of just 1232 LoC, can man-
age all enclaves throughout their life-cycle. Additionally, we
thoroughly assessed SERVAS’s performance and showed that

entering or exiting takes only about 3.5x of a getpid syscall.
We prototyped and evaluated SERVAS on the CVA6 RISC-V
hardware and plan to make the prototype publicly available.

Acknowledgments

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402) and by the Austrian Research Promotion Agency
(FFG) via the competence center Know-Center (grant num-
ber 844595), which is funded in the context of COMET -
Competence Centers for Excellent Technologies by BMVIT,
BMWFW, and Styria. Furthermore, this work has been sup-
ported by the Austrian Research Promotion Agency (FFG)
via the project ESPRESSO, which is funded by the province
of Styria and the Business Promotion Agencies of Styria and
Carinthia.

References

[1] Advanced Micro Devices, Inc. Amd secure encrypted
virtualization (SEV), 2020.

[2] Advanced Micro Devices, Inc. AMD SEV-SNP:
Strengthening vm isolation with integrity protection
and more, 2020.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for CPU based attes-
tation and sealing. In Hardware and Architectural
Support for Security and Privacy – HASP, volume 13,
page 7, 2013.

[4] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta,
Atul Luykx, Bart Mennink, Mridul Nandi, Elmar Tis-
chhauser, and Kan Yasuda. COLM v1. Submission to
the CAESAR Competition, 2016.

[5] Denis Andzakovic. Extracting bitlocker keys from a
tpm, 2019.

[6] Arm Limited. ARM security technology, building a
secure system using TrustZone technology, 2009. Ref.
no. PRD29-GENC-009492C.

[7] Arm Limited. TrustZone technology for ARMv8-M
Architecture, 2017. Ref. no. 100690_0200_00_en.

[8] Arm Limited. Armv8.5-a memory tagging extension,
2020.

[9] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Cure: A security archi-
tecture with customizable and resilient enclaves. CoRR,
abs/2010.15866, 2020.

15

[10] Ian Beer. An iOS zero-click radio proximity exploit
odyssey , 2020.

[11] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The Guard’s
Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In USENIX Security Symposium, pages 1213–
1227, 2018.

[12] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Asia Conference on
Computer and Communications Security – AsiaCCS,
pages 30–40, 2011.

[13] Rick Boivie. SecureBlue++: CPU support for secure
execution, 2020.

[14] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright,
Sizhuo Zhang, Arvind, and Srinivas Devadas. MI6: Se-
cure Enclaves in a Speculative Out-of-Order Processor.
In Symposium on Microarchitecture – MICRO, pages
42–56, 2019.

[15] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza
Sadeghi, Christian Wachsmann, and Patrick Koeberl.
TyTAN: tiny trust anchor for tiny devices. In Design
Automation Conference – DAC, pages 34:1–34:6, 2015.

[16] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A Practical Attack Framework for Precise En-
clave Execution Control. In System Software for
Trusted Execution – SysTEX, pages 4:1–4:6, 2017.

[17] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio
Galletta, Pierpaolo Degano, Jan Tobias Mühlberg, and
Frank Piessens. Provably Secure Isolation for Interrupt-
ible Enclaved Execution on Small Microprocessors. In
Computer Security Foundations – CSF, pages 262–276,
2020.

[18] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-
tematic Evaluation of Transient Execution Attacks and
Defenses. In USENIX Security Symposium, pages 249–
266, 2019.

[19] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In Conference on Computer and
Communications Security – CCS, pages 559–572,
2010.

[20] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux
kernel vulnerabilities: state-of-the-art defenses and

open problems. In Asia-Pacific Workshop on Systems –
APSys, page 5, 2011.

[21] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptol. ePrint Arch., 2016:86, 2016.

[22] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong
Software Isolation. In USENIX Security Symposium,
pages 857–874, 2016.

[23] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-
etz, John Criswell, and Vikram S. Adve. Nested Kernel:
An Operating System Architecture for Intra-Kernel
Privilege Separation. In Architectural Support for Pro-
gramming Languages and Operating Systems – ASP-
LOS, pages 191–206, 2015.

[24] Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. PT-Rand: Practical Mitigation
of Data-only Attacks against Page Tables. In Network
and Distributed System Security Symposium – NDSS,
2017.

[25] Tom Woller David Kaplan, Jeremy Powell. AMD mem-
ory encryption whitepaper v7, 2016.

[26] Ghada Dessouky, Tommaso Frassetto, and Ahmad-
Reza Sadeghi. HybCache: Hybrid Side-Channel-
Resilient Caches for Trusted Execution Environments.
In USENIX Security Symposium, pages 451–468, 2020.

[27] Christoph Dobraunig, Maria Eichlseder, Florian
Mendel, and Martin Schläffer. Ascon v1.2. Submis-
sion to the CAESAR Competition, 2016.

[28] Joshua J. Drake. Stagefright: Scary Code in the Heart
of Android. BlackHat USA, 2015.

[29] EEMBC. Coremark, 2020.

[30] Reouven Elbaz, David Champagne, Ruby B. Lee, Li-
onel Torres, Gilles Sassatelli, and Pierre Guillemin.
TEC-Tree: A Low-Cost, Parallelizable Tree for Effi-
cient Defense Against Memory Replay Attacks. In
Cryptographic Hardware and Embedded Systems –
CHES, volume 4727 of LNCS, pages 289–302, 2007.

[31] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. SMART: Secure and Minimal Ar-
chitecture for (Establishing Dynamic) Root of Trust. In
Network and Distributed System Security Symposium –
NDSS, 2012.

[32] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy,
Dmitry V. Ponomarev, Nael B. Abu-Ghazaleh, and
Ryan Riley. Iso-X: A Flexible Architecture for
Hardware-Managed Isolated Execution. In Sympo-
sium on Microarchitecture – MICRO, pages 190–202,
2014.

16

[33] Dennis Fisher. iOS 13.5.1 Fixes Kernel Zero Day,
2020.

[34] Hex Five. MultiZone security for RISC-V, 2020.

[35] Anders T. Gjerdrum, Robert Pettersen, Håvard D. Jo-
hansen, and Dag Johansen. Performance of Trusted
Computing in Cloud Infrastructures with Intel SGX. In
Conference on Cloud Computing and Services Science
– CLOSER, pages 668–675, 2017.

[36] Dan Goodin. Attackers exploit 0-day vulnerability that
gives full control of Android phones, 2019.

[37] Christian Göttel, Rafael Pires, Isabelly Rocha,
Sébastien Vaucher, Pascal Felber, Marcelo Pasin, and
Valerio Schiavoni. Security, Performance and Energy
Trade-Offs of Hardware-Assisted Memory Protection
Mechanisms. In 37th IEEE Symposium on Reliable
Distributed Systems, SRDS 2018, Salvador, Brazil,
October 2-5, 2018, pages 133–142, 2018.

[38] Johannes Götzfried, Tilo Müller, Ruan de Clercq, Pieter
Maene, Felix C. Freiling, and Ingrid Verbauwhede. So-
teria: Offline Software Protection within Low-cost Em-
bedded Devices. In Annual Computer Security Appli-
cations Conference – ACSAC, pages 241–250, 2015.

[39] J. Alex Halderman, Seth D. Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A. Calandrino,
Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest We Remember: Cold Boot Attacks on
Encryption Keys. In USENIX Security Symposium,
pages 45–60, 2008.

[40] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In USENIX Annual
Technical Conference – USENIX ATC, pages 489–504,
2019.

[41] Mark D. Hill and Alan Jay Smith. Evaluating As-
sociativity in CPU Caches. IEEE Trans. Computers,
38:1612–1630, 1989.

[42] Intel. Improving Real-Time Performance by Utiliz-
ing Cache Allocation Technology: Enhancing Perfor-
mance via Allocation of the Processor’s Cache, 2015.

[43] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer′s Manual, Volume 3 (3A, 3B &
3C): System Programming Guide. (325384), 2016.

[44] Intel Corporation. Intel Architecture Memory Encryp-
tion Technologies Specification. Ref: # 336907-002US.
Rev: 1.2, 2019.

[45] Yeongjin Jang, Jae-Hyuk Lee, Sangho Lee, and Taesoo
Kim. SGX-Bomb: Locking Down the Processor via
Rowhammer Attack. In System Software for Trusted
Execution – SysTEX, pages 5:1–5:6, 2017.

[46] Alexandre Joannou, Jonathan Woodruff, Robert Ko-
vacsics, Simon W. Moore, Alex Bradbury, Hongyan
Xia, Robert N. M. Watson, David Chisnall, Michael
Roe, Brooks Davis, Edward Napierala, John Baldwin,
Khilan Gudka, Peter G. Neumann, Alfredo Mazzinghi,
Alex Richardson, Stacey D. Son, and A. Theodore Mar-
kettos. Efficient Tagged Memory. In International Con-
ference on Computer Design – ICCD, pages 641–648,
2017.

[47] Narjes Jomaa, David Nowak, Gilles Grimaud, and
Samuel Hym. Formal Proof of Dynamic Memory Isola-
tion Based on MMU. In 10th International Symposium
on Theoretical Aspects of Software Engineering, TASE
2016, Shanghai, China, July 17-19, 2016, pages 73–80,
2016.

[48] David Kaplan. Protecting vm register state with SEV-
ES, 2020.

[49] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael
Franz, and Ahmad-Reza Sadeghi. V0LTpwn: Attack-
ing x86 Processor Integrity from Software. CoRR,
abs/1912.04870, 2019.

[50] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin,
Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In International Symposium on
Computer Architecture – ISCA, pages 361–372, 2014.

[51] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In IEEE Symposium on
Security and Privacy – S&P, pages 1–19, 2019.

[52] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential Power Analysis. In Advances in Cryptology
– CRYPTO, volume 1666 of LNCS, pages 388–397,
1999.

[53] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi,
and Vijay Varadharajan. TrustLite: a security architec-
ture for tiny embedded devices. In European Confer-
ence on Computer Systems – EUROSYS, pages 10:1–
10:14, 2014.

[54] Rafal Kolanski. Verification of programs in virtual
memory using separation logic. PhD thesis, University
of New South Wales, Sydney, Australia, 2011.

17

[55] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No Need to Hide: Pro-
tecting Safe Regions on Commodity Hardware. In Eu-
ropean Conference on Computer Systems – EUROSYS,
pages 437–452, 2017.

[56] Nick Kossifidis. Secure boot notes, 2020. E-mail
#288 from the tech-teelists.riscv.org group from 2 June
2020.

[57] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanovic, and Dawn Song. Keystone: an open frame-
work for architecting trusted execution environments.
In European Conference on Computer Systems – EU-
ROSYS, pages 38:1–38:16, 2020.

[58] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Mar-
cus Peinado, and Brent ByungHoon Kang. Hacking
in Darkness: Return-oriented Programming against Se-
cure Enclaves. In USENIX Security Symposium, pages
523–539, 2017.

[59] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan.
PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In USENIX Security Sympo-
sium, pages 177–194, 2019.

[60] Simon Lindenlauf, Hans Höfken, and Marko Schuba.
Cold Boot Attacks on DDR2 and DDR3 SDRAM. In
Availability, Reliability and Security – ARES, pages
287–292, 2015.

[61] Cullen Linn and Saumya K. Debray. Obfuscation of ex-
ecutable code to improve resistance to static disassem-
bly. In Conference on Computer and Communications
Security – CCS, pages 290–299, 2003.

[62] Xu Lu, Bicheng Yang, Erhu Feng, Dong Du, and Yubin
Xia. Penglai enclave, 2020.

[63] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror
Caspi, Simon Johnson, Rebekah Leslie-Hurd, and Car-
los Rozas. Intel Software Guard Extensions (Intel
SGX) Support for Dynamic Memory Management In-
side an Enclave. In Hardware and Architectural Sup-
port for Security and Privacy – HASP, pages 1–9. 2016.

[64] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Hardware
and Architectural Support for Security and Privacy –
HASP, page 10, 2013.

[65] Larry W. McVoy and Carl Staelin. lmbench: Portable
Tools for Performance Analysis. In USENIX Annual
Technical Conference – USENIX ATC, pages 279–294,
1996.

[66] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Wei-
dong Shi. A comparison study of intel SGX and AMD
memory encryption technology. In Hardware and Ar-
chitectural Support for Security and Privacy – HASP,
pages 9:1–9:8, 2018.

[67] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank
Piessens, and Berk Sunar. CopyCat: Controlled
Instruction-Level Attacks on Enclaves. In USENIX
Security Symposium, pages 469–486, 2020.

[68] Kit Murdock, David F. Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens. Plun-
dervolt: Software-based Fault Injection Attacks against
Intel SGX. In IEEE Symposium on Security and Pri-
vacy – S&P, pages 1466–1482, 2020.

[69] Pascal Nasahl, Robert Schilling, Mario Werner, Jan
Hoogerbrugge, Marcel Medwed, and Stefan Mangard.
CrypTag: Thwarting Physical and Logical Memory
Vulnerabilities using Cryptographically Colored Mem-
ory. CoRR, abs/2012.06761, 2020.

[70] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg,
Frank Piessens, Pieter Maene, Bart Preneel, Ingrid Ver-
bauwhede, Johannes Götzfried, Tilo Müller, and Fe-
lix C. Freiling. Sancus 2.0: A Low-Cost Security Ar-
chitecture for IoT Devices. ACM Trans. Priv. Secur.,
20:7:1–7:33, 2017.

[71] James Pallister, Simon J. Hollis, and Jeremy Bennett.
BEEBS: Open Benchmarks for Energy Measurements
on Embedded Platforms. CoRR, abs/1308.5174, 2013.

[72] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software Abstraction for In-
tel Memory Protection Keys (Intel MPK). In USENIX
Annual Technical Conference – USENIX ATC, pages
241–254, 2019.

[73] Travis Peters, Reshma Lal, Srikanth Varadarajan,
Pradeep Pappachan, and David Kotz. BASTION-SGX:
bluetooth and architectural support for trusted I/O on
SGX. In Hardware and Architectural Support for Se-
curity and Privacy – HASP, pages 3:1–3:9, 2018.

[74] Moinuddin K. Qureshi. CEASER: Mitigating Conflict-
Based Cache Attacks via Encrypted-Address and
Remapping. In Symposium on Microarchitecture –
MICRO, pages 775–787, 2018.

18

[75] Avanzi Roberto-Maria. Memory protection for the
ARM architecture, 2020. Presented at Real World
Crypto 2020. Available at https://rwc.iacr.org/
2020/slides/Avanzi.pdf.

[76] Gururaj Saileshwar and Moinuddin K. Qureshi. MI-
RAGE: Mitigating Conflict-Based Cache Attacks
with a Practical Fully-Associative Design. CoRR,
abs/2009.09090, 2020.

[77] David Schrammel, Samuel Weiser, Stefan Steinegger,
Martin Schwarzl, Michael Schwarz, Stefan Mangard,
and Daniel Gruss. Donky: Domain Keys - Efficient
In-Process Isolation for RISC-V and x86. In USENIX
Security Symposium, pages 1677–1694, 2020.

[78] Michael Schwarz, Samuel Weiser, and Daniel Gruss.
Practical Enclave Malware with Intel SGX. In De-
tection of Intrusions and Malware & Vulnerability As-
sessment – DIMVA, volume 11543 of LNCS, pages
177–196, 2019.

[79] André Seznec and François Bodin. Skewed-associative
Caches. In PARLE ’93, Parallel Architectures and Lan-
guages Europe, 5th International PARLE Conference,
Munich, Germany, June 14-17, 1993, Proceedings, vol-
ume 694 of LNCS, pages 304–316, 1993.

[80] Hovav Shacham. The geometry of innocent flesh on
the bone: return-into-libc without function calls (on
the x86). In Conference on Computer and Communi-
cations Security – CCS, pages 552–561, 2007.

[81] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. AEGIS: archi-
tecture for tamper-evident and tamper-resistant process-
ing. In International Conference on Supercomputing –
ICS, pages 160–171, 2003.

[82] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. SoK: Eternal War in Memory. In IEEE Sym-
posium on Security and Privacy – S&P, pages 48–62,
2013.

[83] Meysam Taassori, Ali Shafiee, and Rajeev Balasubra-
monian. VAULT: Reducing Paging Overheads in SGX
with Efficient Integrity Verification Structures. In Ar-
chitectural Support for Programming Languages and
Operating Systems – ASPLOS, pages 665–678, 2018.

[84] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. Phan-
tomCache: Obfuscating Cache Conflicts with Local-
ized Randomization. In Network and Distributed Sys-
tem Security Symposium – NDSS, 2020.

[85] Thomas Unterluggauer, Mario Werner, and Stefan Man-
gard. MEAS: memory encryption and authentication
secure against side-channel attacks. J. Cryptogr. Eng.,
9:137–158, 2019.

[86] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation
with Protection Keys (MPK). In USENIX Security
Symposium, pages 1221–1238, 2019.

[87] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni
Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuf-
frida. Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms. In Conference on Computer and
Communications Security – CCS, pages 1675–1689,
2016.

[88] Andrew Waterman and Krste Asanović. The RISC-
V instruction set manual, volume ii: Privileged archi-
tecture, document version 20190608-priv-msu-ratified,
2019. RISC-V Foundation.

[89] Samuel Weiser, Luca Mayr, Michael Schwarz, and
Daniel Gruss. SGXJail: Defeating Enclave Malware
via Confinement. In Recent Advances in Intrusion
Detection – RAID, pages 353–366, 2019.

[90] Samuel Weiser, Mario Werner, Ferdinand Brasser,
Maja Malenko, Stefan Mangard, and Ahmad-Reza
Sadeghi. TIMBER-V: Tag-Isolated Memory Bring-
ing Fine-grained Enclaves to RISC-V. In Network and
Distributed System Security Symposium – NDSS, 2019.

[91] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting Cache Attacks via Cache
Set Randomization. In USENIX Security Symposium,
pages 675–692, 2019.

[92] Mario Werner, Thomas Unterluggauer, Robert
Schilling, David Schaffenrath, and Stefan Mangard.
Transparent memory encryption and authentication. In
Field Programmable Logic and Applications – FPL,
pages 1–6, 2017.

[93] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak,
Luca Benini, and Gernot Heiser. Prevention of Mi-
croarchitectural Covert Channels on an Open-Source
64-bit RISC-V Core. CoRR, abs/2005.02193, 2020.

[94] Ming Ming Wong, Jawad Haj-Yahya, and Anupam
Chattopadhyay. SMARTS: secure memory assurance
of RISC-V trusted SoC. In Hardware and Architec-
tural Support for Security and Privacy – HASP, pages
6:1–6:8, 2018.

[95] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert M. Nor-
ton, and Michael Roe. The CHERI capability model:

19

https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://rwc.iacr.org/2020/slides/Avanzi.pdf

Revisiting RISC in an age of risk. In International
Symposium on Computer Architecture – ISCA, pages
457–468, 2014.

[96] Hongjun Wu. ACORN v3. Submission to the CAE-
SAR Competition, 2016.

[97] Hongjun Wu. OCB v1.1. Submission to the CAESAR
Competition, 2016.

[98] Hongjun Wu and Bart Preneel. AEGIS: A fast authen-
ticated encryption algorithm v1.1. Submission to the
CAESAR Competition, 2016.

[99] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In IEEE Sympo-
sium on Security and Privacy – S&P, pages 640–656,
2015.

[100] Zhijingcheng Yu, Shweta Shinde, Trevor E. Carlson,
and Prateek Saxena. Elasticlave: An Efficient Memory
Model for Enclaves. CoRR, abs/2010.08440, 2020.

[101] Florian Zaruba and Luca Benini. The Cost of
Application-Class Processing: Energy and Perfor-
mance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology. IEEE
Trans. Very Large Scale Integr. Syst., 27:2629–2640,
2019.

[102] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and
Christos Kozyrakis. Hardware Enforcement of Appli-
cation Security Policies Using Tagged Memory. In Op-
erating Systems Design and Implementation – OSDI,
pages 225–240, 2008.

[103] Jiabin Zhu, Wenchao Huang, and Yan Xiong. For-
mally Verifying Memory Isolation Based on ARM
Processors. In 4th International Conference on Big
Data Computing and Communications, BigCom 2018,
Chicago, IL, USA, August 7-9, 2018, pages 195–200,
2018.

20

A SM API

The SM provides a number of API functions that allow ap-
plications, the OS, or the enclave to interact with the SM.
Therefore, we define the following API functions offered by
our SM:
ecreate is used for loading and initializing an enclave. It
is called with the virtual location of the encrypted enclave
code, its virtual target location, a memory area for the enclave
stack, and two pages used for storing per-enclave and per-
thread metadata. Once invoked, the SM decrypts the enclave
and initializes its stack and metadata pages, using the tweak
override. A hash of the decrypted enclave is stored in the
per-enclave page for later use (e.g., egetsealkey).
eenter is called by the user-mode application with the per-
enclave and per-thread pages generated by ecreate. When
calling eenter, the SM saves relevant CPU registers on the
per-enclave page, initializes the enclave CSRs, and starts the
enclave code at its predefined entry-point.
eexit is called by the active enclave to return to the user
application. Here, the SM restores the register state from
before entering the enclave (apart from return value registers)
and resets the enclave’s CSRs. Finally, the program counter is
set such that the program continues after its last eenter call.
Interruption. When an enclave is interrupted, the SM stores
the enclave register state in its per-thread page, wipes the
registers, and hands over execution to the OS. When the in-
terrupted process invokes eenter again, the SM restores the
saved enclave state and resumes execution.
eprepare makes the SM initialize and zeroes an enclave
page to an enclave-defined page type using the tweak override.
It allows for any page type apart from the PT_MONITOR.
This allows an enclave to initialize pages dynamically allo-
cated by the user-mode application.
edestroy makes the SM destroy a physical enclave page
by choosing an otherwise unused value for the tweak override
before writing the entire page.
emod offers in-place re-encryption of a page. Called with the
virtual address of the page, the old page type, and the new page
type. This call can be used to deliberately change page table
permission bits or to rekey a shared PT_SHDATA page. This
call has to be made if an mprotect or mmap syscall altered
tweak-relevant bits of the PTE. The SM closely follows the
procedure from eprepare, but preserves the pages content.
egetsealkey is used to acquire a deterministic sealing
key derived from the enclave hash and the CPU key. This call
allows the enclave to safely encrypt its secrets for persistent
storage.

B Cache Eviction Probability

Intuitively, the size of a Tweak Cache (TC) and its number of
ways determine its eviction probability. This probability cor-
responds to the likelihood that, e.g., one enclave experiences

self-eviction. To do so, we simulate the eviction probabil-
ity with two experiments as follows: First, we simulate the
probability that at least one tweak is evicted when accessing
a certain number of tweaks in Figure 9. Second, we simu-
late the total eviction probability, i.e., the probability that a
tweak is evicted when accessing a certain number of tweaks
in Figure 11. Both experiments are evaluated with random
set indices for our TC, which approximates the distribution
of the cryptographic index derivation function. We use TCs
with capacities of 32 and 128 entries and one to eight ways.
We repeat each experiment 10000 times. As seen in Figure 9
and Figure 11, the eviction probability of a tweak entry can
be significantly reduced by increasing the number of ways or
increasing the number of possible tweak entries.

To put this into perspective, we assume that one enclave
uses 6 tweaks, and we can accept a total eviction probability
for our system of only 5 %. With parameters in mind, we can
run roughly 2 enclaves in parallel on a system with a small TC,
i.e., with only 32 entries and 2 ways, with low probability of
the enclaves interfering with each other, as seen in Figure 10a.
On the larger configuration in Figure 10b with 128 entries
and 4 ways, about 11 enclaves could run with the same low
eviction probability.

C Detailed Evaluation Results

Figure 12 shows the individual results of the BEEBS bench-
mark suite when run on RVAS, compared to the MEMSEC
encryption engine we used. Both are normalized relative to an
unprotected implementation (i.e., without enclaves or memory
encryption).

21

0 5 10 15 20 25 30
Number of tweaks to cache

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

pr
ob

ab
ilit

y
(a

t l
ea

st
 1

 tw
ea

k)

Set-associative (tweak) cache with 32 entries

S=8, W=4
S=16, W=2
S=32, W=1

(a) TC with 32 entries.

0 20 40 60 80 100 120
Number of tweaks to cache

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

pr
ob

ab
ilit

y
(a

t l
ea

st
 1

 tw
ea

k)

Set-associative (tweak) cache with 128 entries

S=16, W=8
S=32, W=4
S=64, W=2
S=128, W=1

(b) TC with 128 entries.
Figure 9: The probability of evicting at least one entry for tweak caches with 32 or 128 entries and 1, 2, 4 or 8 ways.

0 5 10 15 20 25 30
Number of tweaks to cache

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l e
vi

ct
io

n
pr

ob
ab

ilit
y

Set-associative (tweak) cache with 32 entries

S=8, W=4
S=16, W=2
S=32, W=1

(a) TC with 32 entries.

0 20 40 60 80 100 120
Number of tweaks to cache

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l e
vi

ct
io

n
pr

ob
ab

ilit
y

Set-associative (tweak) cache with 128 entries

S=16, W=8
S=32, W=4
S=64, W=2
S=128, W=1

(b) TC with 128 entries.
Figure 11: The total eviction probability for tweak caches with 32 or 128 entries and 1, 2, 4 or 8 ways.

22

ah
a-

co
m

pr
es

s
ah

a-
m

on
t6

4 bs
bu

bb
le

so
rt

cn
t

co
m

pr
es

s
co

ve
r

cr
c

ct
l-

st
ac

k
ct

l-
st

ri
ng

ct
l-

ve
ct

or
cu

bi
c

di
jk

st
ra

dt
oa

du
ff

ed
n

ex
pi

nt fa
c

fa
st

a
fd

ct
fib

ca
ll fir

fr
ac

hu
ff

be
nc

h
in

se
rt

so
rt

ja
nn

e
co

m
pl

ex
jf

dc
tin

t
lc

dn
um

le
ve

ns
ht

ei
n

m
at

m
ul

t-
in

t
m

er
ge

so
rt

m
in

iz
m

in
ve

r
nb

od
y

nd
es

ne
ttl

e-
ae

s
ne

ttl
e-

ar
cf

ou
r

ne
ttl

e-
ca

st
12

8
ne

ttl
e-

de
s

ne
ttl

e-
m

d5
ne

ttl
e-

sh
a2

56
ne

w
lib

-e
xp

ne
w

lib
-l

og
ne

w
lib

-m
od

ne
w

lib
-s

qr
t

ns
ns

ic
hn

eu
pi

co
jp

eg
pr

im
e

qr
du

in
o

qs
or

t
qu

rt
re

cu
rs

io
n

se
le

ct
sg

lib
-a

rr
ay

bi
ns

ea
rc

h
sg

lib
-a

rr
ay

he
ap

so
rt

sg
lib

-a
rr

ay
qu

ic
ks

or
t

sg
lib

-d
lli

st
sg

lib
-h

as
ht

ab
le

sg
lib

-l
is

tin
se

rt
so

rt
sg

lib
-l

is
ts

or
t

sg
lib

-q
ue

ue
sg

lib
-r

bt
re

e
sl

re
sq

rt
st

at
em

at
e

st
b

pe
rl

in
st

ri
ng

se
ar

ch
1

st
rs

tr
ta

ra
i

te
m

pl
at

e
tr

io
-s

np
ri

nt
f

tr
io

-s
sc

an
f

ud
w

he
ts

to
ne

w
ik

is
or

t

0

5

10

15

20

25

30

N
or

m
al

iz
ed

M
ed

ia
n

R
un

tim
e

Beebs Benchmark

MEMSEC
RVAS

Figure 12: Individual results of the BEEBS benchmark
suite, normalized to an unprotected implementation.

23

	1 Introduction
	2 Challenges of Memory Isolation
	2.1 Process Isolation
	2.2 In-Process Isolation
	2.3 Enclaves
	2.4 Memory Encryption

	3 RISC-V Authenticryption Shield (RVAS)
	3.1 rvas tweak design
	3.2 Solving the Challenges

	4 SERVAS
	4.1 Overview
	4.2 Threat Model
	4.3 Building Enclaves

	5 SERVAS Implementation Details
	5.1 Instruction Set Extension Details
	5.2 Tweak
	5.3 Page types
	5.4 Security Monitor (SM)
	5.5 Caching
	5.6 Encryption Bypass Optimization

	6 Security Analysis
	6.1 Side-channel Attacks and Defenses
	6.2 Attacks on Physical Memory
	6.3 Attacks on Virtual Memory

	7 Evaluation
	7.1 Performance Overhead
	7.2 Hardware Overhead
	7.3 Prototype Limitations

	8 Related Work
	9 Future Work
	10 Conclusion
	A sm API
	B Cache Eviction Probability
	C Detailed Evaluation Results

