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Abstract. Disclosure of data analytics results has important scientific
and commercial justifications. However, no data shall be disclosed with-
out a diligent investigation of risks for privacy of subjects. Privug is a
tool-supported method to explore information leakage properties of data
analytics and anonymization programs. In Privug, we reinterpret a pro-
gram probabilistically, using off-the-shelf tools for Bayesian inference to
perform information-theoretic analysis of the information flow. For privacy
researchers, Privug provides a fast, lightweight way to experiment with
privacy protection measures and mechanisms. We show that Privug is
accurate, scalable, and applicable to a range of leakage analysis scenarios.

1 Introduction

However high the value of data becomes, we cannot ignore the risks that data
disclosure presents to personal privacy. Consequently, general privacy protection
methods like differential privacy [18], comprehensibility and communication of
privacy issues [32], industrial processes for data management [22], and debugging
and analyzing privacy risk problems in program code [11,12,9] have become
intensive areas of research. This paper falls into this last group; we present
tools for data scientists who create data analysis programs and would like to
disclose the results of the computation. Our primary goal is to create a method
that supports a privacy debugging process, i.e. assessing effectiveness of such
algorithms, and indeed of any calculations on the data, for concrete programs and
datasets, in the style of debuggers. We want to help identifying and explaining
the leakage risks, as the first step towards eliminating them.

As an example, consider the following Scala program that, given a list of
names and ages, computes the mean age of the persons in a map-reduce style:

1 def agg (records: List[(String,Double)]): Double =
2 records.map { (n, a) => (a, 1) }
3 .reduce { (x, y) => (x._1 + y._1, x._2 + y._2) }
4 .map { (sum, count) => sum / count }
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Employment – Hı̄kina Whakatutuki through Smart Ideas project No. UNIT1902.

ar
X

iv
:2

01
1.

08
74

2v
5 

 [
cs

.C
R

] 
 1

1 
A

ug
 2

02
1



2 R. Pardo et al.

Let the age of each individual be the sensitive secret in this example. One attack
could be that underage individuals can be identified. An analyst would like to
ask: How much of sensitive information leaks when the mean is disclosed? In
what situations is this leak not ignorable? What kind of attackers may discover
the secret by observing the mean?

Privug is an analysis method for privacy risks in data processing. A data
analyst using Privug models an attacker’s knowledge about the secret as a
probability distribution. Privug re-interprets the program as an information
transformer that operates on distributions instead of concrete inputs. The analyst
analyzes the attacker’s confidence about the secret, using a combination of
probability queries, standard information-theoretic measures, and visualizations.
She explores and assesses the information leakage to the result of the program by
varying attacker knowledge, the queries and the leakage measures. For our example,
the analyst may learn that the leakage is ignorable if the subjects are drawn from
general population, but if the attacker knows that they come from a homogeneous
group, she could, for example, conclude that a specific individual is under age.

Since Privug is based on probabilistic reasoning, it can be facilitated by
probabilistic programming, a lively field in data science, with many tools available.
Privug is not tied to any particular probabilistic programming framework. In
this paper, we implement queries, measures, and visualization in Figaro [34] and
PyMC3 [39]. For programs seen as functions, a probabilistic programming frame-
work can automatically build a Bayesian model which represents the information
transform. This transform supplemented by a model of attacker can be used to
explore re-identification risks [14].

Privug offers three distinct advantages over state of the art tools for privacy
risk analysis: (i) It focuses on the analysis of programs not data, which means
that a what-if analysis can be performed before data is available, or without
authorizing access to a sensitive database. (ii) It is largely automatable using
off-the-shelf systematic Monte-Carlo inference tools already used by data analysts,
but which have not been used for this purpose before. (iii) Privug is easy to
extend with new estimators of leakage thus serves as a good test-bed for privacy
mechanism research. To the best of our knowledge, Privug as a method and
probabilistic programming as a platform are the only basis that can offer such
versatility at this point. Our contributions include:

1. A widely applicable and extensible method, Privug, to analyze privacy risks.
The first such method based on probabilistic programming frameworks.

2. An implementation of Privug in Figaro and PyMC3, the first versatile tool
supporting such a wide range of measures over continuous and discrete inputs
and outputs.

3. An empirical evaluation of the accuracy, scalability, and applicability of
Privug for analyzing systems of different size and complexity, showing that
probabilistic programming is an excellent base for implementing leakage
analysis tools.

We evaluate applicability, accuracy, and scalability of Privug, using well known
privacy mechanisms (differential privacy, k-anonymity, naive anonymization)
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name zip birthday sex diag.

Alice 2300 15.06.1954 F ill

Bob 2305 15.06.1954 M healthy

Carol 2300 09.10.1925 F healthy

Dave 2310 01.01.2000 M ill

ano−−→

zip birthday sex diag.

2300 15.06.1954 F ill

2305 15.06.1954 M healthy

2300 09.10.1925 F healthy

2310 01.01.2000 M ill

zip birthday sex diag.

2300 15.06.1954 F ill

2305 15.06.1954 M healthy

2300 09.10.1925 F healthy

2310 01.01.2000 M ill

⊕

name zip birthday sex

Mark 2450 30.09.1977 M

Rose 2870 24.12.1985 F

Alice 2300 15.06.1954 F

Dave 2310 01.01.2000 M

 Alice
is ill

Fig. 1: Privacy violation: The data is anonymized (ano), then the diagnosis of
Alice is recovered by an attacker who links the result with another data set (⊕).

name age

Alice 42
Bob 25
Carol 25
Dave 25

agg−−−→ 29.25 ⊕

name age

Alice N (40,3)
Bob N (23,10)
Carol N (23,10)
Dave N (23,10)

 
Alice’s
age is
N (41,2.5)

Fig. 2: Privacy violation: The program computes a mean of ages, the mean
is released, but an attacker with prior knowledge can reduce the uncertainty
regarding Alice’s age.

and synthetic cases that can be scaled up for higher dimensionality and using.
Our experiments demonstrate Privug’s versatility to realize many analysis
scenarios, and its interoperability with existing tools (by integrating exter-
nal estimators). The source code and experiment data is available at https:
//bitbucket.org/itu-square/privug-experiments. The repository contains addi-
tional experiments showing the use of Privug in a realistic case study: an
experiment using the differential privacy library OpenDP (https://opendp.org/).

2 Overview

We consider data disclosure programs seen as functions that transform an input
dataset to an output. The output is then disclosed to a third party, called an
attacker. The aggregation example agg from the introduction translates a database
with two columns: name (String) and age (Double) to a number representing
mean age which is then published. The second running example, ano, anonymizes
medical records in a dataset. The input data has five columns: name, zip code,
birthday, sex, and diagnosis. The program simply drops the name column, before
the data is released to an attacker:

https://bitbucket.org/itu-square/privug-experiments
https://bitbucket.org/itu-square/privug-experiments
https://opendp.org/
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1 def ano (records: List[(Name,Zip,Day,Sex,Diag)]): List[(Zip,Day,Sex,Diag)] =
2 records.map { (n, z, b, s, d) => (z, b, s, d) }

Suppose that in the anonymization example, subjects have not consented to
disclosure of their diagnosis. Despite anonymization, the diagnosis of individuals
may be revealed by a linking attack (see Fig. 1). If an attacker has access to
a dataset with zip codes, birthdays, sex, and, crucially, names, a simple join
could reveal the names of the individuals from the disclosed medical records.
Zip code, birthday, and sex form a quasi-identifier in both datasets. (Sweeney
famously joined medical records disclosed by the Group Insurance Commission
with a voter registration list to reveal the health record data of the then-governor
of Massachusetts [41].) Similarly, suppose that in the aggregation example (agg)
users have not consented that their age is disclosed. Despite the disclosed data
being an aggregate, it carries some information about individual ages. If you knew
that Alice is around 40, as modeled by a Normal distribution in Fig. 2, then after
learning the average, your uncertainty decreases: the final mean age raises, and
the standard deviation decreases, making extreme values of Alice’s age less likely.

Privug aims to help data scientists investigate the information revealed to an
attacker from the output of a program. We frame this scenario as an adversarial
problem. We assume a threat model in which an information theoretical attacker
has some prior knowledge about the input, has access to the program code, and
observes the output. There are no bounds on the computational resources avail-
able to the attacker when analyzing the posterior knowledge to learn information
about the secret input, e.g., probability of an outcome or event.

We model this scenario using probabilistic programming. First, we build a
probabilistic model of the prior knowledge of the attacker. Intuitively, the prior
of the attacker captures what she knows, with (un)certainty, about the input of
the program before observing the output. We then express the attacker’s view
of the program, by transforming the program to operate on probabilistic models
of datasets instead of actual data. We do this by lifting the algorithm into the
probability monad [35]. Next, we introduce observations modeling the concrete
output of the program that the attacker sees. Observations constrain the prior of
the attacker and produce the posterior knowledge of the attacker, i.e., what the at-
tacker knows about the input. We use Bayesian inference to estimate the posterior,
Figaro for Scala [34] and PyMC3 [39] for Python, but many other probabilistic
frameworks can be used (Pyro [3], Tensorflow Probability [17], Anglican [42], etc.).
Finally, we analyze the posterior to quantify how much the attacker learns by ob-
serving the output. This lets us determine whether specific attackers are capable of
learning specific things, to assess the risk of disclosing the output of the program.

3 Privug

We present each step of the Privug method in detail. We model disclosure prob-
lems probabilistically and express models directly in a probabilistic programming
language to enable automatic analysis. Let D(X) denote a distribution over a
set X. We write x ∼ D(X) to denote that random variable x is distributed
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according to D(X); thus x ∼ U(0, 10) means that x is uniformly distributed from
0 to 10. In a programming language, this corresponds to x = Uniform(0,10). We
also use composition operators of the language to define y in terms of x, define
a distribution over datasets, and so on.

Step 1: Attacker Knowledge (Prior). We model the prior knowledge of an attacker
as a probability distribution over the possible input values of the program. In
the agg program the input ranges over an array of pairs (name,age). There-
fore, attacker prior knowledge is defined as a distribution over lists of pairs,
D(List[(String,Double)]). Consider the following two examples of attackers:

kal The knows-a-lot attacker knows that the input dataset contains exactly four
rows and that the age of all individuals, except Alice, is 55.2. This is modeled
by distributions C(4) for the size and C(55.2) for the age column.

kab The knows-just-a-bit attacker knows that the input has approximately hun-
dred entries (|records| ∼ B(300, 1/3), a binomial distribution), and that the
average age of an individual in the list is 55 (distributed with N (55.2, 3.5)).

Both attackers know that Alice’s record is in the dataset, and that no other record
in the dataset has that name. They do not know anything about Alice’s age up-
front: all ages from 0 to 100 are equally likely, a uniform distribution U(0, 100). Im-
plementations of kal and kab are shown below, the differences highlighted in bold.
Here, Element[T] denotes a distribution over T, and FixedSizeArrayElement[T]
denotes a distribution over fixed-but-unknown-size arrays of Ts. When sampled,
kab yields an array of random size, containing (String,Double) pairs. The first
pair represents Alice.

1 def prior_kal: FixedSizeArrayElement[(String,Double)] =
2 VariableSizeArray (Constant (4), i => for
3 n <- if i==0 then Constant ("Alice") else Uniform (names: _*)
4 a <- if i==0 then Uniform (0,100) else Constant (55.2)
5 yield (n, a))

7 def prior_kab: FixedSizeArrayElement[(String,Double)] =
8 VariableSizeArray (Binomial (300, 0.3), i => for
9 n <- if i==0 then Constant ("Alice") else Uniform (names: _*)

10 a <- if i==0 then Uniform (0,100) else Normal (55.2,3.5)
11 yield (n, a))

Step 2: Attacker Prediction (Program). We obtain the attacker’s prediction of
the output of running a program by transforming—i.e. lifting—the program
to operate on distributions instead of concrete datasets, and applying it to the
attacker model. Let D(X) denote the set of distributions on set X. Since distribu-
tions form a monad [35], several useful functions are well defined on distributions,
including lift that, here, has type

lift :
(
A→ B

)
→
(
D(A)→ D(B)

)
.
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A function from A to B becomes a function from distributions over A to distri-
butions over B. Recall that the type of agg is List[(String, Double)]→ Double.
The lifting of agg has type: D(List[(String, Double)])→D(Double). In Figaro:

1 def agg_p (records: FixedSizeArrayElement[(String,Double)]): Element[Double] =
2 records.map { (n, a) => (a, 1) }
3 .reduce { (x, y) => (x._1 + y._1, x._2 + y._2) }
4 .map { (sum, count) => sum / count }

Note that only types change;D is Element in Figaro, and FixedSizeArrayElement[T]
is an efficient implementation of D(List[T]). For a distribution over input datasets,
agg_p yields a distribution over average ages (Double). Running agg_p on a prior
modeling the attacker’s knowledge yields the attacker’s prediction of the aver-
age age. Formally, the distribution of the output (the attacker prediction) is
defined as P(o) =

∫
x
P(o|x)P(x)dx. Appendix A describes the semantic details

of computing P(o).

Step 3: Attacker Observation. We use observations to condition the attacker’s
prediction of the output. Since the prediction depends on the prior, conditioning
it conditions the prior, and updates the attacker’s knowledge about the input.
We write P(x |E) to denote the conditional distribution of x given evidence E.
Let x ∼ D(X), the evidence E is a predicate over X. For instance, we write
P(x | 4 < x < 8) to denote the conditional distribution where only the outcomes x
in the interval (4; 8) are possible. We use conditions to model attacker observations
of the output. For our aggregation example, to assert that the attacker observes
55.3, we define the predicate E as (x : Double) => (55.295<=x && x<55.305) as
evidence on the prediction. The observation is typically known as likelihood
function [26], and it is modeled as a distribution (denoted as P(E|x)) assigning
high probability to the values satisfying E. For instance, for the observation
above we define P(E|x) equals 1/0.005 for 55.295 ≤ x ≤ 55.305 and 0 otherwise.
In Scala, the predicate E is written as an anonymous function stating that the
output is within 0.005 from 55.3. We cannot assert that the output is exactly
55.3, since the output space is continuous; each individual outcome occurs with
probability zero. In Figaro, we set E on prediction o with o.setCondition(E).

Step 4: Attacker Posterior. We use Bayesian inference to compute the updated
attacker’s knowledge upon the observation. We put together the elements of our
model using the Bayes rule as follows:

P(x, o |E)︸ ︷︷ ︸
posterior

= P(E |x, o)︸ ︷︷ ︸
observation

·
prediction︷ ︸︸ ︷

P (o|x) · P(x)︸ ︷︷ ︸
prior

·P(E)−1 (1)

Our goal is to use the attacker prior P(x) (step 1), attacker prediction P(x, o) =
P(o|x)P(x) (step 2), and observation P(E|x, o) (step 3) to compute the posterior
knowledge P(x, o|E). Note that the equation above is expressed in terms of the
joint distribution of the random variables for input x and output o. The marginal
distributions can be obtained by integrating out the corresponding variables.
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kal kab kal kab

Expectation E[a|o ≈ 55.3] 55.60 64.000 Standard deviationσ[a|o ≈ 55.3] 0.01 14.00

Probability query P(a|o ≈ 55.3) 0.00 0.004 Shannon Entropy H(a|o ≈ 55.3) −3.08 5.83

KL-divergence DKL(a|o ≈ 55.3 || a) 5.64 0.770 Mutual Information I(a; o) 9.37 0.60

Table 1: Posterior analysis summary. Results of each measure for the two attackers.

We use Markov Chain Monte Carlo (MCMC) methods [37] to estimate the
posterior distribution by generating samples from a probabilistic program. MCMC
algorithms are simulation methods that efficiently generate samples from the high
density intervals of the target distribution, in our case P (x, o|E). We refer the
interested readers to Robert and Casella [37] for details. We consider only termi-
nating programs; as no samples can be generated from non-terminating programs
using these methods. We remark that MCMC methods do not require computing
or specifying the normalization factor P(E)−1. Their convergence conditions are
well-known [21], but the number of samples determines their accuracy. In Sect. 4,
we evaluate the accuracy and efficiency of several MCMC methods for this appli-
cation. In Figaro, we use the MCMC algorithm importance sampling [34]. Let a
and o denote Alice’s age and the outcome in the aggregation example. If we define
the evidence E = “o ≈ 55.3” on the prediction as above, Importance(10000, a)
produces 10000 samples that estimate the distribution P(a | o ≈ 55.3).

Step 5: Leakage (Posterior Analysis). We analyze the posterior distribution to
investigate what the attacker learns. Table 1 shows an overview of analyses for
the agg example. Using multiple measures gives a multi-perspective analysis for
complex problems.

To query the probability P(x |ϕ) of a random variable x satisfying a predicate
ϕ, in Figaro we write alg.probability(x,ϕ) where alg is the inference algorithm.
Other available queries estimate the histogram of the attacker’s posterior, its
expectation, and variance. The probability query allows to estimate whether an
attacker learns a fact, effectively encoding a knowledge-based security policy
check (Sect. 5). The strengths of an attack checking if Alice is underage in the
agg example is captured by the query: P (a<18 | o≈55.3). The prior probability
of a<18 is 0.17. It reduces to 0.004 for kab and to 0 for kal in the posterior. Both
attackers can conclude that Alice is an adult. To visualize information gain, we
plot the kernel density estimates [40]. Figure 4m plots the age of Alice in the
prior P (a) and the posterior P(a | o≈55.3) for kal. Figure 4n shows the same for
o = agg_p(prior_kab). The plots confirm that kal can make stronger conclusions
than kab; the posterior of the former is taller and narrower than the one of
the latter; note the y-axis scale. The uniform prior has expected value E[a]≈50
and standard deviation σa≈29. As listed in Tbl. 1, the posterior expectation
increases to 55.60 for kal with standard deviation 0.01: kal effectively learns a
from the output. For kab the posterior has larger standard deviation (14), so
kab’s uncertainty about the age of Alice is greatly reduced, yet remains high.
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Moving beyond measuring and visualizing probability, we quantify attacker’s
learning using quantitative information flow measures: entropy, KL-divergence,
mutual information, and Bayes risk. These and other measures are added to
Privug as libraries, which estimate the corresponding measure using the samples
of the MCMC algorithm of Step 4.

Shannon’s entropy quantifies the uncertainty about the value of a random
variable (e.g., [30,24]). A decrease in entropy from prior to posterior signifies an in-
crease in knowledge. Entropy (in bits) is defined as H(x) =

∑
x∈X P(x) log2 P(x)

for discrete random variables. Since Privug works with an inferred distribution,
we estimate the entropy using the classic algorithm [1], which is known to be
accurate and easy to implement. In the agg example, the entropy of a in the prior
is H(a) = 6.67 bits. At the same time, the conditional entropy of a in the posterior
for kab is H(a | o ≈ 55.3) = 5.84 bits. The attacker gained 0.83 bits of information
about the age of Alice. For kal, the posterior entropy is H(a | o ≈ 55.3) = −3.08.
Here the difference is 9.75bits, twelve times more than what kal learned. (The
entropy of a continuous variable (replace

∑
with

∫
above), differential entropy,

can be negative [1].) Clearly, kal is an example of an attacker able to amplify the
disclosed information thanks to its additional pre-existing knowledge—a situation
often referred to as a linking attack. The ability of kab in this respect is much
weaker. Privug allows experimenting with the attacker space in this way, to
let the data controller understand what attacks are successful, and then assess
whether they are of concern.

Relative entropy [28] or KL-divergence measures how much two distribu-
tions differ. In Bayesian inference, the KL-divergence of a posterior P (x) and
a prior Q(x), defined as DKL(P || Q) =

∑
P (x) log2(P (x)/Q(x)), expresses the

amount of “information lost when Q is used to approximate P ” [6, page 51]. Thus,
KL-divergence is a measure of information gained by revising one’s knowledge
of the prior to the posterior. As with entropy, since we are working with an
inferred distribution, we can estimate KL-divergence from samples. We use the
algorithm by Wang et al. [43]. For the aggregation example, the KL-divergence
between the posterior and prior of a is a measure of the amount of informa-
tion that the attacker gained about Alice’s age by observing the output of
the program. For kab, DKL(a | o ≈ 55.3 || a) = 0.77. For kal, on the other hand,
DKL(a | o ≈ 55.3 || a) = 5.64. These results indicate that the observation yields
an information gain of 0.77 bits for kab and 5.64 bits for kal. More important
is the difference; kal gains over 7 times more information than kab. In Sect. 4
we show how KL-divergence can be used to measure utility when programs add
noise to their output.

Mutual information between two random variables x, y, defined as I(x; y) =∑
y∈Y

∑
x∈X P(x, y) log2(P(x, y)/P(x)P(y)), measures the reduction of the un-

certainty of x by the knowledge of y [15]. We estimate I(i; o) where i is a secret
input and o a public output (the attacker’s prediction) to quantify how much
information o shares with i. Mutual information is well studied as a quantita-
tive information flow measure (cf. Sect. 5). A privacy protection mechanism
typically aims at minimizing I(i; o). In Privug, we use the mutual information
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estimator [25] provided by SKlearn [33] for continuous variables and LeakiEst [11]
for discrete variables. In our example, we have I(a; o) = 9.37 bits for kal and
I(a; o) = 0.60 bits for kab. This is consistent with our intuition: when the attacker
knows everything about the input except for Alice’s age, observing the output
greatly reduces their uncertainty.

Privug can incorporate estimators of other measures. In Sect. 4 we show
that other tools can be incorporated on the example of F-BLEAU [9], to estimate
Bayes risk—the expected probability of an attacker guessing a secret (s) by
observing the output of the program (o); formally: 1−

∑
o∈Omaxs∈S P(o|s)P(s)

for random variables s and o [2].

This way we determine if specific attackers are capable of learning secrets, and
assess whether disclosing the output of the program poses a privacy risk. Figure 3
gives an overview of the steps in the Privug method. Privug’s intended users
are data analysts with knowledge in statistics and probabilistic modeling. These
users are typically trained in probabilistic programming, an essential part of
their toolbox (e.g., [21]). This makes it easy to perform steps 1, 3, and 4. Step 2
typically requires simply updating the datatypes of the input (as in agg and ano).
The analyst may, however, need to change the program to ensure differentiability,
or replace some operators with their probability counterparts. These are the
same techniques that data analysts use to create advanced probabilistic models
and analyses. Step 5’s probability queries, visualizations, and distribution statis-
tics such as expected value or variance, are likewise familiar to data analysts.
The interpretation of leakage does, however, require privacy-specific expertise
(information theory, quantitative information flow).

The results and conclusions drawn do depend on the to choice of prior.
The prior models what an attacker knows about the input of the program, the
secondary knowledge that linked with the observed output can lead to privacy
violations. The analysis may report no leakage if priors do not reflect the real infor-
mation that an attacker has access to. Ideally, priors should be informed from real
world data. For instance, if the program takes as input a set of records of US citi-
zens, then it is advisable to inform priors from publicly available sources, e.g., the
US census. Alternatively, probabilistic programming frameworks can be used to
automatically learn underlying distributions from data with better accuracy than
simply using the empirical distributions [21]. For mutual information and mul-
tiplicative Bayes capacity (a derived measure from Bayes risk, it has been shown
that running the analysis with uniform priors uncovers leakage if it exists, see [13,
Theorem 4] and [2, Theorem 7.2]. This result can be used with good effect to detect
leakage, but not to estimate its magnitude, which can be estimated using Privug.

4 Evaluation

RQ1: Can Privug analyze common privacy mechanisms? We analyze
three (modern and traditional) privacy mechanisms in Privug. The purpose is
twofold: i) Demonstrate the applicability of Privug, and ii) Serve as templates
for data analysts.
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Attacker knowledge

PRIOR

Program to analyze

DISCLOSURE
PROGRAM

Attacker observation
about the output

OBSERVATION

- Attacker prediction
- Updated knowledge 

POSTERIOR

input assert infer
42

- Visualization
- Probabilistic queries
- Entropy
- KL-divergence
- Mutual Information
...

POSTERIOR
ANALYSIS

analyze

Modeling phase (Probabilistic Model) Analysis phase

Fig. 3: Overview of the steps in Privug method.

Differential Privacy. Consider a company computing the mean income of em-
ployees with agg and releasing the output publicly. To protect the anonymity
of employees, they add Laplacian noise to the output; a popular mechanism to
enforce differential privacy [18,19]. We use Privug to explore trade-offs between
privacy protection and data utility by varying the values of parameters. We assume
a dataset of 200 incomes. The company have previously released some data on 195
of the 200 incomes, so it is publicly known that they are between $80k and $90k
(U(80, 90)). There are 5 new employees of which no income information is known
(U(10, 200)). The program to analyze is an extension of agg that adds Laplacian
noise to the output: o ∼ agg+ L(0, ∆agg/ε) where ∆agg denotes the sensitivity.
This is known to preserve ε-differential privacy [19, Thm. 3.6]. Sensitivity captures
the magnitude by which a single entry can change the output. The program with
the mechanism incorporated takes as input the epsilon (ε) and a set of records,
returning the average income. The implementation in Figaro after lifting is:

1 def dp_agg (epsilon: Double, records: FixedSizeArrayElement[(String,Double)]) =
2 val delta = Constant(200.0)/records.length
3 val lambda = Constant(epsilon)/delta
4 val X = continuous.Exponential(lambda)
5 val Y = Flip(0.5) // <– Bernoulli
6 val laplaceNoise = If(Y, X*Constant(-1.0), X)
7 agg(records) ++ laplaceNoise

Since the maximum income is 200k, the sensitivity (delta) is 200/|records|. We con-
struct the Laplace distribution from an exponential and a Bernoulli distributions
in lines 2–6 using a standard construction. Line 7 adds the noise to the result of agg.

The Laplacian mechanism includes a notion of accuracy to quantify utility (e.g.,
[19, Thm 3.8]). Unconventionally, we opt for measuring utility as KL-divergence
between the output with noise (o) and without (ro). The reason is that KL-
divergence can be applied to any method based on perturbing the output of the
program (demonstrating broad applicability of our currently-supported measures).
High KL-divergence indicates low utility as it represents loss of information wrt.
the noiseless output. Maximum utility is achieved when KL-divergence equals 0.
We observe in Fig. 4o an exponential decay of KL-divergence as ε increases, consis-
tent with the intuition that small values of ε result in high noise and reduced utility.
The graph suggests that decrements in ε for ε < 0.5 may impact utility strongly.

Now we evaluate how ε influences the flow of information from the income of
new employees (si) to the output (o). Mutual information is 0 if one is independent
of the other (i.e. no information flow). Figure 4p plots mutual information for
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Fig. 4: Analysis results. Naive Anonymization: Quasi-identifier analysis (a) zip,
(b) day, (c) sex, (d) zip+sex, (e) day+sex, (f) zip+day, (g) zip+day+sex. Large
datasets: (h) zip+day, (i) zip+day+sex. Sensitive attribute analysis: (j) Chance
of learning that governor is ill if 5 share his zip. k-anonymity: Number of
rows matching governor’s attributes (k = 2): (k) sex, (l) any other attribute
combination. Aggregate example: Prior and posterior knowledge of age of Alice
(distributions): (m) kal, (n) kab. Differential privacy : (o) Utility, (p) Mutual
Information, (q) Probability Queries. Convergence of Privug. (r) Probability
query (Continuous), (s) Mutual Information (Continuous), (t) Probability query
(Discrete). Comparison w/ LeakWatch: Probability queries (u) Discrete P10000(o =
10000), (v) Continuous P(8,1)(o < 55). Mutual Information (w) Discrete P500

in LeakiEst, (x) Discrete P1000 in LeakiEst, (y) Continuous P(8,1) in SKlearn.
Bayes Risk: (z) Discrete P500 in F-BLEAU, (aa) Discrete P1000 in F-BLEAU.
Scalability of Privug. Inference time: (ab) Continuous random variables,
(ac) Discrete random variables. Time complexity on f(arr,c): (ad) Increasing
n ∈ (102, 105) for O(n), (ae) Increasing c ∈ (1, 4) for O(20c). Comparison
w/ LeakWatch: (af) P(8,1).
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different values of ε. The dashed line shows the baseline, i.e. mutual information
when the output has no added noise. This shows mutual information increases
linearly with ε.

Finally, we use a probability query to evaluate the effect of ε on statistical
information that an attacker can learn about the new members in the dataset.
Differential privacy does not focus on protecting this type of information—it
focuses on protecting the presence of a record in the dataset. Yet it is useful to
quantify the effect of the noise on attacker knowledge. Suppose running dp_agg
with ε=0.5 yields 85k as a result. Suppose privacy regulations disallow revealing
income data without employee consent. The company would like to determine,
whether revealing this result could breach the regulation. In Privug, we analyze
the distribution P (si | o ≈ 85) to determine this. Figure 4q shows the distri-
butions for different values of ε. The dashed line marks the baseline, i.e., the
probability distribution before the observation. The blue line corresponds to the
run with ε=0.5. Since this line is not parallel with the baseline, there is evidence
of an increase in knowledge. The other lines show that any ε > 0.1 increases the
knowledge about the salary of the new employees. Consequently, releasing the
average 85k computed using ε = 0.5 will result in a violation of the regulation.

In summary, we have discovered that releasing the average income 85k with
ε > 0.1 reveals information about the salary of new employees. Thus, for ε = 0.5,
the company must seek consent from employees. Mutual information increases
linearly with ε, and for ε < 0.5 is notably low. Utility exhibits an exponential
decay as ε decreases. This decay is especially pronounced with ε < 1, showing
the impact of the added noise on utility.

Naive Anonymization We quantify how strongly an attacker can determine the
diagnosis of an individual (the governor) by observing the output of ano from
Sect. 2. Though this mechanism has well-known privacy flaws, it is still commonly
used. Thus, we illustrate how Privug is used to effectively find these flaws. First,
we define the prior. In Figaro:

1 def p : FixedSizeArrayElement[(Name,Zip,Day,Sex,Diag)] =
2 VariableSizeArray (Constant (1000), i => for
3 n <- if i==0 then Constant (GNAME) else Uniform (names:_*)
4 z <- if i==0 then Constant (GZIP) else Uniform (zips:_*)
5 b <- if i==0 then Constant (GDAY) else Uniform (days:_*)
6 s <- if i==0 then Constant (GSEX) else Uniform (Male,Female)
7 d <- if i==0 then Constant (GILL) else If (Flip (.2), Ill, Healthy)
8 yield (n,z,b,s,d))

Name is an identifier for an individual. For the sake of clarity, we assume that Zip,
Day and Sex are non-sensitive attributes, and Diag is sensitive. Name, Zip, Day and
Sex are uniformly distributed, and Diag is Ill with probability 0.2. The first row
in the dataset is fixed, containing the governor’s record. The prior fixes a dataset
size of 1000 records.

The lifted version of ano follows. Note that, compared to ano, only the type
changed.
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Query Prob. naive Prob. 14k Prob. k-ano

P(∀r∈D · r.z= GZIP =⇒ r.d= Ill) .02000 .00 .0

P(∀r∈D · r.b= GDAY =⇒ r.d= Ill) .00006 .00 .0

P(∀r∈D · r.s= GSEX =⇒ r.d= Ill) .00000 .00 .0

P(∀r∈D · r.z= GZIP∧r.b= GDAY =⇒ r.d= Ill) .96000 .51 .0

P(∀r∈D · r.z= GZIP∧r.s= GSEX =⇒ r.d= Ill) .16000 .00 .0

P(∀r∈D · r.b= GDAY∧r.s= GSEX =⇒ r.d= Ill) .01800 .00 .0

P(∀r∈D · r.z= GZIP∧r.b= GDAY∧r.s= GSEX =⇒ r.d= Ill) .98000 .71 .0

Table 2: Probability of learning governor’s diagnosis.

1 def ano_p (records : FixedSizeArrayElement[(Name,Zip,Day,Sex,Diag)]) =
2 records.map { (n, z, b, s, d) => (z, b, s, d) }

First, we assess re-identification risk. We check whether an attacker can
uniquely identify an individual’s row using quasi-identifiers, which enables linking
attacks. We inspect subsets of attributes to determine how uniquely they identify
subjects. We query for the probability of a certain number x of rows in the
output satisfying a predicate ϕ, where ϕ models which attributes we want to
match with the governor. For example: probability(x,(v:Int) => v == 5), where
x = output.count(ϕ), yields the probability that there are 5 such rows (x = 5).
Figures 4a to 4g show the results. The governor is most likely to share zip code
with ~5 rows, and sex with ~500 rows. With more attributes (e.g. zip+day,
zip+day+sex) it becomes likely that only the governor’s record has those values.
Disclosing those together thus poses significant re-identification risk.

Next, we assess positive disclosure risk [29]: Can the attacker determine the
diagnosis of an individual (w/o necessarily identifying its row)? Consider the
following property of datasets, ∀r ∈ D · ψ(r) =⇒ r.d = Ill, which stipulates
that all records satisfying ψ are ill. We instantiate ψ in various ways; with
ψ(r) = (r.z = GZIP), the property stipulates that all records with the governor’s
zip code are ill. We compute the probability that this property holds for the
anonymized dataset by issuing a forall query on the posterior. Column 2 in
Tbl. 2 displays the result. Like in the original case study [41], we conclude that
with access to the governor’s zip code, birthday, and sex (last row), an attacker
can determine the diagnosis of the governor with high probability (98%). Unlike
in the original study, we concluded this for all datasets satisfying our prior model.

We assess whether the dataset size affects our risk analyses. We re-run quasi-
identifier and positive disclosure analyses for a dataset size of 14000—closer
to Sweeney’s [41]. This probabilistic model contains 70000 random variables (5
variables per row, 14000 rows). Our results (cf. Fig. 4i) are close to those orig-
inally reported [41]: There is a 71% probability that no other record shares the
governor’s zip code, birthday, and sex. For zip code and birthday (cf. Fig. 4h) the
probability is 51%. Positive disclosure analysis shows a decrease in the probability
of learning the diagnosis (column 3 in Tbl. 2). These results indicate that, for
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this program and prior, increasing the size of the dataset does not uncover new
privacy risks (in fact, smaller datasets are more vulnerable).

Finally, we assess how certain the attacker is about the governor’s diagnosis.
Say the dataset contains 5 records with the governor’s zip code (cf. Fig. 4a).
Suppose that out of those 5 people, k are ill. Then the probability of the governor
being ill is k/5. Notably, if all 5 are ill, then the attacker is certain that the
the governor is ill. This corresponds to the query P( output.count(ϕ ∧ ψ) = k |
output.count(ϕ) = 5 ), where ϕ and ψ are predicates; ψ is true iff the record is
ill, and ϕ iff it has the governor’s zip code. We use setCondition to observe that
output.count(ϕ) = 5. Figure 4j shows the result. The first bar (0.2) reflects the
prior probability, so there is 50% chance that the attacker learns nothing from an
actual data set. However, there is a 50% chance that the belief of an attacker in
a positive diagnosis grows: 0.4 with 35% probability, etc. This demonstrates that
Privug can not only reason about the risk of an attacker learning something
with certainty, but about decrease of uncertainty as well.

k-anonymity We analyze an algorithm that produces a k-anonymous dataset of
health records. That is, for any combination of attributes, at least k rows in the
dataset share those attribute values [41]. This case study illustrates the use of
Privug for a non-trivial program with quadratic complexity. In terms of privacy
analysis, we compare the results of running the program with k = 2 to those of
naive anonymization above.

We start by presenting the prior and program. We use the same prior as
ano_p above, but with a dataset size of 500 records (due to sampling performance,
see RQ3). As for the program, we implemented k_ano, which takes as parameter k
and a dataset, and outputs a k-anonymous dataset. The lifted version of k_ano has
type (lift k_ano) : D(Int, List[(Name,Zip,Day,...)])→ D(List[(Zip,Day,...)]).
Due to space contraints, we refer interested readers to our code repository for
implementation details.

We analyze re-identification and positive disclosure risks. Figure 4k shows
that the number of records in the output dataset matching the governor’s sex in
the input, is like we saw before (cf. Fig. 4c), save for the rare (~3.5%) occasion
where sex was part of some quasi-identifier. In those instances, k_ano masked
Sex, replacing everyone’s Sex with * to enforce 2-anonymity. Figure 4l shows that
for any other attribute combination, none of the records in the output share
those attribute values with the governor’s values from the input. Thus, k_ano
always mask Zip and Day. Regarding positive disclosure, the risk of learning the
governor’s diagnosis is 0 for any attribute combination (column 4 in Tbl. 2), since
k_ano always mask Zip and Day.

In summary, k_ano eliminates disclosure risk compared to ano. However, k_ano
destroys most (or all) utility; when Sex also gets anonymized, then only the
distribution on Diag remains (which is public). With Privug, an analyst can
thus investigate the privacy-utility tradeoff of changes made to a program, and
compare programs for disclosure risk.
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RQ2: Does Privug produce accurate results? How fast does it con-
verge? We study the convergence and accuracy of Privug for continuous and
discrete variables, as the type of variables affects convergence—different methods
are used for the continuous and discrete case [21]. The goal is to confirm that
Privug’s results are accurate, and check how effective the sampling methods are
for the leakage estimation problem. In total, we have successfully driven five differ-
ent estimators with Privug samples derived from program code and priors: prob-
ability queries (continuous and discrete), mutual information (SKlearn, LeakiEst),
Bayes Risk (F-BLEAU). All the estimators behaved as expected, Privug con-
verges to correct results (dashed black lines in the plots of Fig. 4 represent ground
truth obtained in a pen-and-paper analysis). Furthermore, Privug meets and ex-
ceeds performance of the main competing sampler for programs, LeakWatch [12],
without inheriting some of its disadvantages: It is not bound to a single execution
environment (JVM), it is naturally extensible with probabilistic programming
ecosystem, and it is much more lightweight (very little code is required).

In all these experiments, 5000 samples give accurate results (except for Leaki-
Est that requires >500k samples for large domain spaces). This is reassuring
regarding the validity of experiments executed for RQ1. We generated 10k sam-
ples for dp_agg and ano; sufficient to obtain accurate results. For 14k dataset size
with ano and k_ano, we only generated 1000 samples, due to the long running
time. Still, since we only used discrete probability queries there, 1000 samples
shall approximate the correct result well (Fig. 4t). Below we provide key details
on the experiments leading to the above conclusions.

We start with continuous problems and the most popular sampler for such
(NUTS [23], Hamiltonian). We use a program that computes the average o of
random variables s, p1, ..., p200 distributed as s∼N (42, σs) and pi ∼N (55, σp).
We vary σs and σp to control sample dispersion. We check how many samples
are needed to accurately answer probability and mutual information queries.
Figure 4r shows the accuracy for the probability query P (o<55) for σs=8, σp=1
and σs=σp=20, labeled as P(8,1) and P(20,20) in the graph. The error is below
0.01 after 5000 samples in both cases. Increasing the dispersion does not impact
convergence. We also estimate mutual information for P(8,1). After 5000 samples
the estimation error drops below 0.02 (Fig. 4s). The mutual information estimator
of SKlearn uses k-nearest neighbour distance, but we observe no significant impact
when varying k. For discrete variables, we use a program that adds two input
variables x, y ∼ U(0, n) giving the output o ∼ x+y, and sample with Metropolis
algorithm, the method of choice for discrete problems (Importance sampling
performs comparably). Figure 4t shows accuracy of the probability query P (o=n)
with n=100, 1000. After 5000 samples the estimation error drops below 0.01 for
both values of n, indicating that the support of x and y does not significantly
impact convergence. We evaluate convergence of mutual information for this case
using LeakiEst. Less than 5000 samples suffice for LeakiEst to converge. Finally,
we also check the convergence of Bayes risk estimation using the state-of-the-art
F-BLEAU estimator [9] driven by Metropolis sampling in Privug. As few as
1000 samples suffice for F-BLEAU to converge.
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We make LeakWatch, the most similar work to Privug, drive the same
estimators as above and compare with Privug. LeakWatch does not directly
support continuous inputs or Bayes risk. We have extracted the sample sets
generated by LeakWatch and manually implemented the queries. We test the
same estimators with LeakWatch as above. Figures 4u and 4v show convergence
of probability queries for the discrete system with an input domain of size 10000,
P10000, and for the continuous system, P(8,1). Figures 4z and 4aa show convergence
using F-BLEAU to estimate Bayes risk. Figures 4w and 4x show the convergence of
using LeakiEst to estimate mutual information. For continuous random variables,
we use the SKlearn estimator (Fig. 4y). In all these cases except for mutual
information queries (Figs. 4w and 4x), the two samplers perform comparably.
Strikingly, in Fig. 4x, Privug needs 300k fewer samples to start converging; much
less than LeakWatch which has been specifically designed to work with LeakiEst!

RQ3: Does Privug scale? Does program complexity impact running
time? We evaluate how long it takes for NUTS (continuous) and Metropolis (dis-
crete) samplers to produce two chains of 10000 samples for synthetic programs of
increasing size. As the efficiency of MCMC sampling depends on the dimensional-
ity of the domain, we use the example from RQ2, but scaled up to 20000 variables
(continuous: (s+p1+p2+. . .+p20000)/20001, and discrete: x+y1+y2+. . .+y20000).
This number permits modeling large and complex systems. We include several re-
alistic programs in the scalability experiment: naive anonymization, k-anonymity
and differential privacy, see RQ1 details. Figures 4ab and 4ac show the data
points measured. The blue line overlays the main tendency of the measurements,
black points correspond to the above synthetic programs, and the remaining
symbols refer to the realistic programs. We run the experiments on a machine
with 8x1.70GHz cores, 16GB RAM, except for the two experiments with naive
anonymization, which have been run on 8x3.60GHz machine with 32 GB RAM.

Execution time of synthetic programs in Fig. 4ac follows a linear trend. The
red point corresponds to the naive anonymization case with 5000 variables.
This data point follows the linear trend of synthetic programs, with run-time
exceeding 2h. Interestingly, inference for continuous variables is more efficient,
as Hamiltonian samplers can leverage continuity to generalize faster [23]. We can
generate samplers for a model with 20000 random variables in around 40 minutes
(Fig. 4ab). Notably, the differential privacy case exhibits particularly low execution
time (red in Fig. 4ab), consistent with the trend of the synthetic examples. The
purple and orange triangles correspond to the naive anonymization with a dataset
of size 14k, and to the k-anonymity case, respectively. To account for low sampling
performance, we generated only 1000 samples for each and scaled the time linearly
to place it in the graph. Both cases took over 5h (80h after scaling).

The k-anonymity program is an interesting outlier: even with a small database
of 500 entries. The exponential k-anonymity algorithm used to produce each
sample dominates the cost of inference. This leads us to ask how the subject
program impacts the execution time of Privug. We use the Metropolis sampler
in this experiment, since it performed slower above. To this end, we use a program
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Capabilities
Supported Quantitative

Information Flow Measures

input output

dis
c.
con

t.
dis

c.
con

t.
ex

ac
t
sa

mpli
ng

est
im

at
ion

KSP en
tro

py

min-
en

tro
py

mut
ua

l-i
nf

Bay
es-

ris
k

KL-
div

erg

LeakiEst [11] 3 3 3 set of samples 3 3 3

F-BLEAU [9] 3 (3)a 3 3 set of samples 3 3 3

SPIRE [27] 3 3 custom:PSI 3 3

DKBP [31] 3 3 custom:Polyhedra 3 3

QUAIL [5] 3 3 custom:QUAIL 3 3

HyLeak [4] 3 3 custom:QUAIL2.0 3 3 3 3

LeakWatch [12] 3 (3)b 3 3 Java 3 3 (3)b (3)c (3)b,c

Privug (this work) 3 3 3 3 Java/Scala/Python ? 3 3 3 3 (3)c (3)c (3)c 3

Table 3: Overview of leakage quantification tools. Legend: KSP = knowledge-
based security policy; custom = custom input language; aCherubin [8] lays the
foundation to handle continuous input but this has not been implemented; bwe
show how to handle continuous and discrete KSP and mutual information with
LeakWatch in Sect. 4—this was not demonstrated originally [12]; cvia integrated
3rd party tools (F-BLEAU/LeakiEst/SKlearn) and pmf estimation for discrete
input/output. ? = not studied.

f(arr , c) ,
∑

0..c

∑
i∈arr i with running time O(nc) for n = |arr | (see our code

repository for the implementation). Increasing n and c induces linear and exponen-
tial growth respectively. We compare the running time of generating 10000 samples
with f in Privug against 10000 executions of f without Privug. Figure 4ad and
4ae show similar execution times for both. Thus the execution time of Privug
is dominated by the number of samples requested and the cost of running the
subject program, but the Metropolis sampler itself incurs no significant overhead.

Finally, we compare the scalability of Privug and LeakWatch, by measuring
the execution time to generate 20000 samples for P(8,1) with increasing number of
variables. Figure 4af shows that up to 9000 variables, both perform comparably
well—with Privug slightly faster. However, LeakWatch crashes from out-of-
memory errors on cases with more than 10000 variables. In contrast, Privug
exhibits much better scalability; it runs out of memory after 30000 variables.

In summary, Privug can handle complex programs without introducing ma-
jor overhead over the subject program’s running time. Privug scales better than
LeakWatch, making it better fit for larger systems and more complex priors. This
is largely due to probabilistic programming frameworks being heavily optimized
by the data science community. We thus advocate use of these framework in
information leakage research.

5 Related Work and Concluding Remarks

We have shown that probabilistic programming with Monte-Carlo Bayesian
inference is a promising basis for implementing privacy risk and data leakage
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analyses. Privug analyses follow a well-defined architecture: modeling attackers,
extracting models by lifting programs, and using a state-of-the-art sampler
to drive an estimator. We know of no similarly broad competing framework
to compare against. Several tools exist to quantify leakage using probabilistic
reasoning. Table 3 provides a detailed comparison. The first 4 columns specify the
type of input/output variables; Privug fully supports discrete and continuous
distributions (unlike existing tools that mostly focus on discrete variables). The
fifth column indicates whether the tool works on a (externally generated) set
of samples, a custom specification language or a general purpose programming
language; Privug works directly on general purpose programming languages.
Columns 6-8 indicate whether the tool can perform exact analytical inference,
sample from distributions (e.g., via naive sampling or MCMC), or can estimate
leakage measures; in Privug we can perform all of these, but we have not studied
exact inference in this paper. The last 6 columns show whether the tools support
the corresponding measures; all of them are supported by Privug (unlike any
other existing tool). In the following, we discuss the existing tools in two groups,
white- and black-box. These tools are highly-specific; they feature a design and
architecture of samplers and estimators highly optimized for a single purpose.
In contrast, the idea of Privug is to build on a broad platform of probabilistic
programming, which has not been used for this purpose before, and to reuse as
many components as possible to provide a comprehensive assessment of a program.

Black-box methods estimate leakage by analyzing a set of input/output pairs of
the system. LeakiEst [11] estimates min-entropy [36] and mutual information [15]
using frequentist statistics, i.e., counting the relative frequency of the outputs
given inputs. F-BLEAU [9] and its generalization [38] use nearest neighbor clas-
sifiers to estimate Bayes risk [7] and g-leakage [2]. Classifiers can exploit patterns
in the data and scale better than LeakiEst for large output spaces. Black-box
tools require a set of independent and identically distributed samples over inputs.
Obtaining such a sample is not easy as discussed by Chothia et al. [12]. Privug
automates this process, obtaining synergy with black-box methods in two ways:
(i) black-box methods can be used easily within Privug (Sect. 4); (ii) black-box
methods can leverage the well-studied sampling mechanisms [37] used in Privug
to produce the set of samples they work on. Section 4 shows that LeakiEst con-
verges faster using Privug than with LeakWatch for mutual information queries.

White-box methods exploit the source code of the program to compute leakage
analytically or via sampling. We distinguish white-box methods working on custom
specification languages from those working on general purpose programming lan-
guages. Custom specification languages are languages designed for program anal-
ysis and are typically not directly executable. Mardziel et al. introduce abstract
probabilistic polyhedra to capture attacker beliefs, and define transformations
over the polyhedra to analytically obtain the revised belief of the attacker after ob-
serving an output of the program [31]. They are able to check whether queries to a
database violate a knowledge-based security policy. SPIRE [27] uses the symbolic
inference engine PSI [20] to analytically compute the updated beliefs of an attacker
given an observation. Then, it uses Z3 [16] to verify whether a knowledge-based
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security policy holds. QUAIL performs forward state exploration of a program to
construct a Markov chain capturing its semantics, which is then used to compute
mutual information [5]. HyLeak is an evolution of QUAIL to use hybrid statistical
estimation [4]. The method works on the control flow graph of the program. It first
uses several symbolic reductions to simplify the program, then applies standard
statistical reasoning via sampling. These works support programs with discrete in-
puts and outputs. In contrast, Privug handles discrete and continuous inputs and
outputs. In principle, it also allows obtaining analytical solutions, e.g., using vari-
able elimination (in Figaro) [34] but we have not explored this. Unlike HyLeak, we
do not reduce the program graph, but Hamiltonian samplers compute gradients of
the model (probabilistic program) to improve sampling effectiveness. QUAIL com-
putes mutual information; HyLeak computes mutual information and Shannon
entropy. Others support only analysis of knowledge-based security policies [31,27].

Privug is, perhaps, the first work whose goal is supporting estimation of
many measures for programs written not in custom specification languages, but
in general purpose programming languages (Python, Scala, and Java via the Scala
interface). LeakWatch samples a Java program and uses LeakiEst to estimate
mutual information and min-entropy leakage [12]. There are several differences be-
tween Privug and LeakWatch. First, Privug uses efficient and scalable Bayesian
inference methods as opposed to LeakWatch that relies on direct sampling from
target distributions. We found that the Bayesian methods used in Privug scale
better (Sect. 4). We also found that LeakiEst, the estimator LeakWatch was
designed for, converges faster when using Privug’s samples (Sect. 4). Bayesian
inference is proven to be very effective in the presence of conditions [37], which
are not directly available in LeakWatch. Second, LeakWatch relies on its users
to select appropriate Pseudo-Random Number Generators (PRNGs). The au-
thors recommend java.security.SecureRandom [10], which only support sampling
from uniform and normal distributions. In contrast, probabilistic programming
frameworks (used in Privug) support a wide range of probability distributions
with high quality PRNGs. This emphasizes another key contribution of this
work for leakage research: It is beneficial to build on top of strong statistical
and probabilistic platforms over custom solutions, with Bayesian probabilistic
programming being one such platform.
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A Programs as Models

This section is aimed at readers who wish to gain insight into the semantic
underpinning of Privug. The main idea is that probability distributions form a
monad [35]; we interpret a program as a probabilistic model by mapping it into
said monad.

Language Our language is the untyped lambda calculus, extended with data
constructors (à la ML and Haskell), and case expressions to eliminate them.
We define expressions, ranged over by e ∈ Exp, inductively. e ::= x | λx . e |
e e | K e | case K e e where x ∈ Var ranges over variables, λx . e denotes
abstraction, and e e application. Data constructors are ranged over by K ∈ Con,
e is a (possibly empty) list of expressions, and K e1 · · · ek denotes an expression
constructed by K and containing e1 through ek. Finally, case K e eF performs
pattern-matching, matching for expressions constructed by K.

Semantics: Computation An expression can be seen as defining a computation.
Each computation step of an expression involves a reduction defined as follows,

x →ε ε(x ) (2)
e e ′′ →ε e

′ e ′′ , if e →ε e
′ (3)

v e →ε v e ′ , if e →ε e
′ (4)

(λx . e) v →ε e[x 7→ v ] (5)
(case K e eF) (K e1 · · · ek)→ε e e1 · · · ek (6)
(case K e eF) v →ε eF , if v 6= K e (7)

This transition relation (→ε) : Exp×Exp, specifies how an expression reduces,
small-step, towards an irreducible expression, i.e. a value v ∈ Val = {e | e X→} ⊆
Exp. The relation is parameterized by an environment ε ∈ Env = Var→ Val,
which assigns free variables to values (2). Before an application is performed,
the operator and its operand are reduced to a value, in that order (3) (4). If
the operator is an abstraction, then the application yields its body, with (free)
occurrences of the variable it binds replaced with the operand (5). If the operator
is of the form case K e eF, then application pattern-matches the operand. If the
operand is K e, then the application yields e applied to the expressions in e (6).
Otherwise, application yields eF (pattern-matching failure) (7).

Semantics: Probabilistic Model In probabilistic programming, a program defines
a probabilistic model. Likewise, an expression in our language can be viewed as
defining a probabilistic model.

First, we present Monad-Lift. We define the probabilistic model that an
expression describes in terms of the computation semantics. This definition relies
on the observation that D is a monad, a fact described in detail by Ramsay and
Pfeffer [35]. By virtue of being a monad, the following two functions are defined
for D: return : A→ D(A) and (>>= ) : D(A)→ (A→ D(B))→ D(B) Here, A
and B are arbitrary sets. Concretely, the functions are polymorphic in A and B.
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So, return maps each element of A, to a distribution on A. Concretely, return a
is simply the so-called Dirac-measure concentrated at a:

(return a) A =

{
1 , if a ∈ A
0 , otherwise.

Suppose you have random variables a and b, and that we know their dis-
tributions P(a) and P(b|a). Then you can compute P(b) by marginalizing
out a in P(b|a) ∗ P(a). This is what (>>= ) does; in P(b) = (P(a)>>=P(b|a))
with (P(a)>>=P(b|a)) B =

∫
A
(λa .P(B|a) ∗ P(a))da. These functions have

been used to implement a whole host of functions for monads. One of these
functions is the standard monad lift operation. lift : Monad M ⇒ (A →
B) → M A → M B and lift f m = m>>= ( λ x . return (f x) ). With types
lift : (Env→ Val)→ D(Env)→ D(Val), we see that lift looks very much like
dist from before. The main advantage of using lift is that we can use monad
laws, and other results proven for monads, to reason about it, and thus, about
distributions. So, like before, the probabilistic model that e describes is simply
(lift JeK) : D(Env)→ D(Val).

Example 1. Let f = λ xy . (x+ y)/2 be a simplified version of the program agg
which computes the average of two numbers x and y. Let {0, 1, 2}2 be a set of
environments (Env) where the first element of the pair defines the value of x and
the second the value of y in f . Let P (x, y) = U({0, 1, 2}2) be a discrete distribution
over environments which allocates the same probability to all environments—this
distribution corresponds to the prior. Then, lift JfK P(x, y) defines the prediction
P(o). Here we show the steps to compute P(o = 2) via monad-lift.

P(o = 2) = P(x, y)>>= ( λ xy . return (f xy) ) {2}

=
∑

(x,y)∈{0,1,2}2
(λ xy . return (f xy) {2}) P(x, y)

=
∑

(x,y)∈{(0,2),(1,1),(2,0)}

(return f x y) {2} · P(x, y) = 1 · 1/9 + 1 · 1/9 + 1 · 1/9 = 3/9

We replace the
∫

to
∑

because the prior is discrete.

One drawback of this semantics is that it ignores the structure of the prob-
abilistic model. Alternatively, one can build the structure of the probabilistic
model embedding the expressions of our programming language in the D monad:

JxKε = ε(x )

Jλx . eKε = return ( λv . JeKε[x 7→return v ] )

Je e ′Kε = JeKε >>= λf . Je ′Kε >>= λv . f v

JK e1 · · · ekKε = Je1Kε >>= λv1 . · · ·
JekKε >>= λvk . return ( K v1 · · · vk )

Jcase K e eFKε = return ( λv . case v of

K x1 · · · xk => JeKε >>= λf .f x1 · · · xk
_ => JeFKε )
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Here, ε : Var→ D(Val). It is important to note that, whereas e.g. JxKε : D(Val),
the type for denotated abstractions is different; Jλx . eKε : D(Var→ D(Val)).
Also note the 7→ in the denotation of abstractions; x stores a distribution. With
this, JeK : D(Env)→ D(Val) is the probabilistic model that e describes.
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