Skip to main content

A Residual Dynamic Graph Convolutional Network for Multi-label Text Classification

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Abstract

Recent studies often utilize the Graph Convolutional Network (GCN) to learn label dependencies features for the multi-label text classification (MLTC) task. However, constructing the static label graph according to the pairwise co-occurrence from training datasets may degrade the generalizability of the model. In addition, GCN-based methods suffer from the problem of over-smoothing. To this end, we propose a Residual Dynamic Graph Convolutional Network Model (RDGCN) (https://github.com/ilove-Moretz/RDGCN.git) which adopts a label attention mechanism to learn the label-specific representations and then constructs a dynamic label graph for each given instance. Furthermore, we devise a residual connection to alleviate the over-smoothing problem. To verify the effectiveness of our model, we conduct comprehensive experiments on two benchmark datasets. The experimental results show the superiority of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sourceforge.net/projects/meka/.

References

  1. Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. ESWA 39(2) (2012)

    Google Scholar 

  2. Kumar, A., et al.: Ask me anything: dynamic memory networks for natural language processing. arXiv Pre-Print 97 (2015)

    Google Scholar 

  3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  4. Elisseeff, A., Weston, J., et al.: A kernel method for multi-labelled classification. In: NIPS, vol. 14, pp. 681–687 (2001)

    Google Scholar 

  5. Gopal, S., Yang, Y.: Multilabel classification with meta-level features. In: Crestani, F., Marchand-Maillet, S., Chen, H., Efthimiadis, E.N., Savoy, J. (eds.) SIGIR, pp. 315–322. ACM (2010)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Huang, X., Chen, B., Xiao, L., Jing, L.: Label-aware document representation via hybrid attention for extreme multi-label text classification. arXiv preprint arXiv:1905.10070 (2019)

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  10. Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: NAACL, June 2016

    Google Scholar 

  11. Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9267–9276 (2019)

    Google Scholar 

  12. Liu, J., Chang, W., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text classification. In: Kando, N., Sakai, T., Joho, H., Li, H., de Vries, A.P., White, R.W. (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 7–11 August 2017, pp. 115–124. ACM (2017). https://doi.org/10.1145/3077136.3080834

  13. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  14. Pal, A., Selvakumar, M., Sankarasubbu, M.: MAGNET: multi-label text classification using attention-based graph neural network. In: ICAART (2), pp. 494–505 (2020)

    Google Scholar 

  15. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: EMNLP, October 2014

    Google Scholar 

  16. Qin, K., Li, C., Pavlu, V., Aslam, J.: Adapting RNN sequence prediction model to multi-label set prediction. In: ACL, pp. 3181–3190 (2019)

    Google Scholar 

  17. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text categorization. Mach. Learn. 39(2–3), 135–168 (2000)

    Article  Google Scholar 

  18. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehousing Mining (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  19. Xiao, L., Huang, X., Chen, B., Jing, L.: Label-specific document representation for multi-label text classification. In: EMNLP-IJCNLP, November 2019

    Google Scholar 

  20. Yang, P., Sun, X., Li, W., Ma, S., Wu, W., Wang, H.: SGM: sequence generation model for multi-label classification. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3915–3926. Association for Computational Linguistics, Santa Fe, August 2018. https://www.aclweb.org/anthology/C18-1330

  21. You, R., Dai, S., Zhang, Z., Mamitsuka, H., Zhu, S.: AttentionXML: extreme multi-label text classification with multi-label attention based recurrent neural networks (2018)

    Google Scholar 

  22. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  23. Zhang, W., Yan, J., Wang, X., Zha, H.: Deep extreme multi-label learning. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, pp. 100–107 (2018)

    Google Scholar 

  24. Zhou, J., et al.: Hierarchy-aware global model for hierarchical text classification. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1106–1117 (2020)

    Google Scholar 

  25. Zong, D., Sun, S.: GNN-XML: graph neural networks for extreme multi-label text classification. arXiv preprint arXiv:2012.05860 (2020)

Download references

Acknowledgement

This research is supported by the National Natural Science Foundation of China under the grant No. 61976119 and the Natural Science Foundation of Tianjin under the grant No. 18ZXZNGX00310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B. et al. (2021). A Residual Dynamic Graph Convolutional Network for Multi-label Text Classification. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13028. Springer, Cham. https://doi.org/10.1007/978-3-030-88480-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88480-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88479-6

  • Online ISBN: 978-3-030-88480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics