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Abstract

To quantitatively and intuitively explore the
generalization ability of pre-trained language
models (PLMs), we have designed several
tasks of arithmetic and logical reasoning. We
both analyse how well PLMs generalize when
the test data is in the same distribution as
the train data and when it is different, for
the latter analysis, we have also designed a
cross-distribution test set other than the in-
distribution test set. We conduct experiments
on one of the most advanced and publicly re-
leased generative PLM - BART. Our research
finds that the PLMs can easily generalize when
the distribution is the same, however, it is still
difficult for them to generalize out of the dis-
tribution.

1 Introduction

Neural networks have shown strong capabilities
in a range of NLP tasks (Sutskever et al., 2014;
Vaswani et al., 2017). Recently, pretrained lan-
guage models (PLMs) have achieved significantly
levels of performance gains on many benchmark
datasets (Devlin et al., 2019; Lewis et al., 2020a;
Radford et al., 2019). Recently, some work
shows that neural networks are lack of generaliza-
tion ability in mathematical and logical reasoning
(Nogueira et al., 2021; Madsen and alexander rosen-
berg johansen, 2019). This can lead to more un-
derstanding of the limitation of existing models
and motivate future work. However, no work has
been done to quantitatively or intuitively explore
the conditions under which PLMs can generalize,
in terms of whether PLMs can understand the in-
ternal mathematical rules and logical rules. The
example of mathematical rules is shown in Figure 1.
We suppose that if the model can effectively learn
the underlying rules of Addition and Subtraction

∗The corresponding author

Figure 1: Example mathematical rules for Addition and
Subtraction. If the model can master these rules, we
suppose it can generalize well on all two-number addi-
tion and subtraction samples.

when giving sufficient training data, it can gener-
alize to all two-number addition and subtraction
calculation.

To this end, we conduct quantitative insights by
designing a series of tasks for simple mathematical
operations and logical reasoning, which includes
numbering, addition, subtraction, comparison, and
symbolic logic. We construct a set of correspond-
ing datasets, where instances are in the form of
text or mathematical expressions. Some examples
are shown in the next section. For example, in the
Addition task, ‘100 + 200’ is the question and ‘300’
is the answer.

There are various types of generalization
(Linzen, 2020; Lake and Baroni, 2018), such
as question generalization on distribution differ-
ences between training set and test set (Wallace
et al., 2019), and answer generalization on distri-
bution differences between training set and test set
(Nogueira et al., 2021). For example, in the Ad-
dition task, if the question and answer numbers
in training data are of three-digit, but the question
and answer numbers in the testing data are of two-
or four-digit, they are in different distribution. To
cover each type of generalization, we use different
kinds of tasks and corresponding dataset. For ex-
ample, we use addition to test the generalization on
the question distribution differences data between
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Figure 2: The Numbering task has two subtasks,
namely Counting and Listing.

training and testing. In this task, the numbers in
the training set and development have three digits.
However, the numbers in test set is set to consist of
two, three, and four digits.

We conduct experiments using BART (Lewis
et al., 2020a) since they can generate arbitrary text
sequences and have been shown to achieve the state-
of-art results on numerous Natural Language Pro-
cessing (NLP) tasks. For each task, we fine-tune
BART with training data, validate on the develop-
ment set and finally evaluate on the test set. We find
that strong PLMs can address simple generaliza-
tion of the same answer distribution for counting,
arithmetic and logic tasks. But they cannot mas-
ter the underlying rules of arithmetic reasoning,
for example, the model trained on 3-digit addition
can handle the addition expressions with 2-digit or
4-digit.

We will release all the code and data set for
future study.

2 Task

We construct five tasks related to algebraic and
logical reasoning, namely Numbering, Addition,
Subtraction, Comparison, Symbolic Logic. In
order to test the generalization ability of models
on the data with the same distribution and on the
data with the different distribution, we create an in-
distribution dataset and a cross-distribution dataset
for each task. The in-distribution dataset contains
train set, development set and test set that are in the
same distribution. The cross-distribution dataset
only serves as the test set and it is in the different
distribution in contrast to the in-distribution dataset.
We believe that if the model can understand the un-
derlying rules of arithmetic and logical Reasoning,
it can both generalize well on in-distribution and
cross-distribution test set.

2.1 Numbering
This task comprises two symmetric subtasks,
namely Counting and Listing. Examples are

(a) Description of Addition
task.

(b) Description of Subtrac-
tion task.

(c) Description of Compari-
son task.

(d) Description of Symbolic
Logic task.

shown in Figure 2. The Counting task asks the
model to count the number of characters in the in-
put sequence. For example, ‘A A A A A A’ is a
sequence with length ‘6’. The Listing task asks
the model to output a list with a specific length
and character. For example, the model receives a
command ‘Generate a list of 6 A’ and the result is
‘A A A A A A’.

2.2 Addition

The Addition task is the standard summation of
two input numbers. In order to make sure that
all numbers are in the same distribution during
training, we use only the equations whose left-
hand-side and right-hand-side are both three dig-
its in the in-distribution dataset. We also adopt
two-digit and four-digit numbers on both sides in
cross-distribution test set to further test the general-
ization ability of models. One example is shown in
Figure 3a.

2.3 Subtraction

The Subtraction task the standard tack(?) to sub-
tract a subtrahend from a minuend. In order to
make sure that all numbers are in same distribu-
tion during training, we use only equations whose
left-hand-side and right-hand-side are both three
digits in the in-distribution dataset. We also adopt
two-digit and four-digit numbers on both sides in
cross-distribution test set to further test the general-
ization ability of models. A example of Subtraction
task is shown in Figure 3b.

2.4 Comparison

The Comparison task is to determine which of the
two numbers is greater or smaller. In order to
make sure all numbers are in same distribution
during training, we use only equations whose left-



Task Train Set Dev Set
In- + Cross-
Distribution

Test Set

In- + Cross-
Distribution

Dataset
Numbering - Counting 3,744 468 468 + 2,030 4,680 + 2,030
Numbering - Listing 3,744 468 468 4,680

Addition 256,320 32,040 32,040 + 4,000 320,400 + 4,000
Subtraction 256,320 32,040 32,040 + 4,000 320,400 + 4,000
Comparison 648,000 81,000 81,000 + 5,600 810,000 + 5,600

Symbolic Logic 40,000 5,000 5,000 + 2,200 50,000 + 2,200

Table 1: Data statistics of each task. For each task, we list the in-distribution dataset and cross-distribution test set.

hand-side and right-hand-side are both three dig-
its in the in-distribution dataset. We also adopt
two-digit and four-digit numbers on both sides in
cross-distribution test set to further test the general-
ization ability of models. One example is shown in
Figure 3c.

2.5 Symbolic Logic
As shown in Figure 3d, this task is to reason over
symbolic logic expressions. The input question ex-
pression consists of six basic components, which
are ‘0’, ‘1’, ‘&’, ‘|’, ‘¬’ and ‘→’, representing
FALSE, TRUE, AND, OR, NOT and IMPLY, respec-
tively. The output answer is either 0 or 1, which
represent FALSE and TRUE, respectively. This task
asks the model to reason over the input logic ex-
pression and determine whether it is true or false.

In order to make sure all expressions are in the
same distribution during training, we use only the
expressions that contain 6 - 10 basic ‘0’ and ‘1’
components. For testing the generalization ability
of models, we also adopt the some expressions with
1 - 15 basic ‘0’ and ‘1’ components in the test set.

Different from the other tasks, we select a sub-
set from the overall dataset to serve as the in-
distribution dataset because the data is large. We
take only 10,000 of expressions with X basic com-
ponents, where X is a number between 6 - 10, re-
spectively. So, we end up with 50,000 samples in
the in-distribution dataset.

2.6 Metrics
We use Exact Match to compute accuracy for
Numbering, Addition, Subtraction and Compar-
ison tasks. However, for the Symbolic Logic task,
since the answer distribution is unbalanced (84%
answers are ‘1’), we use the F1 score as the metric.

3 Experiments

In this section, we separate the generalization ex-
periments to In-Distribution Generalization ex-
periments and Cross-Distribution experiments. In

the former, the testing data is in the same distribu-
tion with the training data. In the latter, the testing
data is in the different distribution from the train-
ing data. We suppose that if the model can master
the underlying rules of the mathematical and log-
ical reasoning, it should achieve 100% accuracy
on both In-Distribution Generalization experiments
and Cross-Distribution experiments.

We have organized the details of in-distribution
data and cross-distribution data in this section. In
addition, We also sorted out the examples of them
and put the examples in the Appendix Table 1.

3.1 Experimental Settings

We adopt BART (Lewis et al., 2020a) namely due
to the following reasons. First, it is a generative
pretrained language model, which means that they
can generate arbitrary sequences of tokens. This
is essential for the addition and subtraction task.
Second, it has achieved state-of-art results on nu-
merous tasks and they has received much research
attention. Last, it has released model checkpoints,
thus it can be more standardized and more fair can
evaluate them.

For the BART (Lewis et al., 2020a) model,
we conduct experiments on the publicly released
‘BART-Large’ checkpoint 1. We insert spaces be-
tween numbers while representing them in the data.
For example, ‘111’ is written as ‘1 1 1’ both in the
question and answer. For the character sequence in
the Numbering task, we also insert spaces between
the sequence, such as ‘A A A’.

3.2 In-Distribution Generalization

In this subsection, we mainly explore models’ gen-
eralization ability on test data which in the same
distribution with train data. For the Counting sub-
task of the Numbering task, each question is a se-
quence with 10-99 same character which is one
character among the alphabet; each answer is an

1https://huggingface.co/facebook/bart-large/tree/main



(a) The results of counting
task.

(b) The results of listing
task.

(c) The results of addition
task.

(d) The results of subtrac-
tion task.

(e) The results of compari-
son task.

(f) The results of symbolic
logic.

Figure 4: The in-distribution results on each task.

integer between 10 and 99. For the Listing task,
each question is a textual sequence ‘Generate a list
with X Y’, where X is an integer between 10 and
99 and Y is one character among the alphabet; each
answer is a sequence with 10-99 same characters.
For the Addition task, each question is an addition
expression, and the answer is a sum number. Each
number in the question and answer is three digits.
For the Subtraction task, each question is an sub-
traction expression , and the answer is a difference
number. Each number in the question and answer
is of three-digit. For the Comparison task, each
question is made of two numbers and each answer
is a single symbol which is either ‘>’ or ‘<’ or ‘=’.
The numbers in the question are all of three-digit.
For the Symbolic Logic task, each question is a
sequence with 5-10 basic ‘0’ and ‘1’ components;
each answer is either 0 or 1.

For testing generalization ability on the same
distributional data, we explore how the num-
ber of training samples affects the generalization.
For each task, we extract subsets from the in-
distribution train set and train on the subsets, but
keep the distribution of development set and test
set the same. Thus, we analyse how the number of
training samples influences the performance, which
also indicate the generalization ability of models
on the data with the same distribution.

The in-distribution results on the Numbering task

are shown in Figure 4b Figure 4a. For the Listing
subtask, we find that the model’s generation results
are very unstable, which means that the outputs
often contain other tokens other than the needed
character. For example, when the input is ‘Generate
a list of 6 A’, the output can be ‘A A a Aa E T A’.
When the sequence length increases, this kind of
disruption will be more likely to occur. So, results
are always around zero. We suppose this result is
result from the instability of the generative model
itself, because we also observe this situation from
other generative models, such as T5 (Raffel et al.,
2020). So, we mainly analyse the Counting task
rather the Listing task in the following sections.

It can be seen that when the number of training
samples increase, the performance of Counting will
also improve.

The in-distribution results on the Addition task
are shown in Figure 4c. We can seen that when
the number of training samples is 1600 (0.5% of
the dataset), the model can achieve 99% accuracy;
even when the number of training samples is re-
duced to 160 (0.05% of the dataset), the model
can still achieve around 40% accuracy. The in-
distribution results on the Subtraction, Compari-
son, Symbolic Logic task are shown in Figure 4d,
Figure 4e and Figure 4f, respectively. It can be seen
from the figures that when the number of training
samples increase, the model can perform better in
the in-distribution test set. And when the training
samples increase to several hundreds, the model
can achieve around 100% accuracy or F1, showing
BART’s ability on the in-distribution generaliza-
tion. Thus, we are wondering whether the model
has truly learn the underlying rules of these tasks
or they just use some spurious correlations to solve
these questions, so, we design cross-distribution
generalization test set to further explore the model’s
generalization ability in the following section.

3.3 Cross-Distribution Generalization

In this section, we analyse how models generalize
(1) when test question distribution is different from
train question while the test answer distribution
is the same; (2) when test answer distribution is
different from the train answer while the test ques-
tion distribution keeps the same; (3) when the test
question distribution and test answer distribution
are both different from train set. We have designed
testing data for different types of cross-distribution
on each task and list examples of the testing data



in this section.

3.3.1 Varying Questions

In this part, we mainly talk about when the test
question distribution is different from the train
question while the test answer distribution keeps
the same, how strong is the model’s generalization
ability. So, we use the Counting, Addition, Sub-
traction, Comparison, and Symbolic Logic tasks
to analyse. For the Counting task, we use the in-
stances whose character is not in letters of an al-
phabet while the number is still of two-digit. For
example, the question is ‘@@@@@@@@@@’
and the answer is ‘10’. For the Addition task, we
use the instances whose at least one added num-
ber is of two-digit. But we make sure answers of
selected equations are all of three-digit. For exam-
ple, the question is ‘50 + 170’, the answer is ‘220’.
For the Subtraction task, the situation is similar to
the Addition task, we use the instances whose at
least one number is of four-digit. But we make
sure answers of selected instances are all of three-
digit. For example, the question is ‘1000 - 500’, the
answer is ‘500’. For the Comparison task, the situ-
ation is also similar, we use the instances whose at
least one number is of two-digit or four-digit. For
example, the question is ‘56 176’, the answer is
‘<’. For the Symbolic Logic task, the situation is
also similar, we use the instances which has 1 - 5 or
11 -15 basic ‘0’ and ‘1’ components. For example,
the question is ‘not 0 and 1 or 0’, the answer is
‘1’.

3.3.2 Varying Answers

In this part, we mainly talk about when the test an-
swer distribution is different from the train answer
while the test question distribution keeps the same,
how strong is the model’s generalization ability.
As a result, we use the Addition and Subtraction to
analyse.

For the Addition task, we use the instances
whose two numbers are of three-digit while the
answer is of four-digit. For example, the question
is ‘500 + 600’, the answer is ‘1100’. For the Sub-
traction task, the situation is similar to the Addition
task, we use the instances whose two numbers are
of three-digit while the answer is of two-digit. For
example, the question is ‘550 - 500’, the answer is
‘50’.

3.3.3 Varying Instances

In this part, we mainly talk about hen the test ques-
tion distribution and test answer distribution are
both different from the train set, how strong is
the model’s generalization ability. So, we use the
Counting, Addition and Subtraction tasks to anal-
yse.

For the Counting task, we use the instances
whose character is not in letters of an alphabet
and number is not of two-digit. For example, the
question is ‘@@@@@@@@@’ and the answer
is ‘9’. For the Addition task, we use the instances
whose at least one number in question is of two-
or four-digit and the answer number is also of two-
or four-digit. For example, the question is ‘50 +
960’, the answer is ‘1010’. For the Subtraction
task, the situation is similar to the Addition task,
we use the instances whose at least one number is
of two- or four-digit and the answer is also of two-
or four-digit. For example, the question is ‘1100 -
50’, the answer is ‘1050’.

3.3.4 Analysis on Different
Cross-Distributions

The model’s performance on the test set of differ-
ent types of cross-distributions is shown in Table 2.
From the table, we can see that although BART
has achieved 100% accuracy on the in-distribution
testing data, it fails to generalize on the cross-
distribution testing data of arithmetic reasoning
tasks.

Results of Counting and Symbolic Logic task on
cross-distribution testing data are quite high. How-
ever, for Counting task, all correct instances are the
instances which have different length but have the
same character distributions with the training data.
In addition, the cross-distribution testing data only
have length difference from the training data. Thus,
we can conclude that the model is not sensitive to
the length of question if the basic components does
not change. This conclusion is also consistent with
the result of (Clark et al., 2020). In addition, the
results show that the model is especially weak in
generalizing to the instances with different answer
distributions.

To conclude, the model is still struggling on
cross-distribution generalization, especially the car-
rying and borrowing in Addition and Subtraction
tasks.



Task
Question

Cross-Distribution
Answer

Cross-Distribution
Instance

Cross-Distribution
Counting 316/320(98.8%) / 0/1710
Addition 15/1,500 (1.0%) 0/1,500 0/1,000

Subtraction 13/1,500 (0.87%) 0/1,500 1/1,000 (0.1%)
Comparison 2,555/5,600(45.63%) / /

Symbolic Logic 2,200/2,200 (100%) / /

Table 2: The performance of BART on cross-distribution test set. For each task and different distribution type,
we select the model checkpoint which has achieved 100% accuracy/F1 on the corresponding in-distribution test
set. Note that the random result on Comparison is around 49.9%. Data samples that models answer correctly
on Addition and Subtraction task in the Cross-Distribution experiment can be found in Appendix A[Some of the
examples here are deleted since they do not conform the fomat]

3.4 Case Study on GPT-3

GPT-3 (Brown et al., 2020) has received a lot of
attention since it was born. And it has shown strong
abilities on every single NLP task as well as on gen-
eralization. Thus, we also conduct some case study
experiments of arithmetic calculation on GPT-3
2. We find that GPT-3 can handle the addition
and subtraction calculation with 1,000 perfectly,
but when the number increases, GPT-3 starts to
lose its ability, it can only get some very specific
instances correctly. A interesting case is that it
can get correct result ‘9999999’ from ‘12345678 +
87654321’, however, when we give it ‘12345678
+ 8765432’, it still answers ‘99999999’. We guess
that the model does not have calculation ability,
but rather remembers some examples that have ap-
peared before, since each calculation with 1000 and
‘12345678 + 87654321’ may appear in the Internet
for many times while ‘12345678 + 8765432’ may
not so frequently appear.

3.5 Overlap Analysis

We have also explored how overlaps influence mod-
els’ performance.

Following (Lewis et al., 2020b) and (Wang et al.,
2021), if one test question appears in the questions
of train set, we call it as question overlap, other-
wise it is question non-overlap. Similarly, if one
test answer appears in the answers of train set, we
call it as answer overlap, otherwise it is answer
non-overlap. If one test instance is both question
overlap and answer overlap, we call it is instance
overlap, otherwise it is instance non-overlap.

We mainly use results of the Addition task to
2The experiments are conducted on

https://beta.openai.com/examples/default-qa . But since the
OpenAI has not released the whole API, we cannot finetune
the model or do large scale experiments.

illustrate this problem. However, for these two
task, the question overlap is sightly different, if the
two numbers of one test question both appear in the
numbers of train set, we call it is question overlap,
otherwise it is question non-overlap. Since one
answer of these two tasks only contain one number,
the situation is same with the original definition.

We choose the two results which using 1920 in-
stances (0.6% for the dataset) for training in the
Addition task, because it has achieved 68% accu-
racy, which means that the results have both correct
and incorrect instances.

The results are shown in Table 3. From the ta-
ble, we can see that, unlike results from (Lewis
et al., 2020b) and (Wang et al., 2021), the over-
lap and non-overlap do not influence the models’
performance.

4 Related Work

Some works have investigated in Mathematical
problems in NLP (Dua et al., 2019; Wang et al.,
2017; Zhao et al., 2020). DROP (Dua et al., 2019)
is a reading comprehension dataset comprising sev-
eral kinds of mathematical tasks, such as Subtrac-
tion and Selection. However, all answers of its
questions can be directly or indirectly found in the
corresponding passages. Math23L (Wang et al.,
2017) is simple math word problem dataset with
23k problems. Its problem is of the simple En-
glish context format, along with the equation and
the answer. Ape210K (Zhao et al., 2020) is a Chi-
nese simple math word problem dataset with 210k
questions. The questions are similar to Math23L’s
questions. The data are taken from some elemen-
tary school math word problems. These datasets do
not contain a generalization test set, the test set is in
the same distribution with the train set. In addition,



Correct Incorrect
Overlap 1,083 524

Non-
Overlap 20,858 9,575

(a) Instance Overlap

Correct Incorrect
Overlap 4,538 1,846

Non-
Overlap 12,403 8,253

(b) question Overlap

Correct Incorrect
Overlap 6,066 3,070

Non-
Overlap 15,873 7,029

(c) answer Overlap

Table 3: The overlap analysis.

the often used methods for these datasets are first to
predict the equations or expression for the question
and then to use calculation tool to get the result
(Wang et al., 2017; Wangperawong, 2018). How-
ever, our work concentrate on the generalization
ability of models. Thus, we have designed test set
with different distribution. In addition, we try to
use the model to directly solve the questions, aim-
ing test model’s internal ability of understanding
the deep rules of arithmetic and logical reasoning.

Some works have researched on models’ the
internal ability of solving mathematical expres-
sions. Wallace et al. (2019) has investigated that
how will different types of embedding, such as
BERT (Devlin et al., 2019) and GloVe (Pennington
et al., 2014), affect the performance of the same
NAQANet model (Dua et al., 2019) on the same
tasks including List Maximum, Decoding and Ad-
dition. Besides, Wallace et al. (2019) also explores
that how the the way numbers are represented and
the way to do tokenization affect the performance
of models. Geva et al. (2020) try to inject numeri-
cal reasoning skill by adding a calculation module
into the PLMs, which helps the performance on
DROP (Dua et al., 2019) dataset.

There are also some works research focusing
on the generalization ability of neural network
models. Lake and Baroni (2018) research on the
compositional generalization skills of sequence-
to-sequence models, such as LSTM (Hochreiter
and Schmidhuber, 1997) and GRU (Chung et al.,
2014). Linzen (2020) explain that the generaliza-
tion test in machine learning (ML) is not very rea-
sonable, they put forward seven suggestions to bet-
ter evaluate the generalization ability of ML mod-
els. Lewis et al. (2020b) and Wang et al. (2021) find
that the PLMs cannot generalize well on Closed-
book QA task (Roberts et al., 2020), the model
can handle the test instances which overlap with
the train data, however, they cannot solve the non-
overlapped instances. McCoy et al. (2020) find that
even when the model’s architecture is set, the gen-
eralization ability of the model is still influenced
largely by the random luck, the random initialized

weights and other things. Clark et al. (2020) per-
form Transformer-based models on simple logic
reasoning test, and their results show that the model
can get quite promising results and the model is not
sensitive to the question length. Though Wang et al.
(2020a) proves that pretrained language models
(Liu et al., 2019; Lan et al., 2020) can general-
ize well on textual commonsense reasoning tasks
(Wang et al., 2019), Wang et al. (2020b) finds that
transformer models (Bosselut et al., 2019) may not
generalize well on commonsense knowledge graph
(Sap et al., 2019) reasoning. Zhang et al. (2020)
analyses the generalization ability on the relation
extraction task and find some specific problems can
induce a significant decline in model performance.

5 Conclusion

We have designed a series of tasks for evaluat-
ing BART on simple mathematical operations and
logic reasoning, which includes numbering, addi-
tion, subtraction, comparison, and symbolic logic.
We constructed a corresponding in-distribution
datasets, and also designed cross-distribution test
set to further evaluate the model’s generalization
ability. If the model can understand the under-
lying rules of these mathematical operations and
logic reasoning, it can generalize well on both in-
distribution and cross-distribution test set. Our ex-
periments showed that BART can only generalize
on the in-distribution test set but cannot perform
well on the cross-distribution test set, showing that
the most advanced PLM still cannot understand the
underlying rules of simple mathematical operations
and logic reasoning.
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Task
Training Data &

In-Distribution Test
Cross-Distribution Test

Question
Cross-

Distribution

Answer
Cross-

Distribution

Instance
Cross-

Distribution

Counting

a sequence
of [A-Z, a-z]

with a
length of
10 to 99.
(B B B
B B B

B B B B)

a sequence
of special
characters

with a
length of
10 to 99
(@ @ @
@ @ @

@ @ @ @)

a sequence
of special
characters

with a
length of
1 to 9 or

100 to 1000.
(@ @)

Addition

3-digit
addition.

(100 + 200
= 300)

at least
one addend
is 2 digits.
(50 + 170

= 220)

the answer
is 4 digits.
(500 + 600

= 1100)

at least one
number is

2 or 4 digits.
(50 + 960
= 1010)

Subtraction

3-digit
subtraction.
(200 - 100

= 100)

at least
one number
is 4 digits,

but the answer
is still 3 digits.

(1000 - 500
= 500)

the answer
is 2 digits.
(550 - 500

= 50)

at least one
number is

2 or 4 digits.
(1100 - 50

= 1050)

Comparison
3-digit

comparison.
(100 <200)

at least
one number

is not 3-digit.
(100 <2000)

Symbolic
Logic

an equation
consists of

6 to 10
”0”s or ”1”s.
(¬ 0 & 1 — 0

& 1 — 1 — 0 is 1)

an equation
consists of

1 to 5
or 11 to 15

”0”s or ”1”s.
(¬ 0 & 1 — 0 is 1)

Table 4: Examples of training data, In-distribution test data, three kinds of cross-distribution tests. Note that the
training data and in-distribution test share the same distribution.


