Skip to main content

Sentence-State LSTMs For Sequence-to-Sequence Learning

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13028))

  • 2764 Accesses

Abstract

Transformer is currently the dominant method for sequence to sequence problems. In contrast, RNNs have become less popular due to the lack of parallelization capabilities and the relatively lower performance. In this paper, we propose to use a parallelizable variant of bi-directional LSTMs (BiLSTMs), namely sentence-state LSTMs (S-LSTM), as an encoder for sequence-to-sequence tasks. The complexity of S-LSTM is only \(\mathcal {O}(n)\) as compared to \(\mathcal {O}(n^2)\) of Transformer. On four neural machine translation benchmarks, we empirically find that S-SLTM can achieve significantly better performances than BiLSTM and convolutional neural networks (CNNs). When compared to Transformer, our model gives competitive performance while being 1.6 times faster during inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14, LDC2005T10, LDC2002E18, LDC2007T09, LDC2004T08.

  2. 2.

    https://github.com/pytorch/fairseq/.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)

    Google Scholar 

  2. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer. arXiv:2004.05150 (2020)

  3. Bengio, Y., Frasconi, P., Schmidhuber, J., Elvezia, C.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies(2001)

    Google Scholar 

  4. Chen, M., et al.: The best of both worlds: combining recent advances in neural machine translation. In: ACL (2018)

    Google Scholar 

  5. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. arXiv:1904.10509 (2019)

  6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) EMNLP (2014)

    Google Scholar 

  7. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL (2019)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  9. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency parsing with stack long short-term memory. arXiv:1505.08075 (2015)

  10. Gao, F., Wu, L., Zhao, L., Qin, T., Cheng, X., Liu, T.Y.: Efficient sequence learning with group recurrent networks. In: NAACL (2018)

    Google Scholar 

  11. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.: Convolutional sequence to sequence learning. In: ICML (2017)

    Google Scholar 

  12. Guo, Q., Qiu, X., Liu, P., Shao, Y., Xue, X., Zhang, Z.: Star-transformer. In: NAACL (2019)

    Google Scholar 

  13. Hassan, A., Mahmood, A.: Deep learning for sentence classification. In: LISAT (2017)

    Google Scholar 

  14. Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In: EMNLP (2013)

    Google Scholar 

  15. Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves, A., Kavukcuoglu, K.: Neural machine translation in linear time. arXiv (2016)

    Google Scholar 

  16. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP (2014)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  18. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  19. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: the efficient transformer. In: ICLR (2020)

    Google Scholar 

  20. Kübler, S., McDonald, R., Nivre, J.: Dependency parsing. Synthesis Lectures on Human Language Technologies (2009)

    Google Scholar 

  21. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL (2020)

    Google Scholar 

  22. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: EMNLP (2015)

    Google Scholar 

  23. Nguyen, N., Guo, Y.: Comparisons of sequence labeling algorithms and extensions. In: ICML (2007)

    Google Scholar 

  24. Oluwatobi, O., Mueller, E.T.: DLGNet: a transformer-based model for dialogue response generation. arXiv: Computation and Language (2020)

    Google Scholar 

  25. Pickering, M.J., Van Gompel, R.P.: Syntactic parsing. In: Handbook of Psycholinguistics (2006)

    Google Scholar 

  26. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  27. Roy, A., Saffar, M., Vaswani, A., Grangier, D.: Efficient content-based sparse attention with routing transformers. TACL 9, 53–68 (2021)

    Article  Google Scholar 

  28. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45, 2673–2681 (1997)

    Article  Google Scholar 

  29. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems for WMT 16. In: WMT (2016)

    Google Scholar 

  30. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. In: ACL (2016)

    Google Scholar 

  31. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: NAACL-HLT (2018)

    Google Scholar 

  32. Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: DiSAN: directional self-attention network for RNN/CNN-free language understanding. In: AAAI (2018)

    Google Scholar 

  33. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP (2013)

    Google Scholar 

  34. Song, L., Zhang, Y., Wang, Z., Gildea, D.: A graph-to-sequence model for AMR-to-text generation. In: ACL (2018)

    Google Scholar 

  35. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)

    Google Scholar 

  36. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  37. Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: COLING (2016)

    Google Scholar 

  38. Tang, G., Müller, M., Gonzales, A.R., Sennrich, R.: Why self-attention? A targeted evaluation of neural machine translation architectures. In: EMNLP (2018)

    Google Scholar 

  39. Tian, Y., Song, Y., Xia, F., Zhang, T.: Improving constituency parsing with span attention. In: EMNLP (2020)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  41. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  42. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv:2006.04768 (2020)

  43. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. ArXiv (2016)

    Google Scholar 

  44. Xu, H., Liu, B., Shu, L., Yu, P.S.: BERT post-training for review reading comprehension and aspect-based sentiment analysis. In: NAACL (2019)

    Google Scholar 

  45. Zhang, J., et al.: Improving the transformer translation model with document-level context. In: EMNLP (2018)

    Google Scholar 

  46. Zhang, Y., et al.: DialoGPT: large-scale generative pre-training for conversational response generation. In: ACL (2020)

    Google Scholar 

  47. Zhang, Y., Liu, Q., Song, L.: Sentence-state LSTM for text representation. In: ACL (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, X. et al. (2021). Sentence-State LSTMs For Sequence-to-Sequence Learning. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13028. Springer, Cham. https://doi.org/10.1007/978-3-030-88480-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88480-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88479-6

  • Online ISBN: 978-3-030-88480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics