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Abstract
Runtime monitoring is generally considered a light-weight alternative to formal verification. In safety-critical systems,
however, the monitor itself is a critical component. For example, if the monitor is responsible for initiating emergency
protocols, as proposed in a recent aviation standard, then the safety of the entire system critically depends on the correctness
of the monitor. In this paper, we present a verification extension to the Lola monitoring language that extends the efficient
specification of the monitor with Hoare-style annotations that guarantee the correctness of the monitor specification. We add
two new operators, assume and assert, which specify assumptions of the monitor and expectations on its output, respectively.
The validity of the annotations is established by an integrated SMT solver. We report on experience in applying the approach
to specifications from the avionics domain, where the annotation with assumptions and assertions has lead to the discovery
of safety-critical errors in specifications. The errors range from incorrect default values in offset computations to complex
algorithmic errors that result in unexpected temporal patterns. We also report how verified specifications can be monitored
efficiently at runtime.

Keywords Formal methods · Cyber-physical systems · Runtime verification · Hoare logic

1 Introduction

Cyber-physical systems are inherently safety-critical due to
their direct interaction with the physical environment – fail-
ures are unacceptable. A means of protection against failures
is the integration of reliable monitoring capabilities. A mon-
itor is a system component that has access to a wide range of
system information, e.g., sensor readings and control deci-
sions. When the monitor detects a failure, i.e., a violation of
the behavior stated in its specification, it notifies the system
or activates recoveries to prevent failure propagation.

The task of the monitor is critical to the safety of the sys-
tem, and its correctness is therefore of utmost importance.

Runtime monitoring approaches like Lola [8, 11] address
this by describing the monitor in a formal specification lan-
guage, and then generating a monitor implementation that
is provably correct and has strong runtime guarantees, for
example, on memory consumption. Formal monitoring lan-
guages typically feature temporal [24] and sometimes spa-
tial [21] operators that simplify the specification of complex
monitoring behaviors. However, the specification itself, the
central part of runtime monitoring, is still prone to human
errors during specification development. Hence, how can we
check that the monitor specification itself is correct?

In this paper, we introduce a verification feature to the
Lola framework. Specifically, we extend the specification
language with assumptions and assertions. The framework
statically verifies that the assertions are guaranteed to hold
if the input to the monitor satisfies the assumptions. This
verification feature was previously introduced in [9]. Here,
we extend this work by providing a proof of soundness and
presenting an online monitoring approach with experimental
results that checks the satisfaction of assumptions during
runtime to activate assertion checks.

The prime application area of Lola is unmanned avi-
ation. Lola is increasingly used for the development and
operation monitoring of unmanned aircraft; for example, the
Lola monitoring framework has been integrated into the

� S. Schirmer
sebastian.schirmer@dlr.de

J. Baumeister
jan.baumeister@cispa.de

J.C. Dauer
johann.dauer@dlr.de

B. Finkbeiner
finkbeiner@cispa.de

1 Helmholtz Center for Information Security (CISPA),
Saarbrücken, Germany

2 German Aerospace Center (DLR), Braunschweig, Germany

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00712-3&domain=pdf
mailto:sebastian.schirmer@dlr.de
mailto:jan.baumeister@cispa.de
mailto:johann.dauer@dlr.de
mailto:finkbeiner@cispa.de


594 J. Baumeister et al.

Fig. 1 Run-Time Assurance architecture proposed by ASTM F3269-
21 to safely bound a complex function using a safety monitor

DLR unmanned aircraft superARTIS1 [3] using an FPGA
realization [1]. The verification extension presented in this
paper is motivated by this work. In practice, system engineers
report that support for specification development is neces-
sary, e.g., sanity checks and proofs of correctness. Addition-
ally, recent developments in unmanned aviation regulations
and standards indicate a similar necessity. One such devel-
opment is the industry standard F3269-21 (Standard Practice
for Methods to Safely Bound Flight Behavior of Unmanned
Aircraft Systems Containing Complex Functions) by ASTM
International.2 ASTM F3269-21 introduces a certification
strategy based on a Run-Time Assurance (RTA) architecture
that bounds the behavior of a complex function by a safety
monitor [20], similar to the well-known Simplex architec-
ture [27]. This complex function could be a Deep Neural
Network as proposed in [7]. A simplified version of the ar-
chitecture3 of ASTM F3269-21 is shown in Fig. 1.

At the core of the architecture is a safety monitor that takes
the inputs and outputs of the complex function, and decides
whether the complex function behaves as expected. If not,
the monitor switches the control from the complex function
to a matching recovery function. For instance, the flight of an
unmanned aircraft could be separated into different phases,
e.g., take-off, cruise flight, and landing. For each of these
phases, a dedicated recovery could be defined, e.g., braking
during take-off, the activation of a parachute during cruise
flight, or a go-around maneuver during landing. Further, it is
crucial that recoveries are only activated under certain con-
ditions and that only one recovery is activated at a time. For
instance, a parachute activation during a landing approach
is considered safety-critical. The verification extension of
Lola introduced in this paper can be used to guarantee
statically that such decisions are avoided within the monitor
specification. Consider the simplified Lola specification

1 https://www.dlr.de/content/en/research-facilities/superartis-en.
html

2 https://www.astm.org/
3 In its original version, data is separated into assured and unassured

data and data preparation components are added.

that declares an assumption on the system input events and
asserts that braking and parachute never evaluate to true
simultaneously.

In the following, we first give a brief introduction to the
stream-based specification language Lola, then present the
verification approach, and give details on the tool implemen-
tation and our tool experience with specifications that were
written based on interviews with aviation experts. Last, we
consider the case where assumptions might not be satisfied
during runtime. Our results show that standard Lola spec-
ifications are indeed prone to error, and that these errors
can be caught with the formal verification introduced by our
extension.

Related work Most work on the verification of monitors
focuses on the correct transformation into a general pro-
gramming language. For example, Copilot [22] specifica-
tions can be compiled into C code with constant time and
memory requirements. Similarly, there is a translation vali-
dation toolkit for Lola monitors implemented in Rust [11],
which is based on the Viper verification tool [19]. Transla-
tion validation of this type is orthogonal to the verification
approach of this paper. Instead of verifying the correctness
of a transformation, our focus is to verify the specification
itself. Both activities complement each other and facilitate
safer future cyber-physical systems.

Our verification approach is based on classic ideas of in-
ductive program verification [12, 16], and is closely related to
the techniques used in static program verifiers like KeY [4],
Why3 [6], and Dafny [18]. In a verification approach like
Dafny, we are interested in functional properties of proce-
dures, specified as post-conditions that relate the values upon
the termination of the procedure with those at the time of en-
try to the procedure, e.g., ensure y = old(y). By contrast,
a stream-based language like Lola allows arbitrary access
to past and future stream values. This makes it necessary to
unfold the Lola specification in order to properly relate the
assumptions and assertions in time.

Most closely related to stream-based monitoring lan-
guages are synchronous programming languages like LUS-
TRE [15], ESTEREL [5], and SIGNAL [13]. For these
languages, the compiler is typically used for verification –
a program representing the negation of desired properties is
compiled with the target program and a check for emptiness
decides whether the properties are satisfied. Furthermore,
a translation from past linear-time temporal logic to ES-
TEREL was proposed to simplify the specification of more
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complex temporal properties [17]. Other verification tech-
niques also exist like SMT-based k-Induction for LUS-
TRE [14] or a term rewriting system on synced effects [28].
A key difference in our approach is that we do not rely
on compilation. Our verification works at the level of an
intermediate representation. Furthermore, synchronous pro-
gramming languages are limited to past references, while the
stream unfolding for the inductive correctness proof of the
Lola specification includes both past and future temporal
operators. Similar to k-Induction, our approach is sound but
not complete.

2 Runtime monitoring with Lola

Lola is a stream-based language that describes the transla-
tion from input to output streams:

input t1 : T1

...

input tm : Tm

output s1 : Tm+1 := e1(t1, . . . , tm, s1, . . . , sn)

...

output sn : Tm+n := en(t1, . . . , tm, s1, . . . , sn)

trigger ϕ message

where input streams carry synchronous arriving data from
the system under scrutiny, output streams represent calcu-
lations, and triggers generate notification messages at in-
stants where their condition ϕ becomes true. Input streams
t1, . . . , tm and output streams s1, . . . , sn are called indepen-
dent and dependent variables, respectively. Each variable is
typed: independent variables ti are typed Ti and dependent
variables si are typed Tm+i . Dependent variables are com-
puted based on stream expressions e1, . . . ,en over dependent
and independent stream variables. A (stream) expression is
one of the following:

• an atomic expression c of type T if c is a constant of type
T ;

• an atomic expression s of type T if s is a stream variable
of type T ;

• an expression ite(b,e1,e2) of type T if b is a Boolean
expression and e1, e2 are expressions of type T . Note that
ite abbreviates the control construct if-then-else;

• an expression f (e1, . . . ,ek) of type T if f : T1×· · ·×Tk �→ T
is a k-ary operator and e1, . . . ,ek are expressions of type
T1, . . . ,Tk ;

• an expression o.offset(by : i).defaults(to : d) of type T if o
is a stream variable of type T , i is an Integer, and d is of
type T .

For example, consider the Lola specification

that notifies the system if the current altitude is above its
operating limits, i.e., 200.0 meters. Note that stream types
are inferred, i.e., altitude_bound is of type .

Lola uses temporal operators that allow output streams
to access its and others previous and future stream values.
The stream

represents a count of consecutive altitude violations by ac-
cessing its own previous value, i.e., where
a negative and positive integer x represents past and fu-
ture stream accesses, respectively. Since temporal accesses
are not always guaranteed to exist, the default operator de-
fines values which are used instead, i.e.,
where d has to be of the same type as the used stream.
Here, at the first position of alt_count the default value
zero is taken. As abbreviations for the temporal operators,
alt_count[x, d] is used. Further, s[x..y, d, ◦] for
x < y abbreviates s[x,d] ◦ s[x+1,d] ◦ · · · ◦ s[y,d]

where ◦ is a binary operator. Using alt_count > 10 as
a trigger condition is preferable if only persistent violations
should be reported.

In general, Lola is a specification language that allows
to specify complex temporal properties in a precise, concise,
and less error-prone way. The focus is on what properties
should be monitored instead of how a monitor should be exe-
cuted. Therefore, the Lola monitor synthesis automatically
infers and optimizes implementation details like evaluation
order and memory management. The evaluation order [11]
of Lola streams is automatically derived by analysis of the
dependency graph [8] of the specification. This allows ignor-
ing the order when taking advantage of the modular structure
of Lola output streams, e.g.,

where pos and alt_count are used before their definition.
Further, the graph allows to detect all invalid cyclic stream
dependencies, e.g.,

.
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3 Assumptions and assertions

In this section, we present the verification extension for the
Lola specification language. Note that a color version of
this paper is given online. The extension allows the devel-
oper to annotate the Lola specification with assumptions
and assertions in order to verify the desired guarantees on
the computed streams. As an example, consider the simpli-
fied specification in Listing 1, which is structured into stream
computations in Lines 1 to 28, and assumptions and asser-
tions from Line 30 onwards.

The computation part specifies a safety monitor within a
RTA architecture that triggers recovery functions for three
different flight phases. First, the take-off recovery function is
triggered (Line 24) when the targeted take-off speed was not
achieved on a runway up to a predefined point (Lines 14–15).
The distance between the current position and the end of the
runway with local coordinates (0,0) is computed in Line 9.
Second, in-flight a parachute is activated (Line 26) when
virtual barriers for the aircraft, i.e., a geofence, are exceeded
(Line 17) [26]. Last, during landing, up to a point of no return
(alt < 10.0), a new landing attempt is initiated (Line 27)

Listing 1 A simplified Run-Time Assurance Lola specification with
three recovery functions for three different flight phases. Assumptions
and assertions are used to show that only one recovery function is
activated at once

if the aircraft’s speed is too large or its landing gear is not yet
ready. To be more robust, the current and the previous value
of the landing_gear_ready is taken into account (Lines
19–21).

With the verification extension, the specification as-
sures that recoveries are not activated simultaneously (Lines
34–36), for instance, there is no possibility that a parachute is
activated during a landing approach. The first two conjunc-
tions in Lines 34 and 35 evaluate to false because relevant
outputs use a disjoint altitude condition. The last conjunction
requires an assumption. Here, two assumptions are linked by
the identifier a1 to the assertion. The assumptions specify
the known bound of received speed data (Line 31) as well as
operational information (Line 30), e.g., given by the concept
of operation a nominal landing is only foreseen within the
predefined operational airspace. Note that assumptions are
provided by the user and are assumed to be valid. Further,
a second assertion is stated in Line 38 that guarantees that
the parachute should only be activated when the aircraft is
100 meters above ground. In this case, the property can be
shown assumption-free. Assertions help engineers show that
certain properties are true. The given assertions indicate how
specification debugging and management can benefit from
the extension – it avoids digging into complex computations.

The extension and its verification approach are presented
in the following. In general, the verification extension is used
if a Lola specification is annotated in the following way:

assume 〈α1〉 θ1

...

assume 〈αm〉 θm

assert 〈αm+1〉 ψ1

...

assert 〈αm+n〉 ψn

where α1, . . . ,αm+n ∈ Γ are identifiers for θ1, . . . , θm,ψ1, . . . ,

ψn, which are Boolean stream expressions with possibly tem-
poral operators. For convenience, we define functions which
return all θ and ψ that are linked to a given α identifier:
assume(α) = {θ j | ∀αj ∈ Γ, α = αj} and assert(α) = {ψj |

∀αj ∈ Γ, α = αj }. The set of assertions ψ1, . . . ,ψn is correct
for all input streams if and only if whenever an assumption
is satisfied, its corresponding assertion is satisfied as well.

The verification of assertions relies on the encoding of the
Lola execution in Satisfiability Modulo Theory (SMT).
We define the smt function that encodes a stream expression
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in Definition 1. It can be used to encode independent and
dependent variables as well as expressions of assumptions
and assertions.

Definition 1 (SMT-Encoding of Stream Expressions)
Let Φ be a Lola specification over independent stream
variables t1, . . . , tm and dependent stream variables s1, . . . , sn.
Further, let the natural number N +1 be the length of the input
streams, c be an SMT constant symbol, and τ0

1 , . . . , τ
N
1 , . . . ,

τ0
m, . . . , τ

N
m , σ

0
1 , . . . ,σN

1 , . . . ,σ
0
n, . . . ,σ

N
n be SMT variables.

Then, the function smt recursively encodes a stream expres-
sion e at position j with 0 ≤ j ≤ N in the following way:

• Base cases:
– smt(c)( j) = c,
– smt(ti)( j) = τ

j
i ,

– smt(si)( j) = σ
j
i ;

• Recursive cases:
– smt( f (e1, . . . ,en))( j) =

f(smt(e1)( j), . . . , smt(en)( j)),
– smt(ite(eb,e1,e2))( j) =

ite(smt(eb)( j), smt(e1)( j), smt(e2)( j)),
– smt(e[k,c])( j) ={

smt(e)( j + k) if 0 ≤ j + k ≤ N,

c otherwise,

where ite is an SMT encoding of if-then-else; f is an
interpreted function if f is from a theory supported by the
SMT solver and an uninterpreted function otherwise.

Next, Proposition 1 establishes the correctness of asserted
stream properties for finite input streams. If the set of asser-
tions is correct, asserted stream properties are guaranteed to
be valid in each step of the monitor execution. In practice,
such specifications are preferable. In the following, let Φ be
a Lola specification with verification annotations. Further,
we refer to the set of input streams and computed output
streams as stream execution.

Proposition 1 (Assertion Verification of a Finite Stream
Execution)
LetΦ be a Lol a specification and let s1, . . . , sn be dependent
stream variables used in Φ. The set of assertions is correct
for a finite stream execution with length N + 1 under given
assumptions, if the following formula is valid:∧

0≤i≤N

( ∧
α∈Γ

( ∧
θ ∈ assume(α)

smt(θ)(i)∧

∧
sk ∈Φ

σi
k = smt(ek)(i) →

∧
ψ ∈ assert(α)

smt(ψ)(i)
) )
.

The formula in Proposition 1 unfolds the complete stream
execution and informally expresses that an assertion must

hold in each stream position whenever its corresponding
assumption and implementation are satisfied.

To avoid the complete unfolding and allow arbitrary
stream lengths, an inductive argument is given in Proposi-
tion 2 that defines proof obligations for an annotated Lola
specification. Next, we present a template for the stream
unfolding that helps to define the proof obligation at the Be-
ginning (Definition 3), during Run (Definition 4), and at the
End (Definition 5) of a stream execution.

Definition 2 (Template Stream Unfolding)
We define the template formula φt that states proof obliga-
tions as:

∧
α∈Γ

( ∧
i∈p_asm

( ∧
θ∈assume(α)

smt(θ)(i)
)

∧
∧

i∈p_asserted

( ∧
ψ∈assert(α)

smt(ψ)(i)
)

∧
∧

i∈p_streams

( ∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p_assert

( ∧
ψ∈assert(α)

smt(ψ)(i)
) )
,

where p_asm, p_asserted, p_streams, and p_assert are tem-
plate parameters. They are sets of positions for the unfolding
of assumptions, previously proven assertions, output streams,
and assertions, respectively.

The template formula in Definition 2 uses template pa-
rameters for the stream unfolding. For instance, the param-
eter assignment p_asm := {i | 0 ≤ i < 10} adds assumptions
at the first ten positions of the stream execution. Further,
the parameter p_asserted allows incorporating the induction
hypothesis.

In the following, we will use the Lola specification in
Listing 2 as a running example for the template stream un-
folding.

Here, the input reset represents a reset command for the
output stream o1 that counts how long no reset occurred.
Output o1 is used by output o2 which aggregates over the
previous, the current, and the next outcome of o1. This is
achieved by using the offset operator, e.g., o1[-1, 0] ac-
cesses the previous value of o1 if it exists, otherwise it takes
the default value 0. As assertion, we show that o2 is always
positive and never larger than three given the assumption that
in each execution step either the previous or the next reset is
true. The assumption ensures that at most two consecutive
resets are false. Given the reset sequence of input values
〈true; false; false〉 that satisfies the assumption, the resulting
o1 stream evaluates to 〈0; 1; 2〉. Here, at the second posi-
tion of the sequence, o2 evaluates to three. To show that the
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Listing 2 Lola specification with assumptions on a reset that guar-
antees that an output remains within bounds

assertion also holds at the first and the last position of the
sequence, out-of-bounds values must be considered.

We show how the template φt can be used at the begin-
ning of a stream execution. Here, default values due to past
stream accesses beyond the beginning of a stream need to
be captured by the obligation to guarantee that the assertions
hold in these cases. The combination of past out-of-bounds
and future out-of-bounds default values must also be covered
by the obligations in case the stream is stopped early. These
scenarios are depicted for the running example in Fig. 2.

The figure shows four finite stream executions with dif-
ferent lengths. All stream positions are colored gray, while
only some positions contain a single red dot. These features
indicate the unfolding of stream variables and annotations
using the template φt . A gray-colored position means that
the assumptions have been unfolded and a dotted position
means the assertion has been unfolded. Further, arrows indi-
cate temporal stream accesses where solid lines correspond
to accesses by outputs and dashed lines correspond to ac-
cesses by annotations, i.e., assumptions and assertions. For
each stream execution, only the arrows for a single posi-
tion are depicted – the arrows for other positions have been
omitted for the sake of clarity. For example, for N = 0, the
accesses of output o2 are both out-of-bounds, i.e., the de-
fault value zero is used. While for N = 3, the accesses at
the second position are shown where only the past access of
the assumption leads to an out-of-bounds access, i.e., only
the dotted line towards the beginning of the stream execu-
tion. The figure depicts all necessary stream executions that
cover all combinations of past out-of-bounds accesses, i.e.,
with and without future bound violations. The described
unfoldings of Fig. 2 are formalized as proof obligations in
Definition 3.

Definition 3 (Proof Obligations φBegin for Past Out-of-
bounds Accesses)
Let wp = sup({0} ∪ {|k | | e[k,c] ∈ Φ where k < 0}) be the
most negative offset and w f = sup({0} ∪ {k | e[k,c] ∈ Φ
where k > 0}) be the greatest positive offset. The proof obli-
gations φBegin for past out-of-bounds accesses are defined as
the conjunction of template formulas:

∧
0≤N<max(1, 2·(wp+wf ))

φt

(
p_asm, p_asserted,
p_streams, p_assert

)

Fig. 2 Four stream executions of different length N +1 with the respec-
tive template unfolding are depicted. The stream executions consider
all cases with past out-of-bound accesses. A gray-colored box indicates
that an assumption has been unfolded at this position, while a red dot-
ted box indicates that an assertion has been unfolded at this position.
Solid and dashed arrows indicate accesses by streams and annotations,
respectively

with template parameters:

• p_asm := {i | 0 ≤ i ≤ N},
• p_asserted := ∅,
• p_streams := {i | 0 ≤ i ≤ N},
• p_assert := {i | 0 ≤ i <

max(1, min(N + 1, 2 · wp))}.

Next, the case where no out-of-bounds access occurs is
considered. Hence, the obligations capture the nominal case
where no default value is used. Since we have shown that past
out-of-bounds accesses are valid we can use these proven as-
sertions as assumptions. Figure 3 depicts a stream execution
with a single dotted position, i.e., the position where the as-
sertion must be proven. As can be seen, all accesses from this
position are within bounds. Further, note that the accesses
of the first and the last unfolded assumption, i.e., the first
and the last gray-colored position, are also within bounds.
The described unfolding is formalized as proof obligations
in Definition 4.

Definition 4 (Proof Obligations φRun for No Out-of-
bounds Accesses)
The proof obligations φRun without out-of-bounds accesses
are defined as φt (p_asm, p_asserted, p_streams, p_assert)
with template parameters:

• p_asm := {i | wp ≤ i ≤ N − w f },
• p_asserted := {i | 2 · wp ≤ i ≤ N − 2 · w f

∧ i � 3 · wp},
• p_streams := {i | 2 · wp ≤ i ≤ N − 2 · w f ,
• p_assert := {i | i = 3 · wp},

where N = 3 · (wp + w f ).

Last, we consider the case where only future out-of-
bounds accesses occur. Hence, the respective obligations
need to incorporate default values of future out-of-bounds
accesses. As before, we can use the previously proven as-
sertions as assumptions. Figure 4 depicts a stream execution
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Monitoring with verified guarantees 599

Fig. 3 A stream execution of length N + 1 with the corresponding
template unfolding is depicted. The stream execution considers the
case where no out-of-bound access occurs. Gray-colored and red dotted
positions represent unfolded assumptions and assertions, respectively.
Solid and dashed arrows indicate accesses by streams and annotations,
respectively

Fig. 4 A stream execution of length N + 1 with the corresponding
template unfolding is depicted. The stream execution covers all cases
where future out-of-accesses occur. Gray-colored and red dotted posi-
tions represent unfolded assumptions and assertions, respectively. Solid
and dashed arrows indicate accesses by streams and annotations, respec-
tively

with two dotted positions, i.e., positions where the assertion
must be proven. The position where arrows are given repre-
sents the case where only the assumption results in a future
out-of-bounds access. The last position of the stream execu-
tion represents the case in which both the assumption and the
stream result in future out-of-bounds accesses. The presented
unfolding is formalized as proof obligations in Definition 5.

Definition 5 (Proof Obligations φEnd for Future Out-of-
bounds Accesses)
The proof obligations φEnd for future out-of-bounds accesses
are defined as φt (p_asm, p_asserted, p_streams, p_assert)
with template parameters:

• p_asm := {i | wp ≤ i ≤ N},
• p_asserted := {i | 2 · wp ≤ i < 3 · wp},
• p_streams := {i | 2 · wp ≤ i ≤ N},
• p_assert := {i | 3 · wp ≤ i ≤ N}

where N = 3 · wp + w f .

So far, we have defined proof obligations for certain posi-
tions in the stream execution with and without out-of-bounds
accesses. Together, the proof obligations constitute an in-
ductive argument for the correctness of the assertions, see
Proposition 2. Here, the base case is given by Definition 3
and induction steps are given by Definitions 4 and 5. The
induction steps use the induction hypothesis, i.e., valid as-
sertions, due to the template parameter p_asserted.

Proposition 2 (Assertion Verification by Lola Unfold-
ing)
The set of assertions is correct if the formula φBegin ∧ φRun ∧

φEnd is valid.

To prove that Proposition 2 holds, we distinguish exhaus-
tively four specification cases: no temporal accesses (Propo-

sition 3), past temporal accesses only (Proposition 4), future
temporal accesses only (Proposition 5), and past and future
temporal accesses (Proposition 6). First, in the case without
temporal accesses, we show that all the necessary obliga-
tions for a Hoare triple are encoded in the formula and that
this formula only evaluates to false if the assertions are not
satisfied while all assumptions are.

Proposition 3 (Assertion Verification for Zero Offsets)
For a Lol a specification with wp = 0 and w f = 0, the set of
assertions is correct if the formula φBegin ∧ φRun ∧ φEnd is
valid.

Proof
The set of assertionsψ1, . . . ,ψn is correct for all input streams
if and only if whenever an assumption is satisfied, its corre-
sponding assertion is satisfied as well. Without loss of gen-
erality, let Γ = {α}, assume(α) = {θ}, and assert(α) = {ψ}.
We prove the proposition by showing that the formula en-
codes an argument for the correctness of the assertions.
We consider the case that wp = 0, w f = 0, and the formula
φBegin ∧ φRun ∧ φEnd is valid.

In this case, we do not have past or future out-of-bounds
accesses. Hence, the obligations consider a single Run step
with N = 0 and template parameters:

By instantiating the template for Run, we encode the follow-
ing obligations:

As can be seen, the formula encodes “assume∧ program→
assertion” for a single position. Note that a single position
suffices since no temporal dependencies exist. Table 1 shows
that the formula evaluates to f alse only if an assertion eval-
uates to false, although the assumptions are valid and the
output computations behave as expected. Conversely, if the
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Table 1 Truth table for the encoding of the Hoare triple

θ σ ψ θ ∧σ→ψ

0 0 0 1 assumption invalid
0 0 1 1 assumption invalid
0 1 0 1 assumption invalid
0 1 1 1 assumption invalid
1 0 0 1 outputs invalid
1 0 1 1 outputs invalid
1 1 0 0 incorrect
1 1 1 1 correct

formula is valid, then the set of assertions is correct or as-
sumptions violated.

Note that no further obligations are added by φBegin and
φEnd since the same template instances are created:

φBegin
Def. 3

=
∧

0≤N<1
φt

(
{i |0≤i≤N }, ∅,
{i |0≤i≤N }, {i |0≤i<1}

)

= φt ({0}, f alse, {0}, {0}) = φRun,

φEnd
Def. 5

= φt

(
{i |0≤i≤0}, ∅,
{i |0≤i≤0}, {i |0≤i≤0}

)
= φt ({0}, f alse, {0}, {0}) = φRun. �

Next, we show that all necessary obligations for temporal
accesses to previous stream values are encoded. Further, we
show that an encoding of an inductive argument is provided
that considers all possible combinations of out-of-bounds
accesses at the beginning of stream execution as the base
case and a monitoring step with no out-of-bounds accesses
as the inductive step.

Proposition 4 (Assertion Verification for Past Offsets
Only)
For a Lol a specification with wp > 0 and w f = 0, the set of
assertions is correct if the formula φBegin ∧ φRun ∧ φEnd is
valid.

Example
Consider the Lola specification

that simplifies Listing 2, e.g., only past offset accesses are
used. Here, wp is 1 and w f is 0. The unfolding of φBegin
checks all possible combinations of out-of-bounds accesses
of annotations, i.e., reset[-1, false], and outputs, i.e.,
o1[-1, 0]. In comparison to Fig. 2, φBegin would only pro-
duce N = 0 and N = 1 without future accesses. Also φRun

represents the induction step where no default values are
taken. �

Proof
The set of assertionsψ1, . . . ,ψn is correct for all input streams
if and only if whenever an assumption is satisfied, its corre-
sponding assertion is satisfied as well. Without loss of gen-
erality, let Γ = {α}, assume(α) = {θ}, and assert(α) = {ψ}.
We prove the proposition by showing that the formula en-
codes an inductive argument for the correctness of the as-
sertions. We consider the case that wp > 0, w f = 0, and the
formula φBegin ∧ φRun ∧ φEnd is valid.

In this case, we consider only accesses to the past. The
formula encodes a k-induction where φBegin encodes the base
cases and φRun the step case.

The template parameter for φBegin are:

We have

where φBegin encodes stream executions that handles all pos-
sible out-of-bounds accesses. The range of stream execution
N from 0 to 2 · wp covers all combinations of stream and
assumption out-of-bounds scenarios. Two times the wp is
required since it is required in case that an output accesses
available past values while at the same position the access of
an assumption is out-of-bounds. Figure 5 depicts an example
for wp = 1. The subfigure on the top shows a stream execu-
tion where both the output computation and the assumption
have out-of-bounds accesses. The subfigure on the bottom
shows a stream execution where the output access to the past
at the last position is in-bound but at the accessed position
the access of the used assumption is not.

Furthermore, φRun unfolds a stream execution and uses the
inductive argument. The unfolding is depicted in Fig. 6. It
shows that a stream execution is unfolded with an assertion
at position 3 · wp . The inductive argument is depicted as
asserted. The asserted unfolding is based on the base-
cases of the k-induction where k = wp . Further, our encoding
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Fig. 5 All stream executions of φBegin for wp = 1 are depicted. It
shows the case where possibly both accesses are out-of-bounds (upper)
and the case where only an assumption is out-of-bounds (lower). A
gray-colored box indicates that an assumption has been unfolded at this
position, while a red dotted box indicates that an assertion has been
unfolded at this position. Solid and dashed arrows indicate accesses by
streams and annotations, respectively

Fig. 6 The unfolding of a stream execution is depicted. The assertion
is proven at position 3 · wp . Assumptions and outputs are unfolded such
that all accesses can be resolved. The inductive argument that is shown
in the induction base is represented by asserted

ensures that no out-of-bounds accesses occur by sufficiently
unfolding the assumptions and outputs.

The template parameter for φRun are:

and N = 3 · wp .
Now we obtain

Since w f = 0, no future out-of-bounds access can occur and,
therefore, no obligations are added by φEnd ,

φEnd
Def. 5

= φt

(
{i |wp ≤i≤3·wp }, {i |2·wp ≤i<3·wp },
{i |2·wp ≤i≤3·wp }, {i |3·wp ≤i≤3·wp }

)
= φt (p_asm,p_asserted,p_streams,p_assert)

= φRun.

The formula φBegin ∧ φRun ∧ φEnd intuitively encodes a
k-induction where k = wp :

φBegin

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

assume(0) ∧ program(0) → assert(0),
. . .

assume(k) ∧ program(k) → assert(k)

∧ φRun

{
assume(n) ∧ program(n) → assert(n).

Similar to the first case, for each base case and step case, if
the formula is valid then the assertions must be correct. �

After specifications with past offsets only, we now con-
sider future-only specifications. Similar to before, we show
that an encoding of an inductive argument is provided. In
contrast to before, the encoding must also prove that default
values do not violate assertions at the end of a stopped stream
execution.

Proposition 5 (Assertion Verification for Future Offsets
Only)
For a Lol a specification with wp = 0 and w f > 0, the set of
assertions is correct if the formula φBegin ∧ φRun ∧ φEnd is
valid.

Example
Consider the Lola specification

that simplifies Listing 2, e.g., only future offset accesses are
used. Here, wp is 0 and w f is 1. The unfolding of φBegin
checks all possible combinations of out-of-bounds accesses
of annotations, i.e., reset[1, false], and outputs, i.e.,
o1[1, 0]. φRun represents the induction step where no de-
fault values are taken. �

Proof
The set of assertionsψ1, . . . ,ψn is correct for all input streams
if and only if whenever an assumption is satisfied, its corre-
sponding assertion is satisfied as well. Without loss of gen-
erality, let Γ = {α}, assume(α) = {θ}, and assert(α) = {ψ}.
We prove the proposition by showing that the formula en-
codes an inductive argument for the correctness of the as-
sertions. We consider the case that wp = 0, w f > 0, and the
formula φBegin ∧ φRun ∧ φEnd is valid.

In this case, only future stream accesses are considered.
The formula encodes a k-induction where φEnd represent the
base cases and φRun the step case. By unfolding a stream
execution of length w f , φEnd covers all possible future out-
of-bounds combinations for stream as well as annotation
accesses. Figure 7 depicts φEnd where N = w f . The cases are
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Fig. 7 A stream executions of length wf is depicted. It shows the case
where only the last assumption access is out-of-bounds. A gray-colored
box indicates that an assumption has been unfolded at this position,
while a red dotted box indicates that an assertion has been unfolded at
this position. Solid and dashed arrows indicate accesses by streams and
annotations, respectively

similar to the base cases in the second case but this time for
the future accesses. The template parameter for φEnd are:

and N = w f .
We have

The induction step φRun unfolds a stream execution and uses
the inductive argument. The unfolding is depicted in Fig. 8. In
this case, the assertion is at the first position and the k base
cases hold for possible future out-of-bounds accesses, i.e.,
at the next w f positions. Further, outputs and assumptions
are unfolded to consider all necessary output computations
and assertion accesses.

The template parameter for φRun are:

and N = 3 · w f .
We thus obtain

Fig. 8 The unfolding of a stream execution is depicted. The assertion
is proven at the first position. Assumptions and outputs are unfolded
such that all accesses can be resolved. The inductive argument that is
shown in the induction base is represented by asserted

Note that φBegin adds no further obligations to the formula
since a single execution suffices to include all possible out-
of-bounds values.

The formula φBegin ∧ φRun ∧ φEnd intuitively encodes a
k-induction where k = w f :

φEnd

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

assume(0) ∧ program(0) → assert(0),
. . .

assume(k) ∧ program(k) → assert(k)

∧ φRun

{
assume(n) ∧ program(n) → assert(n).

Similar to the past-only case, for each base case and step case,
if the formula is valid then the assertions must be correct. �

Finally, the next case provides an inductive argument for
Lola specification with past and future temporal accesses.
The inductive argument incorporates default values in the
base case at the beginning and at the end of stream executions.
Further, it handles all combinations of past and future out-
of-bounds accesses.

Proposition 6 (Assertion Verification for Nonzero Offsets)
For a Lol a specification with wp > 0 and w f > 0, the set of
assertions is correct if the formula φBegin ∧ φRun ∧ φEnd is
valid.

Example
Consider the Lola specification in Listing 2, i.e., wp =

1 and w f = 1. The unfolding of φBegin checks all possible
combinations of out-of-bounds accesses of annotations, i.e.,
reset[-1, false] and reset[1, false], and outputs,
i.e., o1[-1, 0] and o1[1, 0]. Here φRun represents the
induction step where no default values are taken.

Proof
The set of assertionsψ1, . . . ,ψn is correct for all input streams
if and only if whenever an assumption is satisfied, its corre-
sponding assertion is satisfied as well. Without loss of gen-
erality, let Γ = {α}, assume(α) = {θ}, and assert(α) = {ψ}.
We prove the proposition by showing that the formula en-
codes an inductive argument for the correctness of the as-
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Fig. 9 All combinations of past out-of-bounds accesses with future accesses are depicted

sertions. We consider the case that wp > 0, w f > 0, and the
formula φBegin ∧ φRun ∧ φEnd is valid.

Further, we consider combinations of past and future ac-
cesses. Hence, all combinations of out-of-bounds accesses
need to be covered. The formula φBegin covers all possible
combinations of past out-of-bounds accesses with future ac-
cesses. The combinations are depicted in Fig. 9: N = 0 rep-
resents the case that all accesses are out-of-bounds, N = wp

represents the case that, except for the past output stream ac-
cess at the last position, all other accesses are out-of-bounds,
and vice versa for the future stream access at the first po-
sition, N = 2 · wp represents the case that only accesses of
annotations are out-of-bounds, N = 2 · wp + w f represents
both cases that only one annotation is out-of-bounds, and
N = 2 · (wp + w f ) − 1 represents the case that only the past
access of an annotation is out-of-bounds.

The template parameter for φBegin are:

We have

Since φBegin covers only combinations of past out-of-bounds
accesses with future accesses, φEnd covers future out-of-
bounds accesses only. The unfolding is depicted in Fig. 10.

The assertions are unfolded such that all combinations of
future out-of-bounds accesses are covered: annotation only
and stream and annotation combined. Since the first k base
cases are already covered, they can be used here as asserted.
Further, outputs and assumptions are unfolded such that all
required accesses are available.

The template parameter for φEnd are:

and N = 3 · wp + w f .
We now have

Last, we need to show that the assertions also hold for the case
that no out-of-bounds access exists. Hence, the unfolding is
encoded as depicted in Fig. 11. The assertion is proven at
position 3 · wp and already shown assertions of past and
future accesses are incorporated by asserted. Further, all
required accesses of outputs and assumptions are unfolded
such that no out-of-bounds access exists.

The template parameter for φRun are:

and N = 3 · (wp + w f ).
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Fig. 10 The unfolding at the end of a stream execution is depicted. Assumptions and outputs are unfolded such that all accesses can be resolved.
The inductive argument that is shown in the induction base is represented by asserted

Fig. 11 The unfolding of a stream execution during run is depicted. The assertion is proven at position 3 · wp . Assumptions and outputs are
unfolded such that all accesses can be resolved. The inductive argument that is shown in the induction base is represented by asserted

So we obtain

Similar to the other cases, for each base case and step case,
if the formula is valid then the assertions must be correct.

�

By proving all cases of temporal accesses in Propositions 3
to 6, Proposition 2 is proven – the verification approach
is sound. Soundness refers to the ability of an analyzer to
prove the absence of errors — if a Lola specification is
accepted, it is guaranteed that the assertions are not violated.
The converse does not hold, i.e., the presented verification
approach is not complete. Completeness refers to the ability
of an analyzer to prove the presence of errors — if a Lola
specification is rejected, the counterexample given should be
a valid stream execution that results in an assertion violation.
The following Lola specification is rejected even though
no assertion is violated:

Here, since the if-condition in Line 3 evaluates to true
at the beginning of the stream execution, sum is a constant
stream with value zero. Hence, the assertion in Line 4 is never
violated. The verification approach rejects this specification.
The reason for this is that sum ≤ 100 is added as an asserted
condition in φRun. Therefore, the SMT solver can assign a
value between 91 and 100 to the earliest sum variable of the
unfolding, resulting in an assertion violation of the next sum
variable.

4 Application experience in avionics

In this section, we present details about the tool implementa-
tion and tool experiences on practical avionic specifications.

Tool implementation and usage The tool is based on
the open source RTLola framework.4 Specifically, it uses
the Lola frontend to parse a given specification into an in-
termediate representation. Based on this representation, the
SMT formulas are created and evaluated with the Rust z3
crate.5 At its current phase of the crate’s development, a
combined solver is implemented that internally uses either
a nonincremental or an incremental solver. There is no in-
formation on the implemented tactics available, but all our
requests could be solved within seconds. For functions that
are not natively supported by the Rust Z3 solver, the output
is arbitrarily chosen by the solver with respect to the range

4 https://rtlola.org/. The extension is not open source yet, but will be
integrated into [23].

5 https://docs.rs/z3/0.9.0/z3/

Springer

https://rtlola.org/
https://docs.rs/z3/0.9.0/z3/


Monitoring with verified guarantees 605

of the function. The tool expects a Lola specification aug-
mented by assumptions and assertions. The verification is
done automatically and produces a counterexample stream
execution, if any exists. The counterexample can then be
used by the user to debug its specifications. Two different
kinds of user are targeted. First, users that write the en-
tire augmented specification. Such a user could be a system
engineer who is developing a safety monitor and wants to
ensure that it contains critical properties. Second, users that
augment an existing specification. Here, one reason could be
that an existing monitor shall be composed with other critical
components and certain behavioral properties are expected.
Also, similar to software testing, the task of writing a specifi-
cation and their respective assumptions and assertions could
be separated between two users to ensure the independence
of both.

Practical results To gain practical tool experience, pre-
viously written specifications based on interviews with en-
gineers of the German Aerospace Center [25] were extended
by assumptions and assertions. The previous specifications
were tested using log-files and simulations – the authors con-
sidered them correct. We report several specification errors
in Table 2 that were detected by the presented verification
extension. In fact, the detected errors would have resulted in
undetected failures. After the errors in the previous specifi-
cations were fixed, all assertions were proven correct. Note
that the errors could have been found by manual reviews.
However, such reviews are tedious and error-prone, espe-
cially when temporal behaviors are involved. The detected
errors in Table 2 can be grouped into three classes: Classical
Bugs, Operator Errors, and Wrong Interpretations. Classical
bugs are errors that occur when implementing an algorithm.
Operator errors are Lola specific errors, e.g., temporal ac-
cesses. Last, wrong interpretations refer to gaps between

the specification and the user’s design intend, e.g., violated
assertions due to incomplete specifications. Next, we give
one representative example for each group. We reduced the
specification to the representative fragment.

Example 1 (Classical Bug)
The Lola specification in Listing 3 monitors the fuel level.
A monitor shall notify the operator when one of the three
different fuel levels are reached: half (Line 9), warning (Line
10), and danger (Line 11). The fuel level is computed as
a percentage in Lines 7 to 8. It uses the fuel level at the
beginning of the flight (Line 6) as a reference for its com-
putation. Given the documentation of the fuel sensor, it is
known that fuel values are within R+ and decreasing. This
is formalized in Line 4 as an assumption. As an invariant,
we asserted that the starting fuel is greater or equal to fuel
(Line 16). Further, in Lines 17 to 19, we stated that once a

Listing 3 The fixed version of the Lola ctrl_output specification that
monitors the fuel level. Three level of engagement are depicted: half,
warning, and danger

Table 2 Detected errors by the verification extension, where #o, #a, and #g represent the number of outputs, assumptions, and assertions given in
the specification, respectively

Specification Appx. #o #a #g Detected errors

gps_vel_output A.1 14 6 6 –
gps_pos_output A.2 19 3 10 –
imu_output A.3 18 6 6 Wrong default value

Division by zero
nav_output A.4 25 3 5 Missing abs()
tagging A.5 6 2 2 –
ctrl_output A.6 25 7 8 Wrong threshold comparisons
mm_output_1 A.7 4 1 2 –
mm_output_2 A.8 17 6 9 Missing if condition

Wrong default value
contingency_output A.9 4 8 1 Observation: both contingencies could be

true in case of voting, i.e., both at 50%
health_output A.10 1 5 1 –
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level is reached it should remain at this level. During our ex-
periment, the assertion led to a counterexample that pointed
to the previously used and erroneous fuel level computation:

In short, the output computed the consumed fuel and not the
remaining fuel. The computation could be easily fixed by
converting consumed fuel into remaining fuel, see Line 8.
Therefore, Listing 3 satisfies its assertion. Note, that offset
accesses were used to assert the temporal behavior of the fuel
level output stream. Further, trigger_once is an abbrevia-
tion which states that only the first raising edge is reported
to the user.

Example 2 (Operator Error)
An important monitoring property is to detect frozen values
as these indicate a deteriorated sensor. Such a specification is
depicted in Listing 4. Here, as an input, the acceleration in x-
direction is given. The frozen value check is computed from
Line 6 to 10. It compares previous values using Lola’s
offset operator. To check this computation, we added the
sanity check that asserts that no frozen value shall be detected
(Line 13) when small changes in the input are present (Line
4). In the previous version, the frozen values were computed
using the abbreviated offset operator:

This resulted in a counterexample that pointed to wrong
default values. Although the abbreviated version is easier
to read and reduces the size of the specification, it is un-
fortunately not suitable for this kind of property. The tool
detected the unlikely situation that the first value of ax is 0.0
which would have resulted in evaluating frozen_ax to true.
Although unlikely, this should be avoided as contingencies
activated in such situations depend on correct results and
otherwise could harm people on the ground. By unfolding
the operator and adding a different default value to one of
the past accesses, the error was resolved (Line 6). Listing 4
shows the fixed version which satisfies its assertion.

Listing 4 The Lola imu_output specification that monitors frozen
acceleration values

Example 3 (Wrong Interpretation)
In Listing 5, two visual sensor readings are received (Lines
2–5). Both, readings argue over the same observations where
avgDist represents the average distance to the measured ob-
stacle, actual is the number of measurements, and static
is the number of unchanged measurements. A simple rat-
ing function is introduced (Lines 7–12) that estimates the
corresponding rating – the higher the better. Using these
ratings, the trust in each of the sensors is computed proba-
bilistically (Lines 11–13). When considering the integration
of such a monitor as an ASTM F3269-21 switch condition
that decides which sensor value should be forwarded, the
specification should be revised. This is the case because the
assertion in Line 17 produces a counterexample which indi-
cates that both trust triggers (Lines 14–15) can be activated
at the same time. A common solution for this problem is to
introduce a priority between the sensors.

The examples show how the presented Lola verification
extension can be used to find errors in specifications. We
also noticed that the annotations can serve as documenta-
tion. System assumptions are often implicitly known during
development and are finally documented in natural language
in separate files. Having these assumptions explicitly stated
within the monitor specification potentially reduces future
mistakes when reusing the specification, e.g., when compos-
ing with other monitor specifications. Listing 6 depicts such
an example specification. Here, the monitor interfaces are
clearly defined by the domain of input a (Line 5) and output
o (Line 13). Also, reset is assumed to be valid at least once
per second (Line 5). Further, no deeper understanding of the
internal computations (Lines 7–10) is required in order to
safely compose this specification with others.

5 Monitoring assumptions

The presented verification approach offers an analysis of the
specification that can guarantee the desired behavior of the

Listing 5 The Lola contingency_output specification that uses an
heuristic to decide which sensor is more trustworthy
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Listing 6 Lola specification annotations describe interface proper-
ties

monitor outputs. Yet, these guarantees are often based on as-
sumptions that can be violated at runtime. Further, a violated
assumption does not directly result in a violated assertions.
As an example consider Listing 4 that states an assertion
which is violated when six consecutive ax values are the
same. Hence, the sequence 〈0.1; 0.1; 0.1; 0.1; 0.4; 0.5〉 satis-
fies the assertion. Yet, it violates the assumption at the first
positions.

In this section, we will give a translation of an annotated
specification into a specification that checks assumptions at
runtime and efficiently activates and deactivates assertion
checks. Further, we will present experimental results show-
ing that the verification extension not only provides static
guarantees, but that translating it into a corresponding speci-
fication can lead to better runtime performance compared to
a monitor that simply checks all assertions during runtime.

5.1 Translation into Lola 2.0

We translate an annotated Lola specification into a Lola
2.0 specification [10]. Lola 2.0 extends Lola by streams
that can be spawned, filtered, and closed at runtime. For
the translation, we only need to handle assumptions and
assertions since trigger, input, and output streams are directly
supported by Lola 2.0.

We replace each assumption by an output stream. A stream

is an output stream that
is created when its spawn condition es is true. It then starts
producing values by evaluating its computation e if its filter
condition e f is true until its close condition ec is satisfied.
Since a violated assumption can influence previous and fu-
ture assertions due to temporal offset accesses, the compu-
tation e is a counter that represents how many assertions
are impacted by the assumption. If the counter is positive,
then an assumption was violated that influences an assertion
computation. To compute the impact of a violated assump-
tion, we take the maximum between the longest chain of
offset accesses from assertion to assumption plus one. This
is achieved by an analysis of the dependency graph [8]. To

start the counter, we use the negated assumption as spawn
condition. Further, we close the stream when the impact of
a violated assumption is over, i.e., when the counter is zero.
As filter condition, we use true to decrease the counter in
each step.

We also represent assertion checks by output streams. For
each assertion, we use an output stream that is only extended
if one of its corresponding assumptions is violated, i.e., its
counter value is positive. We also add a trigger to report
assertion violations.

As an example consider the annotated Lola specification

that checks the maximal velocity value (Line 3) and the av-
erage velocity over a discrete window of three (Line 5). The
assumption (Line 2) and the assertion (Line 5) are trans-
formed to

The output vel_max and trigger remain unchanged. Note that
the trigger could have been replaced by an assertion. Yet, this
would not reduce as much overhead as for the window check
which the following experiments will show.

5.2 Experiments

For our experiments, we compare the performance of the
presented translation to a naive translation that checks as-
sumptions and assertions independently in each execution
step. As annotated specification, we use

that we scale in the number of annotation pairs using the
variable i and the computational load of the assertion by the
window variable w. For instance, i = 10 and w = 5 produces
ten inputs with the corresponding annotations where each
assertion takes the sum over the last five input values includ-
ing the current one. The naive translation vn with omitted
triggers is
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The presented translation vt also with omitted triggers is

For the experiments, the considered values of i were 5, 10,
and 15 and the values of w were 0, 5, and 10. The ex-
periments were conducted on three different kinds of log-
files: no assumption is violated, all assumptions are violated,
half of the assumptions are violated. Each log-file contains
10.000.000 events that were sufficient to report the average
time in nanoseconds required by the monitor to evaluate one
input event. Each experiment was carried out three times
and the average was taken. For the experiments, an eight-

core machine with an 2.5 GHz Intel i7 processor with 32 GB
RAM was used.

The results of the experiments are depicted in Fig. 12. As
can be seen in Fig. 12a, which considers log-files with no
violation of assumptions, version vt significantly improves
runtime by up to 64.06%. It can also be seen that version vt
improves the required time per event by 8.17% already in the
case of simple assertions. Further, the required time for vt
remained constant while increasing the window size which
shows that no unnecessary assertion checks were computed;
in contrast to vn, where the required time correlates with the
size of the window. Next, Fig. 12b considers log-files where
all assumptions are violated. The results show that this time
vt correlates with the size of the window similar to vn since
all the assertions need to be checked due to violated assump-
tions. The experiments show that vt incurs an overhead of up

Fig. 12 The results of the log-file analyses using the translations of an
annotated specification is given. Entries in the table represent the time
required by the monitor for one input event. The specification version
vn represents a specification that checks assumptions and assertion for
each event in the log-file whereas the specification version vt checks

an assertions only if its corresponding assumption is violated by the
use of output streams that use spawn, filter, and close conditions. The
symbol Δ represents the runtime effect of dynamic assertion checks,
i.e., positive values indicate improvement and negative values indicate
deterioration
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to−33.86%. However, Fig. 12c shows that already in the case
where half of the inputs violate the assumptions and a more
complex assertion is used (w = 5), the Lola 2.0 specifica-
tion version vt pays off and outperforms vn by up to 15.91%.
The results are also graphically depicted in Fig. 12d.

Overall, the experiments show that translating an anno-
tated specification into a Lola 2.0 specification can be used
to report assertion violations due to violated assumptions
efficiently at runtime. Since assumptions are generally ex-
pected to be satisfied in the nominal case, the translation
also improves the monitor’s runtime without losing its guar-
antees. Especially complex assertions based on simple as-
sumptions benefit from the translation. If the assertions are
simple, the benefits from the translation are negligible.

Remark
We also considered the alternative Lola assumption encod-
ing

that no longer uses Lola 2.0 features. Our result showed
a runtime improvement of up to 59.17% in the case of no
violations and a runtime deterioration of only up to −8.54%.
Still, we decided on the Lola 2.0 assumption encoding to
gain the best performance, since assumptions should not be
violated in the nominal case. Yet, these results indicate that
the parameterization of the assumptions has the largest share
in the reported deterioration.

6 Conclusion

As both the relevance and the complexity of cyber-physical
systems continue to grow, runtime monitoring is an essen-
tial ingredient of safety-critical systems. When monitors are
derived from specifications it is crucial that the specifica-
tions are correct. In this paper, we have presented a sound
verification approach for the stream-based monitoring lan-
guage Lola. With this approach, the developer can formally
prove guarantees on the streams computed by the monitor,
and hence ensure that the monitor does not cause dangerous
situations. The verification extension is motivated by upcom-
ing aviation regulations and standards as well as by practical
feedback of engineers.

The extension has been applied to previously written
Lola specifications that were obtained based on interviews
with aviation experts. In this process, we discovered and fixed
several serious specification errors.

Further, since assumption can fail during runtime, they
must be monitored and only when they are violated, their
respective assertions need to be monitored as well. In this

paper, we have efficiently monitored verified guarantees at
runtime. Our experiments have shown that our Lola 2.0 en-
coding can significantly improve the monitors performance
while maintaining a low overhead in case of few assump-
tion violations. Yet, this improvement is highly dependent
on the given specification. In general, simple assumptions
and complex assertions benefit from this approach.

In the future, we plan to develop automatic invariant gen-
eration for Lola specifications. Another interesting direc-
tion for future work is to support the effort of [2] by exploiting
the results of the analysis for the optimization of the specifi-
cation and the resulting monitoring code. Finally, we plan to
extend the verification approach to RTLola, the real-time
extension of Lola.

Appendix: Lola specifications – experience
report

A.1 Specification: gps_vel_out put

Springer
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A.2 Specification: gps_pos_out put
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A.3 Specification: imu_out put

A.4 Specification: nav_out put
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A.5 Specification: t agging

A.6 Specification: ct r l_out put
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A.7 Specification: mm_out put_1
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A.8 Specification: mm_out put_2

A.9 Specification: cont ingency_out put

Springer
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A.10 Specification: heal th_out put
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