
ar
X

iv
:2

10
9.

04
65

6v
1

 [
cs

.L
O

]
 1

0
Se

p
20

21

Efficient Black-Box Checking via Model

Checking with Strengthened Specifications

Junya Shijubo , Masaki Waga , and Kohei Suenaga

Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract. Black-box checking (BBC) is a testing method for cyber-
physical systems (CPSs) as well as software systems. BBC consists of ac-
tive automata learning and model checking ; a Mealy machine is learned
from the system under test (SUT), and the learned Mealy machine is
verified against a specification using model checking. When the Mealy
machine violates the specification, the model checker returns an input
witnessing the specification violation of the Mealy machine. We use it to
refine the Mealy machine or conclude that the SUT violates the specifica-
tion. Otherwise, we conduct equivalence testing to find an input witness-
ing the difference between the Mealy machine and the SUT. In the BBC
for CPSs, equivalence testing tends to be time-consuming due to the time
for the system execution. In this paper, we enhance the BBC utilizing
model checking with strengthened specifications. By model checking with
a strengthened specification, we have more chance to obtain an input wit-
nessing the specification violation than model checking with the original
specification. The refinement of the Mealy machine with such an input
tends to reduce the number of equivalence testing, which improves the
efficiency. We conducted experiments with an automotive benchmark.
Our experiment results demonstrate the merit of our method.

Keywords: black-box checking, cyber-physical system falsification, spec-
ification strengthening, automata learning

1 Introduction

Due to its safety-critical nature, the safety assurance of a cyber-physical system
(CPS) is crucial. However, since a CPS is implemented as a combination of soft-
ware and physical systems, traditional safety-assurance techniques for software
such as testing and formal verification are hard to apply to a CPS.

Much effort has been devoted to adapt these safety-assurance methods for
software to a CPS [16]. Representatives of these methods are falsification [13] and
formal verification [7,17]. Given a CPS M and a specification ϕ that describes
how the system should work, a falsification method tries to discover an input
to M that violates ϕ to reveal a flaw of M. In contrast, a formal verification
method tries to guarantee the absence of bugs by mathematically proving that
M conforms to ϕ.

There is a tradeoff between these two groups. Although formal verification
ensures high-level safety by resorting to mathematical proofs, its cost is too

1

http://arxiv.org/abs/2109.04656v1
https://orcid.org/0000-0002-2853-1159
https://orcid.org/0000-0001-9360-7490
https://orcid.org/0000-0002-7466-8789

2 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Learn an automaton
that approximatesM

Verify if
M̃ |= ϕ by

model checking

Test if
M 2 ϕ is
witnessed

by σ

Check if
M≃ M̃

by equivalence
testing

M 2 ϕ

witnessed by σ

DeemsM |= ϕ

(A)

(B)
(C)(D)

Learn a Mealy machine M̃

M̃ 2 ϕ

witnessed
by σ

M̃ |= ϕ

No.
(M 6= M̃ is

witnessed by σ)

M 6= M̃ is
witnessed by σ

Yes.DeemsM = M̃

Fig. 1: The workflow of black-box checking.

heavy to be applied to a large CPS. Furthermore, it cannot be applied if the
system M is a black box. On the contrary, falsification is cheaper than formal
verification and applicable even if M is a black box. However, efficiently driving
the counterexample search for a black box M is often challenging.

Black-box checking (BBC) [32], one of the falsification methods, is an ap-
proach to address this tradeoff. The main idea of BBC is to combine active
automata learning such as L* [2], which synthesizes an automaton approximat-
ing the behavior of a black-box system, with model checking—one of the formal
verification techniques—to search for a counterexample in an organized way.

Fig. 1 shows the workflow of BBC. It first learns a Mealy machine M̃ that
approximates the behavior of the black-box system M under test ((A) in Fig. 1);
this can be done by using the candidate-generation phase of automata learning
algorithm such as L* [2]. Notice that the learned M̃ may not be equivalent to
M. Next, BBC decides whether M̃ |= ϕ holds by model checking ((B) in Fig. 1.)
If this does not hold (i.e., M̃ 6|= ϕ), the model-checking procedure returns a
counterexample input to M̃ that drives M̃ to a state that satisfies ¬ϕ. BBC
then checks whether σ is a true counterexample or a spurious one by feeding σ
to the original system M and observing its behavior ((C) in Fig. 1.) If σ is a true
counterexample (i.e., σ witnesses M 2 ϕ), then BBC has disproved M |= ϕ; it
returns σ as a counterexample. If σ is not a counterexample to the actual system
M, then σ is a spurious counterexample that exhibits the difference between M
and M̃. Then, BBC uses σ as a new input to the automata-learning procedure
to obtain a new automaton. If M̃ |= ϕ holds in the model-checking step in
(B), BBC gives M̃ and M to an equivalence-testing procedure ((D) in Fig. 1).

Efficient Black-Box Checking by Specification Strengthening 3

Learn an automaton
that approximatesM

Verify if
M̃ |= ϕ by

model checking

Verify if
M̃ |= ψ by

model checking

Test if
M 6|= ψ is

witnessed by σ

Test if
M 2 ϕ is
witnessed

by σ

Check if
M≃ M̃ by
equivalence

testing

M 2 ϕ

witnessed by σ
DeemsM |= ϕ

(A)

(B)
(C)(D)

(B′)

(C′)

Learn a Mealy machine M̃

M̃ 2 ϕ

witnessed
by σ

M̃ |= ϕM̃ |= ψ

M̃ 6|= ψ witnessed by σ
Yes

No. (M 6= M̃ is witnessed by σ)

No.
(M 6= M̃ is

witnessed by σ)

M 6= M̃ is
witnessed by σ

Yes.

DeemsM = M̃

Fig. 2: The workflow of our method, where ψ is a strengthened specification of
ϕ. The red part is the changes from the original BBC (Fig. 1).

The equivalence-testing procedure tries to find an input trace that differentiates
M and M̃ by generating many inputs and executing M and M̃. One may
use random sampling for the input generation or may use more sophisticated
techniques like hill climbing and evolutionary computation. If an input σ that
exhibits the difference between M and M̃ is discovered, BBC uses σ as a new
input to the automata learning procedure. Otherwise, BBC deems that M̃ and
M are equivalent and returns M |= ϕ.

One of the practical issues in BBC for CPSs is its long execution time. In
particular, the computational cost of the equivalence testing between a CPS and
an automaton is high compared to that of the model checking. This is because
the number of the states of a synthesized automaton to be model-checked is
small, but a simulation of the system takes time; therefore, the computational
cost of equivalence testing, which requires many runs of simulations, is high.

Based on the above observation, we propose a method to optimize BBC
by reducing the number of equivalence tests. The basic observation is that the
number of the equivalence tests conducted by an execution of BBC is the number
of the transitions from (B) to (D) in Fig. 1; therefore, if we can reduce the number
of such transitions, the time spent for an execution of BBC is reduced.

To this end, we adapt BBC so that the model checking of a learned automaton
M̃ is conducted against a stronger specification ψ than the original ϕ. A model
checking with ψ tends to return a counterexample than it is checked against ϕ,
which promotes transition from (B) to (C) rather than to (D).

Fig. 2 shows the workflow of the proposed method; the difference from the
original BBC is presented in red. If M̃ |= ϕ is successfully verified by a model

4 Junya Shijubo, Masaki Waga, and Kohei Suenaga

checker ((B) in Fig. 2), our procedure generates a stronger specification ψ and
applies a model checker to verify M̃ |= ψ ((B′) in Fig. 2). If the verification fails
with a counterexample σ, our procedure checks whether σ witnesses that the
original M violates the strengthened specification ψ ((C′) in Fig. 2). If it is not
the case, σ exhibits the difference between M and M̃ since σ does not drive
M to the violation of ψ but it does for M̃. Then, the learned automaton M̃ is
refined by using the new data σ ((A) in Fig. 2). If M̃ is verified to conform to ψ
or σ drives M to the violation of ψ, then our procedure conducts an equivalence
test ((D) in Fig. 2).

To generate a stronger specification ψ than ϕ, we define syntactic rewriting
rules to strengthen ϕ. The rules include, for example, rewriting of p∨ q to p∧ q,
where p and q are atomic propositions, and rewriting of an STL formula ♦Iϕ to
♦I′ϕ, where the interval I ′ is a subset of I. We define the strengthening relation
and prove its correctness.

We implemented our method as an extension of FalCAuN [37] that imple-
ments BBC for CPSs. To check the effectiveness of our method, we evaluated
our implementation using the Simulink model of an automatic transmission sys-
tem [19]. The result shows that our method is up to 66% faster than the original
BBC, which demonstrates the effectiveness of our method.

1.1 Related work

Active automata learning has various applications in software engineering [18,35],
e. g., specification mining [12,31] and synthesis [25]. Black-box checking (BBC) [32],
which is also known as learning-based testing (LBT), is an application of active
automata learning for system testing. BBC has been used for testing numerical
software [28], distributed systems [29], and autonomous systems [23]. BBC is
implemented in LBTest [30] and LearnLib [22,27].

As one of the quality assurance methods of CPSs, falsification [13,5] has
been attracting attention from both academia and industry. There are several
practical tools for falsification, for example, S-TaLiRo [3] and Breach [9]. See also
the report [11] of the annual friendly competition on the falsification problem.
There are various industrial case studies utilizing these tools for falsification.
Yamaguchi et al. [38] presents a case study that uses the falsification tool Breach
to find issues in automotive systems. Hoxha et al. [20] demonstrates falsification
on industrial size engine model using S-TaLiRo. Cameron et al. [6] uses S-TaLiRo
to search for violations of artificial pancreas controllers that automate insulin
delivery to patients with type-1 diabetes.

Robustness-guided falsification [13] is a widely-used technique to solve the
falsification problem with optimization, e. g., simulated annealing [24] and CMA-
ES [4]. Robustness-guided falsification reduces the falsification problem to mini-
mizing the quantitative satisfaction degree called robustness [14,10] of the speci-
fication ϕ in signal temporal logic (STL) [26]. Recently, BBC is also used for the
falsification of CPSs [37]. In [37], an equivalence testing dedicated to CPS falsi-
fication called robustness-guided equivalence testing is introduced. Robustness-

Efficient Black-Box Checking by Specification Strengthening 5

guided equivalence testing tries to find a witness σ of M̃ 6= M useful for the
falsification problem by minimizing the robustness.

Robust linear temporal logic (rLTL) [36] is an extension of LTL with 5-valued
semantics. rLTL is used to guarantee that a requirement violation due to a small
assumptions violation is small. The 5-valued semantics of rLTL is based on a
weakening of temporal operators in rLTL formulas related to our strengthening.

After recalling the preliminaries in Section 2, we introduce our enhancement
of BBC via model checking with strengthened specifications in Section 3. We
show the experimental evaluation in Section 4, and conclude in Section 5.

2 Preliminaries

For a set S, we denote its power set by P(S). For a set S, an infinite sequence
s = s0, s1, · · · ∈ Sω of S, and i, j ∈ N, i ≤ j, we denote the subsequence
si, si+1, . . . , sj ∈ S∗ by s[i, j]. For a set S, a finite sequence s ∈ S∗ of S, and an
infinite sequence s′ ∈ Sω of S, we denote their concatenation by s · s′.

2.1 Linear temporal logic

Linear temporal logic (LTL) [33] is a temporal logic which is commonly used to
describe temporal behaviors of systems.

Definition 1 (Syntax of linear temporal logic). For a finite set AP of
atomic propositions, the syntax of linear temporal logic is defined as follows,
where p ∈ AP and i, j ∈ N ∪ {∞} satisfying i ≤ j1.

ϕ, ψ ::= ⊤ | p | ¬ϕ | ϕ ∨ ψ | ϕ U[i,j) ψ | Xϕ

We denote the set of linear temporal logic formulas by LTL.

In addition to the syntax in Definition 1, we use the following syntactic ab-
breviations of LTL formulas. Intuitively, ♦ϕ stands for “eventually ϕ holds” and
�ϕ stands for “globally ϕ holds”.

⊥ ≡ ¬⊤, ϕ ∧ ψ ≡ ¬((¬ϕ) ∨ (¬ψ)), ϕ→ ψ ≡ (¬ϕ) ∨ ψ,

♦[i,j)ϕ ≡ ⊤ U[i,j) ϕ, �[i,j)ϕ ≡ ¬(♦[i,j)¬ϕ), ϕ U ψ ≡ ϕ U[0,∞) ψ

♦ϕ ≡ ♦[0,∞)ϕ, �ϕ ≡ �[0,∞)ϕ

The semantics of LTL formulas is defined by the following satisfaction relation
(π, k) |= ϕ. For an infinite sequence π, an index k, and an LTL formula ϕ,
(π, k) |= ϕ intuitively stands for “π satisfies ϕ at k”.

1 In the standard definition of LTL, the interval U[i,j) is always [0,∞) and it is omitted.
We employ the current syntax to emphasize the similarity to STL. We note that this
does not change the expressive power.

6 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Definition 2 (Semantics of linear temporal logic). For an LTL formula
ϕ, an infinite sequence π = π0, π1, · · · ∈ (P(AP))ω of subsets of atomic proposi-
tions, and k ∈ N, we define the satisfaction relation (π, k) |= ϕ as follows.

(π, k) |= ⊤

(π, k) |= p ⇐⇒ p ∈ πk

(π, k) |= ¬ϕ ⇐⇒ (π, k) 2 ϕ

(π, k) |= ϕ ∨ ψ ⇐⇒ (π, k) |= ϕ ∨ (π, k) |= ψ

(π, k) |= Xϕ ⇐⇒ (π, k + 1) |= ϕ

(π, k) |= ϕ U[i,j) ψ ⇐⇒ ∃l ∈ [k + i, k + j). (π, l) |= ψ

∧ ∀m ∈ {k, k + 1, . . . , l}. (π,m) |= ϕ

If we have (π, 0) |= ϕ, we denote π |= ϕ.

In this paper, we mainly use a subclass of LTL called safety LTL. Safety LTL
is a subclass of LTL whose violation can be witnessed by a finite sequence. The
existence of finite witness simplifies the application to BBC.

Definition 3 (safety LTL). An LTL formula ϕ is safety if for any infinite
sequence π ∈ (P(AP))ω satisfying π 2 ϕ, there is i ∈ N such that for any
prefix π[0, j] of π longer than i (i. e., j > i), and for any infinite sequence
π′ ∈ (P(AP))ω, we have π[0, j] · π′ 2 ϕ

2.2 LTL model checking

Model checking is a technique to verify the correctness of a system model M
against a specification ϕ. We utilize Mealy machines for system modeling and
LTL formulas for a specification ϕ.

Definition 4 (Mealy machine). For an input alphabet Σ and an output al-
phabet Γ , a Mealy machine is a 3-tuple M = (L, l0, ∆), where L is the finite
set of locations, l0 ∈ L is the initial location, and ∆ : (L× Σ) → (L× Γ) is the
transition function.

For a Mealy machine M = (L, l0, ∆) over Σ and Γ , the language L(M) ⊆
(Σ × Γ)ω is defined as follows.

L(M) = {(a0, b0), (a1, b1), · · · | ∃l1, l2, . . . , ∀i ∈ N. ∆(li, ai) = (li+1, bi)}

For an infinite sequence σ = (a0, b0), (a1, b1), · · · ∈ (Σ×Γ)ω, we define pr1(σ) =
a0, a1, · · · ∈ Σω and pr2(σ) = b0, b1, · · · ∈ Γω. For a Mealy machine M, the
input language Lin(M) ⊆ Σω and the output language Lout(M) ⊆ Γω are
Lin(M) = {pr1(σ) | ∃σ ∈ L(M)} and Lout (M) = {pr2(σ) | ∃σ ∈ L(M)}.

In the model checking, we use a Mealy machine M with the output alphabet
Γ = P(AP) to model the system, and check if all the sequences in its language
L(M) satisfy the LTL formula ϕ. Moreover, if there is a sequence in the language
L(M) and violating the LTL formula ϕ, the model checker returns a sequence
witnessing the violation. The formal definition of model checking is as follows.

Efficient Black-Box Checking by Specification Strengthening 7

Definition 5 (LTL model checking). Let Σ be the input alphabet and let AP
be the set of the atomic propositions. Given an LTL formula ϕ over AP and a
Mealy machine M over Σ and P(AP), LTL model checking decides if for any
π ∈ Lout(M), we have π |= ϕ. If there is σ ∈ L(M) satisfying pr2(σ) 2 ϕ, the
LTL model checker returns such σ. We denote ∀π ∈ Lout(M). π |= ϕ by M |= ϕ.

In this paper, we utilize safety LTL formulas in Definition 3. For any safety
LTL formula ϕ with M 2 ϕ, there is a finite sequence σ ∈ (Σ × P(AP))

∗

such
that for any σ′ ∈ (Σ × P(AP))

ω
satisfying σ ·σ′ ∈ L(M), we have pr2(σ ·σ

′) 6|=
ϕ. We use such a finite sequence σ as a witness of M 2 ϕ. For the discussion on
such a finite witness, we define the finite language Lfin(M) of a Mealy machine
M as Lfin(M) = {σ ∈ (Σ × P(AP))∗ | ∃σ′ ∈ (Σ × P(AP))ω . σ · σ′ ∈ L(M)}.

2.3 Signal temporal logic

Signal temporal logic (STL) [26] is a variant of LTL dedicated to representing
behaviors of real-valued signals. Although the standard definition is for contin-
uous-time signals, we employ discrete-time STL [14] since we use STL for BBC.

Definition 6 (signal). For a finite set Y of variables, a (discrete-time) signal
σ ∈ (RY)∞ is a finite or infinite sequence of valuations ui : Y → R. For a finite
signal σ = u0, u1, . . . , un−1 ∈ (RY)∗, we denote the length n of σ by |σ|.

Definition 7 (discrete-time STL). For a finite set Y of variables, the syntax
of STL is defined as follows, where y ∈ Y , ⊲⊳ ∈ {<,>}, c ∈ R, and i, j ∈ N∪{∞}.

ϕ, ψ ::= ⊤ | y ⊲⊳ c | ¬ϕ | ϕ ∨ ψ | ϕ U[i,j) ψ | Xϕ

Similarly to LTL, we use the following syntactic abbreviations.

⊥ ≡ ¬⊤, y ≥ c ≡ ¬(y < c), y ≤ c ≡ ¬(y > c), ϕ ∧ ψ ≡ ¬((¬ϕ) ∨ (¬ψ)),

ϕ→ ψ ≡ (¬ϕ) ∨ ψ, ♦[i,j)ϕ ≡ ⊤ U[i,j) ϕ, �[i,j)ϕ ≡ ¬(♦[i,j)¬ϕ),

ϕ U ψ ≡ ϕ U[0,∞) ψ, ♦ϕ ≡ ♦[0,∞)ϕ, �ϕ ≡ �[0,∞)ϕ

The semantics of STL formulas is defined similarly to that of LTL formulas.
While the satisfaction of an LTL formula is defined for an infinite sequence
π ∈ (P(AP))ω of a set of atomic propositions, the satisfaction of an STL formula
is defined for an infinite signal σ ∈ (RY)∞. Each inequality constraint in an STL
formula is evaluated with the valuation ui in the signal σ, and the satisfaction
of the other formulas is defined inductively. Formally, the satisfaction relation
(σ, k) |= ϕ is inductively defined as follows, where ϕ is an STL formula over Y ,
σ ∈ (RY)

ω
is an infinite length signal over Y , and k ∈ N is an index.

8 Junya Shijubo, Masaki Waga, and Kohei Suenaga

(σ, k) |= ⊤

(σ, k) |= y > c ⇐⇒ uk(y) > c

(σ, k) |= y < c ⇐⇒ uk(y) < c

(σ, k) |= ¬ϕ ⇐⇒ (σ, k) 2 ϕ

(σ, k) |= ϕ ∨ ψ ⇐⇒ (σ, k) |= ϕ ∨ (σ, k) |= ψ

(σ, k) |= Xϕ ⇐⇒ (σ, k + 1) |= ϕ

(σ, k) |= ϕ U[i,j) ψ ⇐⇒ ∃l ∈ [k + i, k + j). (σ, l) |= ψ

∧ ∀m ∈ {k, k + 1, . . . , l}. (σ,m) |= ϕ

The notion of safety is defined similarly to that of LTL. Moreover, model
checking with an STL formula is defined similarly. The main difference is that
the output alphabet Γ of the Mealy machine M is not P(AP) but RY .

2.4 Active automata learning

Active automata learning is a class of algorithms to construct an automaton by
a series of interactions between the learner and a teacher. In L* [2] and TTT [21]
algorithms, the learner constructs the minimum DFA AU over Σ recognizing the
target language U ⊆ Σ∗ utilizing membership and equivalence questions to the
teacher.

In a membership question, the learner asks if a word w ∈ Σ∗ is a member of
U , i. e., w ∈ U . In an equivalence question, the learner asks if a candidate DFA
A recognizes the target language U , i. e., L(A) = U . In the equivalence question,
if we have L(A) 6= U , the teacher returns a word w′ satisfying w′ ∈ L(A) △ U
as a witness of M 6= M̃, where L(A) △ U is the symmetric difference, i. e.,
L(A) △ U = (L(A) \ U) ∪ (U \ L(A)). We note that a Mealy machine M can
also be learned similarly. See e. g., [35].

Algorithm 1 outlines the L*-style active automata learning algotithm. In L*-
style active automata learning, the learning process proceeds in two repetitive
phases: candidate generation and equivalence testing. First, in the candidate
generation phase (lines 3 to 5), the learner asks several membership questions to
the teacher and constructs a candidate automaton. Once the automaton is con-
structed, the learning process proceeds to the equivalence testing phase (lines 7
to 11). The learner asks an equivalence question, and if the teacher returns a
witness of inequivalence in line 10, the learning process returns to the first phase.

For any (even black-box) system M, we can learn a Mealy machine M̃ ap-
proximating the system behavior by implementing a teacher answering mem-
bership and equivalence questions. It is usually easy to answer a membership
question—we can answer it by executing M. In contrast, it is not straightfor-
ward to answer an equivalence question if the internal structure of the system M
is unknown. When we know the size of the automaton to represent the system
M, we can utilize conformance testing with the correctness guarantee, such as
W-method [8] and Wp-method [15]. However, we usually do not know the size
of such an automaton, and thus, we need an approximate method to test the

Efficient Black-Box Checking by Specification Strengthening 9

Algorithm 1: L*-style active automata learning

input : A teacher T that answers membership and equivalence questions of
target language U

output : The minimum DFA A satisfying U = L(A)
1 observations← ∅
2 while ⊤ do

// Candidate generation phase

3 while ∃w. we need to know if w ∈ U to construct a candidate
automaton A from observations do

4 add (w, askMembershipQuestion(T, w)) to observations

5 A ← constructCandidateAutomaton(observations)
6

// Equivalence testing phase

7 if U = L(A) by equivalence question then
8 return A

9 else
10 w ← a witness of U 6= L(A)
11 add (w, askMembershipQuestion(T, w)) to observations

equivalence of the system M under learning and the candidate automaton M̃,
e. g., by random testing and mutation testing [1]. We note that, in general, these
equivalence testing methods execute the system M for many times, and tend to
be time-consuming when the system execution is expensive.

2.5 Black-box checking

Black-box checking (BBC) [32] is a testing method that combines active au-
tomata learning and model checking to test if the given black-box system M
satisfies its specification ϕ. Given a black-box system M over an input alphabet
Σ and an output alphabet P(AP), and a safety LTL formula ϕ, BBC deems
M |= ϕ or returns a counterexample σ ∈ (Σ × P(AP))∗ such that for any
σ′ ∈ (Σ × P(AP))

ω
satisfying σ · σ′ ∈ L(M), we have pr2(σ · σ′) 6|= ϕ.

Fig. 1 outlines the workflow of BBC. BBC combines L*-style active automata
learning in Algorithm 1 and model checking. More precisely, candidate genera-
tion phase (lines 3 to 5 in Algorithm 1) corresponds to (A) in Fig. 1, equivalence
testing phase of active automata learning (lines 7 to 11 in Algorithm 1) corre-
sponds to (D) in Fig. 1, and model checking is used in (B) in Fig. 1.

First, we learn a Mealy machine M̃ approximating the behavior of the system
M under test ((A) in Fig. 1). We learn such a Mealy machine M̃ by the candidate
generation of active automata learning (lines 3 to 5 in Algorithm 1). We note
that the behavior of the learned Mealy machine M̃ may be different from that
of the system M under test.

Then, we check if we have M̃ |= ϕ by model checking ((B) in Fig. 1). If M̃ 6|=
ϕ holds, the model checker returns a witness σ ∈ (Σ × P(AP))

∗

of M̃ 6|= ϕ, and
we feed σ to the system M under test to check if σ is a witness of M 6|= ϕ

10 Junya Shijubo, Masaki Waga, and Kohei Suenaga

((C) in Fig. 1). If σ witnesses M 6|= ϕ, we conclude that M 6|= ϕ holds, and
BBC returns σ as a counterexample. Otherwise, since we have σ ∈ Lfin(M̃) and
σ 6∈ Lfin (M), σ differentiates M̃ and M, and we use σ to refine the learned
Mealy machine M̃.

If M̃ |= ϕ holds in the model-checking step ((B) in Fig. 1), we test if the
behavior of M̃ and M are similar enough by equivalence testing of active au-
tomata learning ((D) in Fig. 1). If we find an input σ that differentiates M and
M̃, we use σ to refine the learned Mealy machine M̃. Otherwise, we deem that
M̃ and M are equivalent, and BBC returns M |= ϕ.

BBC for CPSs To apply BBC to test a CPS M, we need a finite abstraction
of the real-valued input and output of M. Following [37], we utilize input and
output mappers I and O to bridge the real values for the CPS execution and
the finite values for the BBC. For a CPS model M over X and Y , we fix the
abstract input alphabet Σ and the atomic propositions AP, and define an input
mapper I : Σ → RX assigning one valuation of the input signal to each a ∈ Σ
and an output mapper O : RY → P(AP) assigning a set of atomic propositions
to each valuation of the output signal. Typically, Σ is a finite subset of RX and
I is the canonical injection, and AP is a set of predicates over Y and O assigns
their satisfaction.

3 BBC enhanced via model checking with strengthened

LTL formulas

In this section, we show how we optimize BBC utilizing model checking with
strengthened LTL formulas. Fig. 2 shows the workflow of our enhanced BBC.
The high-level strategy is to reduce the number of the equivalence testing ((D)
in Fig. 2) via model checking with a strengthened LTL formula ψ ((B′) and (C′)
in Fig. 2). Since, one equivalence test consists of many executions of the system
M under test, equivalence testing tends to be time-consuming if each execution
of M is expensive. In contrast, in BBC, the size of the learned Mealy machine
M̃ tends to be small, and the model checking may be relatively fast. Overall,
the workflow in Fig. 2 may be more efficient than the original workflow of BBC
in Fig. 1, which we experimentally confirm in Section 4.

3.1 Strengthening relation of LTL formulas

To formalize our strengthening of LTL formulas, we define the strengthening
relation ֌ ⊆ LTL × LTL over LTL formulas. Given an LTL formula ϕ, we
strengthen it to another LTL formula ψ satisfying ϕ֌ ψ. The syntactic defini-
tion of ֌ is suitable for the generation of the strengthened LTL formulas.

Definition 8 (Strengthening relation of LTL formulas). For LTL for-
mulas ϕ, ψ, ֌ ⊆ LTL× LTL is the minimum relation satisfying the following.

1. For any µ, ν ∈ LTL, we have (µ ∨ ν) ֌ (µ ∧ ν).

Efficient Black-Box Checking by Specification Strengthening 11

2. For any µ ∈ LTL, we have ♦µ ֌ �♦µ.
3. For any µ ∈ LTL, we have �♦µ֌ ♦�µ.
4. For any µ ∈ LTL, we have ♦�µ֌ �µ.
5. For any µ ∈ LTL and for any indices i, j ∈ N ∪ {∞} satisfying i < j, we

have ♦[i,j)µ֌ �[i,j)µ.
6. For any µ, ν ∈ LTL, we have (µ U ν) ֌ (�µ ∧�♦ν).
7. For any µ ∈ LTL and for any indices i, j, i′, j′ ∈ N ∪ {∞} satisfying [i, j))

[i′, j′), we have ♦[i,j)µ֌ ♦[i′,j′)µ.
8. For any µ, ν ∈ LTL, if we have ν ֌ µ, we have ¬µ֌ ¬ν.
9. For any µ, µ′, ν ∈ LTL satisfying µ֌ µ′, we have (µ ∨ ν) ֌ (µ′ ∨ ν).
10. For any µ, ν, ν′ ∈ LTL satisfying ν ֌ ν′, we have (µ ∨ ν) ֌ (µ ∨ ν′).
11. For any µ, ν ∈ LTL satisfying µ֌ ν, we have Xµ֌ Xν.
12. For any µ, ν, ν′ ∈ LTL satisfying ν ֌ ν′ and for any indices i, j ∈ N∪{∞}

satisfying i < j, we have (µ U[i,j) ν) ֌ (µ U[i,j) ν
′).

13. For any ϕ, µ, ψ ∈ LTL satisfying ϕ֌ µ and µ ֌ ψ, we have ϕ֌ ψ.

We note that for the other operators than the ones in Definition 1, ֌ is
defined using their definition as the syntactic abbreviation.

Example 1. For any p ∈ AP, we have�[0,2)p֌ �[0,10)p. This is because, by con-
dition 7 of Definition 8, we have ♦[0,10)¬p ֌ ♦[0,2)¬p. By applying condition 8
of Definition 8, we obtain ¬♦[0,2)¬p֌ ¬♦[0,10)¬p. By definition of the syntactic
abbreviation, ¬♦[0,2)¬p֌ ¬♦[0,10)¬p is equivalent to �[0,2)p֌ �[0,10)p.

We have the following correctness by induction. The proof is in Appendix A.

Theorem 1 (Correctness of the strengthening relation). For any LTL
formulas ϕ and ψ satisfying ϕ ֌ ψ, ψ is stronger than ϕ, i. e., for any π ∈
(P(AP))ω and k ∈ N, (π, k) |= ϕ implies (π, k) |= ψ. ⊓⊔

Example 2. Let ϕexample = p1 ∨ ♦[0,10)p2, with p1, p2 ∈ AP. By condition 1 of
Definition 8, we have (p1∨♦[0,10)p2) ֌ (p1∧♦[0,10)p2). Therefore, p1∧♦[0,2)p2 is
one of the candidates in the strengthening of ϕexample. By conditions 7 and 10 of
Definition 8, we have ♦[0,10)p2 ֌ ♦[0,5)p2, and (p1 ∨♦[0,10)p2) ֌ (p1 ∨♦[0,5)p2).
Therefore, p1 ∨ ♦[0,5)p2 is another candidate in the strengthening of ϕexample.
We note that by condition 7 of Definition 8, we have ♦[0,10)p2 ֌ ♦[i′,j′)p2 for
any [i′, j′) ([0, 10), and in the strengthening, we have many candidates that are
different only in the interval in their temporal operator. For example, p1∨♦[0,8)p2,
p1∨♦[0,3)p2, and p1∨♦[0,1)p2 are the candidates in the strengthening of ϕexample .

3.2 BBC enhanced via model checking with strengthened formulas

We present how we enhance BBC utilizing model checking with strengthened
LTL formulas. In this section, we show the high-level scheme of our enhancement
and, in Section 3.3, we explain the design choice in our implementation. We fix
the system M under test and the specification ϕ ∈ LTL.

Fig. 2 outlines our enhanced BBC scheme. When we have M̃ |= ϕ in (B) of
Fig. 2, before conducting the equivalence testing ((D) of Fig. 2), we try to find a

12 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Algorithm 2: BBC enhanced via model checking with strengthened
LTL formulas
input : SystemM under test and an LTL formula ϕ
output : Returns ⊤ if BBC deemsM |= ϕ, otherwise, a witness σ ofM 6|= ϕ

1 Ψ ← GenCandidate(ϕ) // Generate a subset Ψ of {ψ ∈ LTL | ϕ ֌ ψ}

2 M̃ ← ConstructInitialMealy(M)
3 repeat

4 if M̃ 2 ϕ then

5 σ ← a witness of M̃ 2 ϕ

6 if σ witnesses M 2 ϕ then
7 return σ

8 else
9 foundWitness← ⊥

10 Ψchosen ← ChooseFml(Ψ)
11 forall ψi ∈ Ψchosen do // Try the strengthened specifications

12 if M̃ 2 ψi then

13 σ ← a witness of M̃ 6|= ψi

14 if σ witnesses M 6|= ψi then
15 remove ψi from Ψ

16 else // σ is a witness of M̃ 6=M
17 foundWitness← ⊤
18 break

19 if foundWitness = ⊥ then

20 if M̃ ≃M by equivalence testing then
21 return ⊤

22 else

23 σ ← a witness of M̃ 6=M

24 M̃ ← RefineMealy(M, σ)

25 until isTimeout()
26 return ⊤

witness ofM 6= M̃ by a model checking with an LTL formula ψ satisfying ϕ֌ ψ
((B′) of Fig. 2). Since M̃ 2 ϕ implies M̃ 2 ψ, by model checking, we have more
chance to obtain a witness σ of M̃ 6|= ψ than that of M̃ 6|= ϕ. When ψ is much
stronger than ϕ, the witness σ of M̃ 6|= ψ is also a witness of M 6|= ψ. In such a
case, σ does not differentiate M̃ and M, and thus, we cannot use σ to refine M̃.
Nevertheless, we claim that if the LTL formula ϕ is strengthened appropriately,
we can often refine M̃ by such a witness σ. Moreover, the refinement by such a
witness σ tends to lead to a Mealy machine useful for falsification of ϕ, which is
observed in our experiment result in Section 4.

Algorithm 2 outlines our BBC enhanced via model checking with strength-
ened LTL formulas. In line 1, we generate the candidates Ψ of the strengthened
LTL formulas used in the model checking. After constructing the initial Mealy
machine M̃ in line 2, we conduct model checking of M̃ with ϕ. When we have
M̃ 2 ϕ (line 4), we obtain a witness σ of M̃ 2 ϕ and check if σ also witnesses

Efficient Black-Box Checking by Specification Strengthening 13

M 2 ϕ by running M with σ as the input (line 6). When σ also witnesses
M 2 ϕ, we return σ as a result of BBC. Otherwise, we use σ to refine the leaned
Mealy machine M̃ (line 24).

When we have M̃ |= ϕ, we look for an input σ to refine M̃. In the original
BBC in Fig. 1, we try the equivalence testing to find such σ, In contrast, in order
to reduce the number of the equivalence testing, we conduct model checking of
M̃ with some of the LTL formulas ψ ∈ Ψ before trying the equivalence testing.
The strengthened LTL formulas Ψchosen is chosen by a function ChooseFml.
Although the stronger LTL formulas should be chosen before the weaker ones,
ChooseFml can be an arbitrary function to choose a finite set of the strengthened
specifications Ψchosen from Ψ . We note that the choice of GenCandidate and
ChooseFml defines the granularity of the strengthening of ϕ used in the model
checking, which may affect the effectiveness of our enhancement.

For each LTL formula ψi ∈ Ψchosen , we check if M̃ 2 ψi holds by model
checking in line 11. When M̃ 2 ψi holds (line 12), we obtain a witness σ of
M̃ 2 ψi. Then, we check if σ also witnesses M 2 ψi by running M with σ as
input (line 14). When σ also witnesses M 2 ϕi, we remove ψi from Ψ in line 15.
Otherwise, we use σ to refine the learned Mealy machine M̃ in line 24.

When for any ψi ∈ Ψchosen , we can not find σ to refine M̃, we fallback
to the normal loop of the BBC. Namely, we use equivalence testing to find a
witness σ of M 6= M̃ in line 20. When equivalence testing deems M̃ and M
are equivalent, we return ⊤ as the result of BBC. Otherwise, equivalence testing
returns a witness σ of M̃ 6= M, and we use σ to refine M̃ (line 24).

3.3 GenCandidate and ChooseFml in our implementation

Algorithm 3 shows our candidate generation algorithm GenCandidate. The can-
didates Ψ of the strengthened LTL formulas consists of ΨInt and ΨnoInt

2: ΨInt and
ΨnoInt are obtained by strengthening the operators with and without intervals.
They are constructed by GenIntFml and GenNoIntFml (in Algorithm 4), respec-
tively. Moreover, we remove ψi from ΨInt or ΨnoInt when ψi is removed from Ψ
in line 15 of Algorithm 2.

First, we use GenNoIntFml to construct ΨnoInt ⊆ {ψ ∈ LTL | ϕ ֌ ψ}
that is constructed by inductively strengthening the operators without intervals.
For example, for ϕ = (�[2,6)p) ∨ ♦q, we have GenNoIntFml(ϕ) = {(�[2,6)p) ∧
♦q, (�[2,6)p) ∨ �q, (�[2,6)p) ∨ ♦�q, (�[2,6)p) ∨ �♦q}. We note that for any LTL
formula ϕ, GenNoIntFml(ϕ) is a finite set.

Then, we use GenIntFml to construct a finite set ΨInt of LTL formulas by
modifying the “Eventually” and “Globally” operators with intervals in ϕ. We
employ heuristics to take the midpoint of the lower or upper bound when shrink-
ing the interval. For example, let ϕ = (�[2,6)p)∨♦q and the bound N of the time
horizon be N = 30. We start from [i′, j′) = [0,∞) (in line 9 of Algorithm 3) and

2 More precisely, ΨnoInt is a queue and its FIFO order is used in ChooseFml in
Algorithm 5.

14 Junya Shijubo, Masaki Waga, and Kohei Suenaga

Algorithm 3: The candidate generation GenCandidate in our imple-
mentation, where N ∈ N is the bound of the time horizon

1 Function GenCandidate(ϕ):
input : An LTL formula ϕ
output : The strengthened LTL formulas Ψ used in Algorithm 2

2 ΨnoInt ← GenNoIntFml(ϕ) // Strengthen the operators without

intervals

3 ΨInt ← GenIntFml(ϕ) // Strengthen the operators with intervals

4 return ΨnoInt ∪ ΨInt

5 Function GenIntFml(ϕ):
6 ΨInt ← ∅
7 switch the syntactic structure of ϕ do
8 case ϕ = �[i,j)µ do
9 i′ ← 0; j′ ←∞

10 while [i, j) ([i′, j′) do
11 ΨInt ← ΨInt ∪ {�[i′,j′)µ}

12 if i > i′ then i′ ← ⌈ i+i′

2
⌉; j′ ← N

13 else j′ ← ⌊ j+j′

2
⌋

14 case ϕ = ♦[i,j)µ do
15 ΨInt ← GenIntFml(�[i,i+1)µ)
16 i′ ← i; j′ ← i+ 1
17 while [i, j)) [i′, j′) do
18 ΨInt ← ΨInt ∪ {♦[i′,j′)µ}

19 if i < i′ then i′ ← ⌊ i+i′

2
⌋

20 else j′ ← ⌈ j+j′

2
⌉

21 case ϕ = �µ do
22 ΨInt ← {�µ

′ | µ′ ∈ GenIntFml(µ)}
23 case ϕ = µ ∨ ν do
24 ΨInt ← {µ

′ ∨ ν | µ′ ∈ GenIntFml(µ)} ∪ {µ∨ ν′ | ν′ ∈ GenIntFml(ν)}
25 case ϕ = µ ∧ ν do
26 ΨInt ← {µ

′ ∧ ν | µ′ ∈ GenIntFml(µ)} ∪ {µ∧ ν′ | ν′ ∈ GenIntFml(ν)}

27 return ΨInt

repeatedly update the lower bound i′ to the midpoint of i and i′ (line 12) to gen-
erate an LTL formula with it. Namely, we generate (�[0,∞)p)∨♦q, (�[1,30)p)∨♦q,
and (�[2,30)p)∨♦q. Once we have i = i′, we repeatedly update the upper bound
j′ to the midpoint of j and j′ (line 13), and use [i′, j′) for the LTL genera-
tion. Namely, we generate (�[2,18)p) ∨ ♦q, (�[2,12)p) ∨ ♦q, (�[2,9)p) ∨ ♦q, and
(�[2,7)p) ∨ ♦q. By this construction, we have finer-grained strengthening when
the strengthened formula is closer to the original formula while ignoring many
strengthened formulas far from the original one for efficiency.

In ChooseFml (in Algorithm 5), we take one of the strongest LTL formulas in
ΨnoInt and take all the strongest LTL formulas in ΨInt. We note that the strength
of LTL formulas is a strict partial order, and there may be multiple strongest
specifications.

Efficient Black-Box Checking by Specification Strengthening 15

Algorithm 4: Candidate generation by strengthening the operators
without intervals
input : An LTL formula ϕ
output : A queue ΨnoInt of LTL formulas that are obtained by strengthening

the operators without intervals in ϕ
1 Function GenNoIntFml(ϕ):
2 ΨnoInt ← () // ΨnoInt is a queue of strengthened specs

3 switch the form of ϕ do
4 case ϕ = µ ∨ ν do
5 push µ ∧ ν to ΨnoInt

6 forall µ′ ∈ GenNoIntFml(µ) do
7 push µ′ ∨ ν to ΨnoInt

8 forall ν′ ∈ GenNoIntFml(ν) do
9 push µ ∨ ν′ to ΨnoInt

10 case ϕ = ♦µ do
11 return (�µ, ♦�µ, �♦µ, ♦µ)
12 case ϕ = µ U ν do
13 return (�µ ∧�ν, �µ ∧ ♦�ν, �µ ∧�♦ν)
14 case ϕ = µ ∧ ν do
15 forall µ′ ∈ GenNoIntFml(µ) do
16 push µ′ ∧ ν to ΨnoInt

17 forall ν′ ∈ GenNoIntFml(ν) do
18 push µ ∧ ν′ to ΨnoInt

19 case ϕ = �µ do
20 forall µ′ ∈ GenNoIntFml(µ) do
21 push �µ′ to ΨnoInt

22 return ΨnoInt

Algorithm 5: Our implementation of ChooseFml

input : A set Ψ of the candidates of the strengthened LTL formulas consists
of ΨInt and ΨnoInt

output : A set Ψchosen of LTL formulas chosen from Ψ

1 Ψchosen ← ∅
2 Ψ ′

noInt ← ΨnoInt

// Find the first formula in ΨnoInt with no stronger formulas in

ΨnoInt

3 while Ψ ′

noInt 6= ∅ do
4 pop ψ from Ψ ′

noInt

5 if ∀ψ′ ∈ Ψ ′

noInt. ψ 6� ψ′ then
6 Ψchosen ← Ψchosen ∪ {ψ}
7 break

8 Ψchosen ← Ψchosen ∪ {ψ ∈ ΨInt | ∀ψ
′ ∈ ΨInt. ψ 6� ψ

′}
9 return Ψchosen

16 Junya Shijubo, Masaki Waga, and Kohei Suenaga

4 Experiment

We conducted experiments to evaluate the efficiency of our BBC enhanced by
model checking with strengthened LTL formulas. We compared our method with
a tool FalCAuN [37] for robustness-guided BBC for CPSs. We implemented a
prototype tool based on FalCAuN in Java 3.

4.1 Experiment setup

As the CPSM under test, we used the Simulink model of an automatic transmis-
sion system [19], one of the standard models in the falsification literature. Given
a 2-dimensional signal of the throttle and the brake, the automatic transmission
model M returns a 3-dimensional signal of the velocity v, the engine rotation ω,
and the gear g. The range of the throttle and the brake are [0, 100] and [0, 325],
respectively. The domains of v and ω are positive reals, and the domain of g is
{1, 2, 3, 4}. As the specification, we used the set of the STL formulas in Table 1.
The STL formulas ϕ1 and ϕ2 are taken from [39], and ϕ3-ϕ5 are our original.
Since the length of the input and output signals in our experiment is less than
30, we let the bound N in Algorithm 3 be 30.

Since the input and the output of the system M under test are continuous,
we cannot directly apply BBC for the falsification of M. In our experiments, we
use the following discretization both in time and values. For the discretization in
time, we use fixed-interval sampling of every one second. For the discretization
of input values, we use the following 4 (= 2×2) values: the throttle is either 0 or
100, and the brake is either 0 or 325. For the discretization of output values, we
use the coarsest atomic propositions AP that is a partition of the output range
compatible with the inequalities in the STL formula in each benchmark. For
example, since the inequality constraints in the STL formula ϕ1 are v < 100 and
v > 75, the atomic propositions AP for ϕ1 is {v ≤ 75, 75 < v < 100, 100 ≤ v}.

Among the optimization methods supported by FalCAuN to search for a
counterexample in the equivalence testing, we use a genetic algorithm. Due to
the stochastic nature of a genetic algorithm, we executed each benchmark 50
times. For each execution, we measured the time and the number of the Simulink
executions to falsify the STL formula. We set the timeout of each execution to 4
hours. We experimented on a Google Cloud Platform c2-standard-4 instance (4
vCPUs and 15.67GiB RAM). We used Debian 10 buster and MATLAB R2020b.

4.2 Performance evaluation

Table 2 shows the summary of the experiment results. Execution times are shown
in minutes. For each STL formula ϕi, we observe that, on average, our method
falsified ϕi in a shorter time than the baseline. Moreover, on average, the number
of Simulink executions of our method is smaller than that of baseline. Further-
more, the number of timeouts of our method is smaller than or equal to that

3 Our implementation is publicly available in https://github.com/MasWag/FalCAuN/releases/tag/RV2021.

https://github.com/MasWag/FalCAuN/releases/tag/RV2021

Efficient Black-Box Checking by Specification Strengthening 17

Table 1: List of the STL formulas in our benchmarks
STL formula

ϕ1 �[0,26](v < 100) ∨ �[28,28](v > 75)
ϕ2 �((ω < 4770) ∨ (�[1,1](ω > 600)))
ϕ3 �((g > 3) ∨ (ω < 4775) ∨ ♦[0,2](g > 3))
ϕ4 �((g > 2) ∨ ((g < 2) U (v > 30)))
ϕ5 �((♦[0,3](ω < 4000)) ∨ (♦[0,3](v > 100)))

Table 2: Summary of the experiment result of 50 executions for our benchmarks.
The numbers T/N in each cell at “average” and “std. dev.” columns are the time
T [min.] to falsify the specification and the number N of Simulink executions
to falsify the specification. The number N in each cell at “timeout” column is
the number N of timeouts to falsify the specification. In this experiment, the
timeout is 4 hours. For each benchmark ϕi, we highlight the best cell in average
column in terms of the following order: T/N is better than T ′/N ′ if and only if
we have T < T ′ or we have both T = T ′ and N < N ′. For each benchmark, the
cells of the smallest number of timeouts is highlighted.

Our method Baseline (FalCAuN)
average std. dev. timeout average std. dev. timeout

ϕ1 19.29 / 6664.7 7.16 / 1962.7 0 26.70 / 9471.0 15.19 / 5412.2 0
ϕ2 54.89 / 19066.1 42.38 / 13609.3 5 78.71 / 27362.6 57.85 / 18761.1 13
ϕ3 16.43 / 6068.8 18.65 / 6622.2 1 17.35 / 6306.3 25.60 / 8195.7 1
ϕ4 2.53 / 957.0 1.08 / 478.6 0 7.48 / 2323.5 5.40 / 1683.2 0
ϕ5 4.92 / 1785.4 2.07 / 803.5 0 5.19 / 2003.4 2.31 / 904.5 0

of the baseline. Overall, the experiment results in Table 2 suggest that model
checking with strengthened STL formulas makes the BBC more efficient.

Although our method outperforms the baseline for all the STL formulas, we
also observe that the amount of acceleration differs among the formulas. For ϕ4,
our method was about 66% faster than the baseline, and acceleration was the
largest. This is because our method generates four strengthened specifications
by strengthening the “Until” operator in ϕ4. They guided the learning of an
automaton in BBC. For ϕ1 and ϕ2, acceleration by our enhancement was about
27% to 30%, which is significant but not as much as the one for ϕ4. This is
because our method generates many strengthened specifications by changing the
interval of the “Globally” operators while model checking with them guided the
Mealy machine learning in the BBC. Although many specifications are generated
by our specification strengthening, the falsification of the original specifications
in ϕ1 and ϕ2 is difficult and time consuming, the overhead due to the model
checking with many strengthened LTL formulas is not significant.

In contrast, for ϕ3 and ϕ5, our method was only about 5% faster than the
baseline. For ϕ3, by definition of the strengthening relation in Definition 8, fal-
sification of most of the strengthened specifications requires the output signal to
violate both g > 3 and ω < 4775 (almost) at the same time, which is a falsifica-
tion of a disjunctive specification and tends to be difficult [34]. Since falsification

18 Junya Shijubo, Masaki Waga, and Kohei Suenaga

of most of the strengthened STL formulas is difficult, the improvement thanks
to the model checking with them is limited. One of the future directions to over-
come this issue is enhancing genetic algorithm-based equivalence testing, e. g.,
utilizing ranking [34]. Another direction is to strengthen the specification by
modifying the thresholds to make the specification strengthening finer-grained.

For ϕ5, since the original specification ϕ5 is not difficult and we can falsify
it relatively quickly, we cannot ignore the overhead of model checking with the
strengthened specifications. For such a situation, possible future work is an im-
provement of the choice of the strengthened STL formulas, e. g., by performing
binary search on the strengthening of specifications to reduce the number of
specifications to be model-checked.

5 Conclusions and future work

One of the issues in BBC for CPSs is its long execution time. In particular,
the execution time of the equivalence test tends to be the bottleneck because an
equivalence test consists of many system executions and each execution of a CPS
is time-consuming. To reduce the number of the equivalence tests, we proposed
an enhancement of BBC via model checking with strengthened specifications.
By model checking with an LTL formula ψ stronger than the original formula
ϕ, we have more chance to obtain a witness of the violation, and such a witness
tends to be helpful for the refinement of the learned Mealy machine M̃. Our
experiment result shows that our method accelerates BBC, and our method is
up to 66 % faster than the conventional BBC.

When the complexity of the original LTL formula ϕ is high, e. g., contain-
ing many temporal operators, the number of the strengthened formulas tends
to be huge. In such a case, our current naive choice of the LTL formulas to be
model checked, i. e., GenCandidate and ChooseFml in Algorithm 2, may cause
significant overhead. One of the future works is to optimize such a choice of the
model-checked formulas. For example, utilizing a binary search on the strength-
ened formulas or rewriting multiple operators in the original formula at one time
may reduce the number of the model checking execution. Another future work
is to investigate other kinds of specification strengthening. One example is to
change the threshold in the inequalities. Optimization of the robustness-guided
equivalence testing with recent falsification techniques, e. g., [34], is also future
work.

Acknowledgments. This work is partially supported by JST ACT-X Grant
No. JPMJAX200U, JSPS KAKENHI Grant Number 19H04084, and JST CREST
Grant Number JPMJCR2012, Japan.

References

1. Aichernig, B.K., Tappler, M.: Efficient active automata
learning via mutation testing. J. Autom. Reason. 63(4),

Efficient Black-Box Checking by Specification Strengthening 19

1103–1134 (2019). https://doi.org/10.1007/s10817-018-9486-0,
https://doi.org/10.1007/s10817-018-9486-0

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6,
https://doi.org/10.1016/0890-5401(87)90052-6

3. Annpureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-taliro: A tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany,
March 26-April 3, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6605,
pp. 254–257. Springer (2011). https://doi.org/10.1007/978-3-642-19835-9 21,
https://doi.org/10.1007/978-3-642-19835-9_21

4. Auger, A., Hansen, N.: A restart CMA evolution strategy with increas-
ing population size. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC 2005, 2-4 September 2005, Edinburgh, UK.
pp. 1769–1776. IEEE (2005). https://doi.org/10.1109/CEC.2005.1554902,
https://doi.org/10.1109/CEC.2005.1554902

5. Bartocci, E., Deshmukh, J.V., Donzé, A., Fainekos, G.E., Maler, O., Nick-
ovic, D., Sankaranarayanan, S.: Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications. In: Bar-
tocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Intro-
ductory and Advanced Topics, Lecture Notes in Computer Science, vol.
10457, pp. 135–175. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5 5,
https://doi.org/10.1007/978-3-319-75632-5_5

6. Cameron, F., Fainekos, G.E., Maahs, D.M., Sankaranarayanan, S.: To-
wards a verified artificial pancreas: Challenges and solutions for runtime
verification. In: Bartocci, E., Majumdar, R. (eds.) Runtime Verification
- 6th International Conference, RV 2015 Vienna, Austria, September 22-
25, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9333,
pp. 3–17. Springer (2015). https://doi.org/10.1007/978-3-319-23820-3 1,
https://doi.org/10.1007/978-3-319-23820-3_1

7. Casagrande, A., Piazza, C.: Model checking on hybrid automata. In: 15th
Euromicro Conference on Digital System Design, DSD 2012, Cesme, Izmir,
Turkey, September 5-8, 2012. pp. 493–500. IEEE Computer Society (2012).
https://doi.org/10.1109/DSD.2012.87, https://doi.org/10.1109/DSD.2012.87

8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496,
https://doi.org/10.1109/TSE.1978.231496

9. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hy-
brid systems. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided
Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6174,
pp. 167–170. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6 17,
https://doi.org/10.1007/978-3-642-14295-6_17

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed
Systems - 8th International Conference, FORMATS 2010, Klosterneuburg, Austria,
September 8-10, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6246,

https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1109/DSD.2012.87
https://doi.org/10.1109/DSD.2012.87
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17

20 Junya Shijubo, Masaki Waga, and Kohei Suenaga

pp. 92–106. Springer (2010). https://doi.org/10.1007/978-3-642-15297-9 9,
https://doi.org/10.1007/978-3-642-15297-9_9

11. Ernst, G., Arcaini, P., Bennani, I., Donze, A., Fainekos, G., Frehse, G., Math-
esen, L., Menghi, C., Pedrielli, G., Pouzet, M., Yaghoubi, S., Yamagata, Y.,
Zhang, Z.: Arch-comp 2020 category report: Falsification. In: Frehse, G., Al-
thoff, M. (eds.) ARCH20. 7th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH20). EPiC Series in Com-
puting, vol. 74, pp. 140–152. EasyChair (2020). https://doi.org/10.29007/trr1,
https://easychair.org/publications/paper/ps5t

12. Esparza, J., Leucker, M., Schlund, M.: Learning workflow petri nets. In:
Lilius, J., Penczek, W. (eds.) Applications and Theory of Petri Nets,
31st International Conference, PETRI NETS 2010, Braga, Portugal, June
21-25, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6128,
pp. 206–225. Springer (2010). https://doi.org/10.1007/978-3-642-13675-7 13,
https://doi.org/10.1007/978-3-642-13675-7_13

13. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of specifications
and its applications to falsification, parameter mining, and runtime mon-
itoring with s-taliro. In: Finkbeiner, B., Mariani, L. (eds.) Runtime Ver-
ification - 19th International Conference, RV 2019, Porto, Portugal, Oc-
tober 8-11, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11757, pp. 27–47. Springer (2019). https://doi.org/10.1007/978-3-030-32079-9 3,
https://doi.org/10.1007/978-3-030-32079-9_3

14. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic
specifications for continuous-time signals. Theor. Comput. Sci.
410(42), 4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021,
https://doi.org/10.1016/j.tcs.2009.06.021

15. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Software Eng. 17(6), 591–603
(1991). https://doi.org/10.1109/32.87284, https://doi.org/10.1109/32.87284

16. Hasuo, I.: Metamathematics for systems design - comprehensive trans-
fer of formal methods techniques to cyber-physical systems. New Gener.
Comput. 35(3), 271–305 (2017). https://doi.org/10.1007/s00354-017-0023-1,
https://doi.org/10.1007/s00354-017-0023-1

17. Herber, P., Adelt, J., Liebrenz, T.: Formal verification of intelligent cyber-physical
systems with the interactive theorem prover keymaera X. In: Götz, S., Lins-
bauer, L., Schaefer, I., Wortmann, A. (eds.) Proceedings of the Software En-
gineering 2021 Satellite Events, Braunschweig/Virtual, Germany, February 22
- 26, 2021. CEUR Workshop Proceedings, vol. 2814. CEUR-WS.org (2021),
http://ceur-ws.org/Vol-2814/short-A3-2.pdf

18. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bib-
liography of the years 2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and
Limits - International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany,
April 24-27, 2016, Revised Papers. Lecture Notes in Computer Science, vol.
11026, pp. 123–148. Springer (2018). https://doi.org/10.1007/978-3-319-96562-8 5,
https://doi.org/10.1007/978-3-319-96562-8_5

19. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd Interna-
tional Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/trr1
https://easychair.org/publications/paper/ps5t
https://doi.org/10.1007/978-3-642-13675-7_13
https://doi.org/10.1007/978-3-642-13675-7_13
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1109/32.87284
https://doi.org/10.1109/32.87284
https://doi.org/10.1007/s00354-017-0023-1
https://doi.org/10.1007/s00354-017-0023-1
http://ceur-ws.org/Vol-2814/short-A3-2.pdf
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5

Efficient Black-Box Checking by Specification Strengthening 21

2015, Seattle, WA, USA, April 13, 2015. EPiC Series in Computing, vol. 34, pp.
25–30. EasyChair (2014), https://easychair.org/publications/paper/4bfq

20. Hoxha, B., Abbas, H., Fainekos, G.E.: Using s-taliro on industrial size auimm-
lertomotive models. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd Interna-
tional Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek
2015, Seattle, WA, USA, April 13, 2015. EPiC Series in Computing, vol. 34, pp.
113–119. EasyChair (2014), https://easychair.org/publications/paper/r8gZ

21. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free ap-
proach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) Run-
time Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8734,
pp. 307–322. Springer (2014). https://doi.org/10.1007/978-3-319-11164-3 26,
https://doi.org/10.1007/978-3-319-11164-3_26

22. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib - A
framework for active automata learning. In: Kroening, D., Pasareanu,
C.S. (eds.) Computer Aided Verification - 27th International Confer-
ence, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
487–495. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 32,
https://doi.org/10.1007/978-3-319-21690-4_32

23. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous
systems using spatial and temporal requirements. In: Perrouin, G.,
Acher, M., Cordy, M., Devroey, X. (eds.) Proceedings of the 1st In-
ternational Workshop on Machine Learning and Software Engineering
in Symbiosis, MASES@ASE 2018, Montpellier, France, September 3,
2018. pp. 6–15. ACM (2018). https://doi.org/10.1145/3243127.3243129,
https://doi.org/10.1145/3243127.3243129

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
science 220(4598), 671–680 (1983)

25. Lin, S., Hsiung, P.: Compositional synthesis of concurrent systems through
causal model checking and learning. In: Jones, C.B., Pihlajasaari, P., Sun, J.
(eds.) FM 2014: Formal Methods - 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8442,
pp. 416–431. Springer (2014). https://doi.org/10.1007/978-3-319-06410-9 29,
https://doi.org/10.1007/978-3-319-06410-9_29

26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Joint International Conferences on Formal
Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3253,
pp. 152–166. Springer (2004). https://doi.org/10.1007/978-3-540-30206-3 12,
https://doi.org/10.1007/978-3-540-30206-3_12

27. Meijer, J., van de Pol, J.: Sound black-box checking in the learnlib. Innov. Syst.
Softw. Eng. 15(3-4), 267–287 (2019). https://doi.org/10.1007/s11334-019-00342-6,
https://doi.org/10.1007/s11334-019-00342-6

28. Meinke, K., Niu, F.: A learning-based approach to unit testing of nu-
merical software. In: Petrenko, A., da Silva Simão, A., Maldonado,
J.C. (eds.) Testing Software and Systems - 22nd IFIP WG 6.1 In-

https://easychair.org/publications/paper/4bfq
https://easychair.org/publications/paper/r8gZ
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1007/978-3-319-06410-9_29
https://doi.org/10.1007/978-3-319-06410-9_29
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s11334-019-00342-6
https://doi.org/10.1007/s11334-019-00342-6

22 Junya Shijubo, Masaki Waga, and Kohei Suenaga

ternational Conference, ICTSS 2010, Natal, Brazil, November 8-10,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6435, pp.
221–235. Springer (2010). https://doi.org/10.1007/978-3-642-16573-3 16,
https://doi.org/10.1007/978-3-642-16573-3_16

29. Meinke, K., Nycander, P.: Learning-based testing of distributed microservice archi-
tectures: Correctness and fault injection. In: Bianculli, D., Calinescu, R., Rumpe,
B. (eds.) Software Engineering and Formal Methods - SEFM 2015 Collocated
Workshops: ATSE, HOFM, MoKMaSD, and VERY*SCART, York, UK, Septem-
ber 7-8, 2015, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 9509, pp. 3–10. Springer (2015). https://doi.org/10.1007/978-3-662-49224-6 1,
https://doi.org/10.1007/978-3-662-49224-6_1

30. Meinke, K., Sindhu, M.A.: Lbtest: A learning-based testing tool for reactive sys-
tems. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013. pp.
447–454. IEEE Computer Society (2013). https://doi.org/10.1109/ICST.2013.62,
https://doi.org/10.1109/ICST.2013.62

31. Nitto, E.D., Harman, M., Heymans, P. (eds.): Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015. ACM (2015). https://doi.org/10.1145/2786805,
https://doi.org/10.1145/2786805

32. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chan-
son, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems, FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint International Con-
ference on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and Verification
(PSTV XIX), October 5-8, 1999, Beijing, China. IFIP Conference Proceedings,
vol. 156, pp. 225–240. Kluwer (1999)

33. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977. pp. 46–57. IEEE
Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32,
https://doi.org/10.1109/SFCS.1977.32

34. Sato, S., Waga, M., Hasuo, I.: Constrained optimization for falsi-
fication and conjunctive synthesis. CoRR abs/2012.00319 (2020),
https://arxiv.org/abs/2012.00319

35. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learn-
ing from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) For-
mal Methods for Eternal Networked Software Systems - 11th Interna-
tional School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems, SFM 2011, Bertinoro, Italy, June 13-18,
2011. Advanced Lectures. Lecture Notes in Computer Science, vol. 6659,
pp. 256–296. Springer (2011). https://doi.org/10.1007/978-3-642-21455-4 8,
https://doi.org/10.1007/978-3-642-21455-4_8

36. Tabuada, P., Neider, D.: Robust linear temporal logic. In: Talbot, J.,
Regnier, L. (eds.) 25th EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2016, August 29 - September 1, 2016, Marseille,
France. LIPIcs, vol. 62, pp. 10:1–10:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.10,
https://doi.org/10.4230/LIPIcs.CSL.2016.10

https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-662-49224-6_1
https://doi.org/10.1007/978-3-662-49224-6_1
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1145/2786805
https://doi.org/10.1145/2786805
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://arxiv.org/abs/2012.00319
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10

Efficient Black-Box Checking by Specification Strengthening 23

37. Waga, M.: Falsification of cyber-physical systems with robustness-guided
black-box checking. In: Ames, A.D., Seshia, S.A., Deshmukh, J. (eds.)
HSCC ’20: 23rd ACM International Conference on Hybrid Systems: Com-
putation and Control, Sydney, New South Wales, Australia, April 21-24,
2020. pp. 11:1–11:13. ACM (2020). https://doi.org/10.1145/3365365.3382193,
https://doi.org/10.1145/3365365.3382193

38. Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement min-
ing, software model checking and simulation-based verification for industrial au-
tomotive systems. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in
Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6,
2016. pp. 201–204. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886680,
https://doi.org/10.1109/FMCAD.2016.7886680

39. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-
layered falsification of hybrid systems guided by monte carlo tree
search. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37(11), 2894–2905 (2018). https://doi.org/10.1109/TCAD.2018.2858463,
https://doi.org/10.1109/TCAD.2018.2858463

A Proof of Theorem 1

In the proof of Theorem 1, we use the following notation.

Definition 9 (ϕ � ϕ′). For LTL formulas ϕ and ϕ′, ϕ′ is stronger than ϕ if
for any π ∈ (P(AP))ω and k ∈ N, (π, k) |= ϕ′ implies (π, k) |= ϕ. For such ϕ
and ϕ′, we denote ϕ � ϕ′.

The following proves Theorem 1.

Proof. We prove Theorem 1 by induction on the structure of (ϕ, ψ) ∈ ֌.

1. When ∃µ, ν ∈ LTL. ϕ = µ ∨ ν and ψ = µ ∧ ν. We choose arbitrary π ∈
(P(AP))ω and k ∈ N. We assume (π, k) |= µ ∧ ν. By the definition of the
semantics of LTL formulas in Definition 2, we have (π, k) |= µ and (π, k) |=
ν. Therefore, we have (π, k) |= µ or (π, k) |= ν. By Definition 2, we have
(π, k) |= µ ∨ ν. We thus get µ ∨ ν � µ ∧ ν. This is ϕ � ψ.

2. When ∃µ ∈ LTL. ϕ = ♦µ and ψ = �♦µ. We choose arbitrary π ∈ (P(AP))ω

and k ∈ N. We assume (π, k) |= �♦µ. Expanding the syntactic abbreviations
of LTL formulas, we have (π, k) |= ¬(⊤ U (¬(⊤ U µ))). By Definition 2, we
have (π, k) 2 ⊤ U (¬(⊤ U µ)), and it follows that ∀l ∈ [k,∞). (π, l) 2 ¬(⊤ U
µ) ∨ ∃m ∈ {k, k + 1, · · · , l}. (π,m) 2 ⊤. Here, since (π, n) 2 ⊤ does not
hold for any natural number n, we have (π, k) 2 ¬(⊤ U µ). By Definition 2,
we have (π, k) |= ⊤ U µ. Using the definition of the notation of ♦ operator,
we have (π, k) |= ♦µ. We thus get ♦µ � �♦µ. This is ϕ � ψ.

3. When ∃µ ∈ LTL. ϕ = �♦µ and ψ = ♦�µ. We choose arbitrary π ∈
(P(AP))ω and k ∈ N. We assume (π, k) |= ♦�µ. Expanding the syntac-
tic abbreviations of LTL formulas, we have (π, k) |= ⊤ U (¬(⊤ U ¬µ)).
By Definition 2, we have ∃l ∈ [k,∞). (π, l) |= ¬(⊤ U ¬µ) ∧ ∀m ∈
{k, k + 1, · · · , l}. (π,m) |= ⊤. From (π, l) |= ¬(⊤ U ¬µ), it follows that

https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1109/FMCAD.2016.7886680
https://doi.org/10.1109/FMCAD.2016.7886680
https://doi.org/10.1109/TCAD.2018.2858463
https://doi.org/10.1109/TCAD.2018.2858463

24 Junya Shijubo, Masaki Waga, and Kohei Suenaga

(π, l) 2 ⊤ U ¬µ, and we have ∀l′ ∈ [l,∞). (π, l′) 2 ¬µ ∨ ∃m′ ∈ {l, l +
1, · · · , l′}. (π,m′) 2 ⊤. Here, since (π, n) 2 ⊤ does not hold for any natu-
ral number n, we have ∀l′ ∈ [l,∞). (π, l′) 2 ¬µ. By Definition 2, we have
∀l′ ∈ [l,∞). (π, l′) |= µ. In other words, there exists a natural number
l ∈ [k,∞), and for any natural number l′ after l, we have (π, l′) |= µ.
Therefore, we have ∀p ∈ [k,∞). ∃q ∈ [p,∞). (π, q) |= µ. Since (π, n) |= ⊤
holds for any natural number n, we have ∀p ∈ [k,∞). ∃q ∈ [p,∞). (π, q) |=
µ ∧ ∀r ∈ {p, p + 1, · · · , q}. (π, r) |= ⊤. By the definition of U operator in
Definition 2, we have ∀p ∈ [k,∞). (π, p) |= ⊤ U µ. Furthermore, we have
∀p ∈ [k,∞). (π, p) |= ⊤ U µ ∨∃r′ ∈ {k, k+1, · · · , p}. (π, r′) 2 ⊤. We take the
whole negative and use the definition of U operator in Definition 2, then we
have (π, k) 2 ⊤ U (¬(⊤ U µ)). By the definition of ¬ operator in Definition 2
and the definition of the syntactic abbreviations of LTL formulas, we have
(π, k) |= �♦µ. We thus get �♦µ � ♦�µ. This is ϕ � ψ.

4. When ∃µ ∈ LTL. ϕ = ♦�µ and ψ = �µ. We choose arbitrary π ∈ (P(AP))ω

and k ∈ N. We assume (π, k) |= �µ. Expanding the syntactic abbreviations
of LTL formulas, we have (π, k) |= ¬(⊤ U ¬µ). By Definition 2, we have
(π, k) 2 ⊤ U ¬µ. Furthermore, we have ∀l ∈ [k,∞). (π, l) 2 ¬µ ∨ ∃m ∈
{k, k+1, · · · l}. (π, k) 2 ⊤. Here, since (π, n) 2 ⊤ does not hold for any natural
number n, we have ∀l ∈ [k,∞). (π, l) 2 ¬µ. By Definition 2, we have ∀l ∈
[k,∞). (π, l) |= µ. Since we have k ∈ [k,∞) and ∀l ∈ [k,∞). (π, l) |= µ, we

have ∃l ∈ [k,∞).
(

∀l′ ∈ [l,∞). (π, l′) |= µ ∨∃m′ ∈ {l, l+1, · · · , l′}. (π,m′) 2

⊤
)

∧ ∀m ∈ {k, k+1, · · · , l}. (π,m) |= ⊤. By Definition 2, we have (π, k) |=

♦�µ. We thus get ♦�µ � �µ. This is ϕ � ψ.
5. When ∃µ ∈ LTL. ∃i, j ∈ N ∪ {∞}. ϕ = ♦[i,j)µ and ψ = �[i,j)µ. We choose

arbitrary π ∈ (P(AP))ω and k ∈ N. We assume (π, k) |= �[i,j)µ. Expanding
the syntactic abbreviations of LTL formulas, we have (π, k) |= ¬(⊤ U[i,j) ¬µ).
By Definition 2, we have ∀l ∈ [k + i, k + j). (π, l) |= µ ∨ ∃m ∈ {k, k +
1, · · · , l}. (π,m) 2 ⊤. Here, since (π, n) 2 ⊤ does not hold for any natural
number n, we have ∀l ∈ [k + i, k + j). (π, l) |= µ. Therefore, we have ∃l′ ∈
[k+i, k+j). (π, l′) |= µ. Since (π, n) |= ⊤ holds for any natural number n, we
have ∃l′ ∈ [k+ i, k+ j). (π, l′) |= µ ∧ ∀m′ ∈ {k, k+1, · · · , l′}. (π,m′) |= ⊤.
By Definition 2, we have (π, k) |= ⊤ U[i,j) µ. Using the notation of LTL
formulas, we have (π, k) |= ♦[i,j)µ. We thus get ♦[i,j)µ � �[i,j)µ. This is
ϕ � ψ.

6. When ∃µ, ν ∈ LTL. ϕ = µ U ν and ψ = �µ ∧ �♦ν. We choose arbitrary
π ∈ (P(AP))ω and k ∈ N. We assume (π, k) |= �µ ∧ �♦ν. By the defi-
nition of the semantic of LTL formulas Definition 2, we have (π, k) |= �µ
and (π, k) |= �♦ν. Expanding the syntactic abbreviations of LTL formu-
las, from (π, k) |= �µ, it follows that ∀l ∈ [k,∞). (π, l) |= µ ∨ ∃m ∈
{k, k + 1, · · · , l}. (π,m) 2 ⊤. Here, since (π, n) 2 ⊤ does not hold for any
natural number n, we have ∀l ∈ [k,∞). (π, l) |= µ. Also, from (π, k) |= �♦ν,
doing the same as 2., we have ∀l ∈ [k,∞). (π, l) |= (⊤ U ν) ∨ ∃m ∈
{k, k + 1, · · · , l}. (π,m) 2 ⊤. Since (π, n) 2 ⊤ does not hold for any natural
number n, we have ∀l ∈ [k,∞). (π, l) |= (⊤ U ν). Since k ∈ [k,∞), we have

Efficient Black-Box Checking by Specification Strengthening 25

(π, k) |= ⊤ U ν. By Definition 2, we have ∃l′ ∈ [k,∞).(π, l′) |= ν ∧ ∀m′ ∈
{k, k + 1, · · · , l′}. (π,m′) |= ⊤. Therefore, from ∃l′ ∈ [k,∞).(π, l′) |= ν and
∀l ∈ [k,∞). (π, l) |= µ, it follows that ∃l′ ∈ [k,∞).(π, l′) |= ν ∧ ∀r ∈
{k, k+1, · · · l′}. (π, r) |= µ. By Definition 2, we have (π, k) |= µ U ν We thus
get �µ ∧�♦ν � µ U ν. This is ϕ � ψ.

7. When ∃µ ∈ LTL. ∃i, j, i′, j′ ∈ N ∪ {∞}. [i, j)) [i′, j′) and ϕ = ♦[i,j)µ and
ψ = ♦[i′,j′)µ. We choose arbitrary π ∈ (P(AP))ω and k ∈ N. We assume
(π, k) |= ♦[i′,j′)µ. Expanding the syntactic abbreviations of LTL, we have
(π, k) |= ⊤ U[i′,j′) µ. By the semantics of LTL formula Definition 2, there
exists l ∈ [k+i′, k+j′) such that (π, l) |= µ and ∀m ∈ k, k+1, . . . , l. (π,m) |=
⊤. Since [i, j)) [i′, j′), we have l ∈ [i, j). Since (π, n) |= ⊤ holds for any
natural number n, we have (π, l′) |= µ and ∀m ∈ k, k+ 1, . . . , l. (π,m) |= ⊤.
By Definition 2, we have (π, k) |= ⊤ U[i,j) µ. By the syntactic abbreviations,
we have (π, k) |= ♦[i,j)µ. We thus get ♦[i,j)µ � ♦[i′,j′)µ. This is ϕ � ψ.

8. When ∃µ, ν ∈ LTL. ν ֌ µ and ϕ = ¬µ and ψ = ¬ν. By induction hypoth-
esis, we have ν � µ. We choose arbitrary π ∈ (P(AP))ω and k ∈ N. We
assume (π, k) |= ¬ν. By the semantics of LTL formula Definition 2, we have
(π, k) 6|= ν. From ν � µ, it follows that (π, k) |= µ =⇒ (π, k) |= ν. Taking
the contrapositive, we have (π, k) 6|= ν =⇒ (π, k) 6|= µ. Therefore, we have
(π, k) 6|= µ. By Definition 2, we have (π, k) |= ¬µ. By Definition 9, we have
¬µ � ¬ν. This is ϕ � ψ.

9. When ∃µ, µ′, ν ∈ LTL. µ֌ µ′ and ϕ = µ ∨ ν and ψ = µ′ ∨ ν. By induction
hypothesis, we have µ � µ′. We choose arbitrary π ∈ (P(AP))ω and k ∈ N.
We assume (π, k) |= µ′∨ν. By the semantics of LTL formula Definition 2, we
have (π, k) |= µ′ or (π, k) |= ν. From µ � µ′, it follows that (π, k) |= µ′ =⇒
(π, k) |= µ. Therefore, we have (π, k) |= µ or (π, k) |= ν. By Definition 2, we
have (π, k) |= µ ∨ ν. By Definition 9, we have µ ∨ ν � µ′ ∨ ν. This is ϕ � ψ.

10. When ∃µ, ν, ν′ ∈ LTL. ν ֌ ν′ and ϕ = µ ∨ ν and ψ = µ ∨ ν′. By induction
hypothesis, we have ν � ν′. We choose arbitrary π ∈ (P(AP))ω and k ∈ N.
We assume (π, k) |= µ∨ν′. By the semantics of LTL formula Definition 2, we
have (π, k) |= µ or (π, k) |= ν′. From ν � ν′, it follows that (π, k) |= ν′ =⇒
(π, k) |= ν. Therefore, we have (π, k) |= µ or (π, k) |= ν. By Definition 2, we
have (π, k) |= µ ∨ ν. By Definition 9, we have µ ∨ ν � µ ∨ ν′. This is ϕ � ψ.

11. When ∃µ, ν ∈ LTL. µ ֌ ν and ϕ = Xµ and ψ = Xν. By induction
hypothesis, we have µ � ν. We choose arbitrary π ∈ (P(AP))ω and k ∈ N.
We assume (π, k) |= Xν. By the semantics of LTL formula Definition 2,
we have (π, k + 1) |= ν. From µ � ν, it follows that (π, k + 1) |= ν =⇒
(π, k + 1) |= µ. Therefore, we have (π, k + 1) |= µ. By Definition 2, we have
(π, k) |= Xµ. By Definition 9, we have Xµ � Xν. This is ϕ � ψ.

12. When ∃µ, ν, ν′ ∈ LTL. ∃i, j ∈ N ∪ {∞}. ν ֌ ν′ and ϕ = µ U[i,j) ν and
ψ = µ U[i,j) ν′. By induction hypothesis, we have ν � ν′. We choose
arbitrary π ∈ (P(AP))ω and k ∈ N. We assume (π, k) |= µ U[i,j) ν

′. By
the semantics of LTL formula Definition 2, there exists l ∈ [i + k, j + k)
such that (π, l) |= ν′ and ∀m ∈ k, k + 1, . . . , l. (π,m) |= µ. From ν � ν′, it
follows that (π, k) |= ν′ =⇒ (π, k) |= ν. Therefore, we have (π, l) |= ν and

26 Junya Shijubo, Masaki Waga, and Kohei Suenaga

∀m ∈ k, k+1, . . . , l. (π,m) |= µ. By Definition 2, we have (π, k) |= µ U[i,j) ν.
By Definition 9, we have µ U[i,j) ν � µ U[i,j) ν

′. This is ϕ � ψ.
13. When ∃µ ∈ LTL. ϕ ֌ µ and µ ֌ ψ. By induction hypothesis, we have

ϕ � µ and µ � ψ. We choose arbitrary π ∈ (P(AP))ω and k ∈ N. We
assume (π, k) |= ψ. By µ � ψ, we have (π, k) |= µ. By ϕ � µ, we have
(π, k) |= ϕ. By Definition 9, we have ϕ � ψ.

⊓⊔

	Efficient Black-Box Checking by Specification Strengthening
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Linear temporal logic
	2.2 LTL model checking
	2.3 Signal temporal logic
	2.4 Active automata learning
	2.5 Black-box checking

	3 BBC enhanced via model checking with strengthened LTL formulas
	3.1 Strengthening relation of LTL formulas
	3.2 BBC enhanced via model checking with strengthened formulas
	3.3

	4 Experiment
	4.1 Experiment setup
	4.2 Performance evaluation

	5 Conclusions and future work
	A Proof of th:rewrite-correct

