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Abstract. In this paper, an improvement of the quality of an evidential
source of information is proposed using contextual corrections depending
on partial decisions obtained from an interval dominance relation on the
source outputs. Numerical experiments with the EkNN classifier and
synthetic and real data allows us to illustrate the performances and the
interest of this method.
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1 Introduction

In pattern recognition [1, 9], the quality of the information provided by a source
(e.g. a sensor, a classifier, . . .) plays an important role in the success of the
pattern recognition task as the information may be false, biased or irrelevant.

The belief function framework (or Dempster-Shafer theory [18]) provides a
flexible mathematical framework for dealing with imperfect information. In this
theory, the quality of a source of information is classically managed by means
of the discounting operation introduced by G. Shafer in his seminal book [18,
chapter 11, page 251]. This method has since been refined using so-called contex-
tual correction mechanisms [12, 16] taking into account more refined knowledge
about the quality of a source: its reliability (in the sense of its relevance, meaning
the capacity of the source to answer the question of interest) and its truthfulness
(meaning its capacity to tell what it knows; this capacity being possibly con-
scious - as a lie for example - or unconscious - as a bias for example) [15]. More
specifically, three mechanisms have been introduced. They are respectively called
Contextual Discounting (CD), Contextual Reinforcement (CR) and Contextual
Negating (CN). They all can be mathematically derived [16] from these notions
of reliability and truthfulness: CD, which generalizes the discounting operation,
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can adjust the output of a source in accordance with information about its reli-
ability, while CN, which generalizes the negation of a source [8], can adjust the
source according to its truthfulness, and at last, CR is the dual operation of CD,
it may reinforce a too cautious source [14, 16].

In this paper, we propose to improve the quality of a source of information
outputting belief functions regarding a question of interest using contextual cor-
rections CD, CR or CN, and partial decisions computed from the outputs using
the relation of interval dominance [19, 20], also called strong dominance in [6,
11]. More specifically, the source is considered as a black box meaning we have
no access to the manner it works to make its evidential outputs. This situation
occurs for example when a company buys a sensor from another one to perform
a given task, and the decision making process (or the algorithm) used by this
sensor is protected [13]. A learning set is available. It is composed of outputs of
the source (as mass functions for example), regarding data the ground truth of
which is known. As a simple example [10], we may have in the learning set the
following information mS output by the source regarding the true class of an
object o, which belongs to a universe Ω = {ω1, ω2, ω3}

ω1 ω2 ω3 {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
Ground truth

of object o
mS{o} 0 0 0.5 0 0 0.3 0.2 ω1

Now, instead of learning a best possible correction among CD, CR and CN
from the whole learning set as proposed in [16], we would like to propose a
method that takes advantage of all the corrections, and so propose to regroup the
outputs leading to the same partial decisions to learn the best possible correction
between CD, CR and CN in each of these groups of outputs to reach better global
performances (certainly at the cost of learning more models). With this strategy,
an output is thus adjusted differently depending on the partial decision it leads
to.

This paper is organized as follows. In Section 2, the basic concepts and nota-
tions on belief functions used in this paper are presented, as well as a reminder
on decision making with interval dominance with belief functions. Reminders
on contextual corrections are given in Section 3. Thereafter, in Section 4, the
proposed method to learn contextual corrections depending on partial decisions
is exposed. It is tested with synthetic and real data in Section 5. A discussion is
also added in this last Section to conclude the paper.

2 Belief functions: necessary concepts and notations

In this Section, necessary concepts and notations used in this paper are quickly
reminded. Further details can be found for example in [18, 17, 4].

With Ω = {ω1, ..., ωK} the universe (or the frame of discernment) represent-
ing the finite set of answers to a given question of interest, a piece of evidence
regarding the answer to this question of interest induces a mass function (MF)
mΩ (or m if no ambiguity) defined from 2Ω to [0, 1], verifying

∑
A⊆Ωm

Ω(A) = 1.
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The focal elements of a MF m are the subsets A ⊆ Ω s.t. m(A) > 0. A MF having
only one focal element A is called a categorical MF and can be simply denoted
by mA.

A MF m is in one-to-one correspondence with belief and plausibility functions
Bel and Pl respectively defined for all A ⊆ Ω by Bel(A) =

∑
B⊆Am(B), and

Pl(A) =
∑
B∩A 6=∅m(B).

The contour function pl corresponds to the restriction of the plausibility
function to the singletons of Ω, it is defined for all ω ∈ Ω by pl(ω) = Pl({ω}).

If a source S provides an output mS , and if it is also known that this source
is reliable with a degree of belief β = 1 − α ∈ [0, 1], then this original MF mS

can be discounted into a MF m s.t.

m =

{
A 7→ βmS(A) ∀A ⊂ Ω
Ω 7→ βmS(Ω) + α

(1)

Equation (1) can also be simply rewritten as m = β mS + αmΩ , with mΩ

the categorical MF defined by mΩ(Ω) = 1, and it can also be shown (see for
example [16, Prop. 11]) that the contour function associated with the discounted
MF is defined for all ω ∈ Ω by pl(ω) = 1− (1− plS(ω))β, with plS the contour
function of mS . Derivations of this operation can be found in [17, 12, 16].

At last, when a decision has to be made[3, 11], if we consider that the set of
possible decisions (or acts) is equal to Ω, we can use the following relation of
dominance between the singletons of Ω:

ω � ω′ ⇐⇒ Bel({ω}) ≥ Pl({ω′}) , (2)

and make a partial decision composed of the non dominated singletons according
to relation (2).

Due to lack of space, details cannot be written, but Equation (2) comes from
for example [6][Equation 43] or [11][Page 6, Strong dominance criterion] with
0− 1 utilities and pieces of information represented by belief functions.

3 Contextual corrections and learning

In this section, the definitions of CD, CR and CN are recalled as well as the
possibilities to learn them from labelled data [16] composed of the outputs of a
source regarding objects whose true class is known.

The contour functions resulting from CD, CR and CN are recalled with
K parameters, K being the number of elements in Ω. These mechanisms can
indeed be used with more parameters [12, 16] but as shown in [16], these config-
urations with K parameters for each corrections are expressive enough to reach
the lowest possible values (with these mechanisms) of the following measure of
discrepancy [12, 16] between the source outputs adjusted with these corrections
and the ground truth:

Epl(β) =

n∑
i=1

K∑
k=1

(pli(ωk)− δi,k)2 , (3)
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where n is the number of objects in the learning set, β = (βω, ω ∈ Ω) is the
vector composed of the K parameters of each correction, pli is the contour
function regarding the class of the object i resulting from a contextual correction
(CD, CR or CN) of the MF provided by the source for this object, and δi,k is
the indicator function of the truth of all the instances i ∈ {1, . . . , n}, meaning
δi,k = 1 if the class of the instance i is ωk, otherwise δi,k = 0.

The discrepancy measure Epl yields a linear least-squares optimization prob-
lem, which can be then efficiently solved using standard algorithms.

As for the discounting (1), we consider a source of information outputting a
MF mS regarding a question of interest. The corresponding contour functions of
each contextual correction of mS are summed up in Table 1.

Table 1: Contour functions of each contextual correction of a MF mS given for any
ω ∈ Ω. Each parameter βω may vary in [0, 1].

Corrections Contour functions

CD pl(ω) = 1− (1− plS(ω))βω
CR pl(ω) = plS(ω)βω
CN pl(ω) = 0.5 + (plS(ω)− 0.5)(2βω − 1)

4 Contextual corrections depending on partial decisions

In this paper, we propose to improve the previous learning method exposed in
Section 3, meaning we would like to reach better performances. For this, we will
consider, in the learning set, groups of distinct partial decisions the outputs of
the source lead to.

The idea is to consider that the quality of the source, and then the way
we have to adjust it, may depend on the outputs it gives regarding the objects
whose true classes are to be found. For example, the source may be quite right
when it decides a certain type of class, while having some bias when it decides
another class or a group of classes, and another bias for another class or group
of classes, etc.

Specifically we investigate the quality of the source depending on groups of
partial decisions according to relation (2). CD, CR and CN best parameters β
according to Epl (3) are then computed in each group. The correction with the
lowest value of Epl is kept in each group.

This learning procedure is summarized by Algorithm 1.

5 Numerical Experiments and Discussion

In this Section we present experiments made with the EkNN classifier [2, 5] with
k = 5 as the source of information on synthetic and real data.
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Algorithm 1 Learning procedure

Input: A set I of instances (mi{oi}, ωi), i ∈ {1, . . . , n}, mi{oi} being the output of
the source regarding object oi whose true class is ωi.
Outputs: Groups G of partial decisions and best corrections for each group.

1: procedure LearningProcedure
2: G initially empty
3: for each instance i in I do
4: Compute the partial decision coming from mi using relation (2)
5: Add i to the group g in G associated with this partial decision.

6: for each group of partial decisions g in G do
7: Compute CD, CR and CN best parameters β according to Epl (3) restricted

to the instances in this group
8: Keep for this group the correction reaching the lowest value of Epl.

Synthetic data are composed of 5000 instances, 5 classes and 2 features,
which were generated from a multivariate normal distribution with means µ1 =
(0, 0), µ2 = (2, 0), µ3 = (0.2), µ4 = (2, 2), µ5 = (1, 1) for respectively class 1, 2, 3,
4 and 5, and the same covariance matrix Σ for each class:

Σ =

[
1 0.9

0.9 1

]
(4)

An illustration of a generated synthetic data set with these parameters is
given in Figure 1.

The real data sets used from UCI [7] are described in Table 2.

Table 2: Descriptions of used UCI data sets.

Data sets # instances # features # classes

Breast cancer 569 31 2
Glass 214 10 6
Haberman 306 3 2
Ionosphere 350 34 2
Iris 150 4 3
Liver 345 6 2
Lymphography 146 18 3
Pima 768 8 2
Red wine 1599 12 6
Sonar 208 60 2
Transfusion 748 3 2
Vehicles 846 19 4
Vertebral 310 6 3

For each data set, the following experiment is repeated 10 times: one half of
the data (L1) is used to learn the EkNN classifier; then a 10-fold cross validation
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Fig. 1: Example of a generated data set.

is performed on the second half of the data with 9 folds (L2) to learn the best
correction in each group of partial decisions using Algorithm 1, and 1 fold for
testing (meaning for the test phase).

Some possible partial decisions obtained from the outputs of the source (the
EkNN classifier) with the generated data set illustrated in Figure 1 are given in
Figure 2 for some points in the feature space. Note that these groups of partial
decisions are not necessary computed in the training phase L2. They are just
given here as an illustration. As exposed in Algorithm 1, only the points (and
their associated partial decisions) in the fold L2 are considered to learn the
corrections. That is why it may happen that during the test phase, a partial
decision did not happen in the learning phase. In this situation, we propose to
use the best correction for the whole set of L2. Note that in our experiments
presented here, this case very rarely occurred.

To measure the performances, we used the measure Epl (3) with which cor-
rections are learnt, and we also wanted to use another measure with which
corrections are not learnt. For this second choice, we opted for the u65 utility
measure, introduced by Zaffalon et al. [21], which allows one to take into account
the advantages of partial decisions concerning the fact of preferring imprecision
to being randomly correct. The u65 utility measure gives indeed a greater utility
to imprecise but correct partial decisions of size n (meaning decisions equal to
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Fig. 2: Points in the feature space belonging to different groups of partial decisions ob-
tained from the generated synthetic data set composed of 5 classes and 2 attributes/fea-
tures illustrated in Figure 1. The legend for the partial decisions obtained from the
EkNN classifier and relation (2) are given above the figure. We can see that for these
points, 10 possible partial decisions have been obtained: 1 (meaning a decision for class
1), 2, 3, 4, 5, 14 (meaning a partial decision in favor of class 1 or class 4), 15, 45, 145
(meaning a partial decision in favor of class 1 or class 4 or class 5), 12345 (meaning
a partial decision in favor of all the classes - total uncertainty - each class can be the
good one).

a set of n singletons one of them being the true class) than precise decisions (in
favor of one singleton) only randomly correct with probability 1

n .

Formally, the U65 value of a partial decision d, possibly in favor a set of
singletons, is defined by

U65(x) = 1.6x− 0.6x2 (5)

with x the so called discounted accuracy of d defined by I(ω∈d)
|d| , with I the

indicator function, ω the true class of the instance, and |d| the number of elements
in d.

Performances according to Epl (3) and the averages of the u65 utility mea-
sures [21] of the partial decisions obtained from the corrected outputs are re-
grouped in Table 3.
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Table 3: Performances (Average Epl values, the lower the better, and average U65 util-
ities, the greater the better) obtained for EkNN learnt with L1 (denoted by EkNN),
EkNN learnt with groups L1 and L2 (denoted by EkNN+), EkNN learnt with L1

followed by corrections (CD, CR, CN) learnt with L2, and EkNN learnt with L1 fol-
lowed by the new method using groups of partial decisions learnt with L2. Standard
deviations are indicated in parenthesis.

Data EkNN EkNN+ CD CR CN Method

Average Epl values (the lower the better)
Synthetic 188.27 (26.48) 181.27 (16.23) 187.91 (26.56) 134.57 (9.83) 174.06 (21.38) 106.76 (7.29)
Breast cancer 3.74 (2.50) 3.59 (2.43) 3.65 (2.35) 3.64 (2.34) 3.56 (2.22) 3.56 2.21)
Glass 8.16 (3.61) 8.97 (3.19) 8.13 (3.57) 5.11 (1.40) 6.93 (2.04) 4.81 (1.49)
Haberman 8.59 (2.40) 8.79 (2.34) 8.57 (2.32) 5.97 (1.84) 6.61 (1.07) 5.87 (1.83)
Ionosphere 2.31 (1.66) 1.64 (1.18) 2.31 (1.62) 2.19 (1.49) 2.25 (1.52) 1.81 (1.49)
Iris 0.56 (0.87) 0.59 (1.02) 0.56 (0.85) 0.55 (0.82) 0.56 (0.84) 0.56 (0.86)
Lymphography 3.07 (1.44) 2.32 (1.27) 3.08 (1.44) 2.74 (1.24) 3.02 (1.18) 2.74 (1.40)
Liver 12.66 (2.08) 12.21 (1.56) 12.66 (2.02) 8.17 (1.08) 8.31 (0.64) 8.01 (1.12)
Pima 20.01 (3.32) 18.12 (3.21) 20.01 (3.32) 15.67 (2.20) 16.76 (1.57) 14.93 (2.40)
Red wine 162.09 (21.75) 140.60 (13.98) 162.09 (21.75) 48.62 (2.96) 116.83 (4.28) 45.92 (3.44)
Sonar 4.04 (1.43) 3.06 (1.33) 4.05 (1.43) 3.50 (1.08) 3.80 (1.05) 3.30 (1.37)
Transfusion 20.54 (4.91) 19.77 (4.37) 19.43 (4.19) 15.21 (3.45) 15.44 (2.21) 13.56 (2.85)
Vehicles 34.26 (5.66) 28.14 (4.74) 34.26 (5.66) 24.07 (2.35) 32.40 (4.20) 20.69 (2.96)
Vertebral 5.08 (2.29) 4.68 (2.05) 5.04 (2.19) 4.64 (1.89) 4.85 (1.89) 4.31 (1.81)

Average U65 values (the greater the better)
Synthetic 66.52 (2.68) 66.40 (2.63) 66.49 (2.73) 66.10 (2.69) 65.46 (2.89) 68.36 (2.59)
Breast cancer 91.77 (4.65) 93.74 (3.90) 92.76 (4.60) 92.75 (4.64) 92.80 (4.62) 92.76 (4.60)
Glass 61.51 (14.47) 63.38 (13.44) 61.56 (14.25) 64.53 (13.87) 45.93 (13.22) 66.24 (12.35)
Haberman 74.28 (8.12) 74.45 (8.57) 74.61 (7.97) 74.84 (9.80) 71.69 (8.04) 75.13 (9.26)
Ionosphere 93.02 (4.67) 94.71 (4.16) 93.02 (4.67) 93.12 (4.62) 92.98 (4.64) 93.86 (4.99)
Iris 96.78 (6.78) 96.51 (6.07) 96.78 (6.78) 96.84 (6.72) 96.78 (6.78) 97.06 (6.20)
Liver 66.74 (5.86) 67.14 (5.53) 66.73 (5.86) 66.64 (6.82) 64.70 (2.25) 65.45 (7.42)
Lymphography 80.23 (13.13) 83.84 (12.65) 80.21 (13.20) 79.42 (13.65) 79.26 (12.26) 79.11 (14.49)
Pima 72.64 (5.06) 73.00 (5.56) 72.64 (5.06) 73.34 (5.50) 71.97 (3.91) 73.38 (5.02)
Red wine 45.39 (4.17) 53.29 (4.23) 45.39 (4.17) 57.60 (4.14) 25.00 (0) 59.12 (4.12)
Sonar 78.34 (8.53) 84.50 (7.69) 78.27 (8.60) 78.96 (8.95) 78.00 (8.03) 79.32 (10.49)
Transfusion 72.76 (5.68) 72.87 (5.41) 74.20 (5.29) 74.39 (6.38) 72.63 (5.42) 75.91 (6.03)
Vehicles 61.20 (5.77) 63.46 (5.62) 61.20 (5.77) 60.56 (5.65) 58.11 (5.60) 63.61 (6.20)
Vertebral 80.40 (10.14) 82.09 (8.85) 80.29 (10.04) 79.95 (10.27) 80.36 (10.19) 81.78 (9.40)

As it can be seen in Table 3, the proposed method using the groups of par-
tial decisions obtains almost in each situation better results than the previous
learning using only CD or CR or CN.

Furthermore, the source was supposed to be a black box, but we were also
curious to see the performances of this source if we were able to improve its per-
formances by using the data we use to learn the corrections. These performances
are given in the column EkNN+ in Table 3. We can see that the new learning
method succeeds to even improve these results for some data sets.

As summarized in [11] by Ma and Denœux, relation (2) is only one among
others. First future works will then consist in testing these other possible rela-
tions (s.t. weak dominance, maximality, . . .) to compute the groups of partial
decisions and see if better performances can be reached.
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16. F. Pichon, D. Mercier, E. Lefèvre, F. Delmotte. Proposition and learning of some
belief function contextual correction mechanisms. Int. J. Approx. Reason., 72:4-42,
2016.

17. P. Smets, Belief functions: the disjunctive rule of combination and the generalized
Bayesian theorem, Int. J. Approx. Reason., 9(1) : 1-35, 1993.

18. G. Shafer. A mathematical theory of evidence. Princeton University Press, Prince-
ton, N.J, 1976.

19. M.C. Troffaes. Decision making under uncertainty using imprecise probabilities.
Int. J. Approx. Reason., 45(1):17–29, 2007.

20. G. Yang, S. Destercke, M.H. Masson. Nested Dichotomies with probability sets for
multi-class classification. ECAI, pages 363–368, 2014.



10 S. Mutmainah et al.
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