
ar
X

iv
:2

10
6.

06
20

5v
2

 [
m

at
h.

L
O

]
 1

9
A

ug
 2

02
1

Time Warps, from Algebra to Algorithms

Sam van Gool1, Adrien Guatto1, George Metcalfe2⋆, and Simon Santschi2

1 IRIF, Université de Paris, France
{guatto,vangool}@irif.fr

2 Mathematical Institute, University of Bern, Switzerland
{george.metcalfe,simon.santschi}@math.unibe.ch

Abstract. Graded modalities have been proposed in recent work on
programming languages as a general framework for refining type systems
with intensional properties. In particular, continuous endomaps of the
discrete time scale, or time warps, can be used to quantify the growth
of information in the course of program execution. Time warps form
a complete residuated lattice, with the residuals playing an important
role in potential programming applications. In this paper, we study the
algebraic structure of time warps, and prove that their equational theory
is decidable, a necessary condition for their use in real-world compilers.
We also describe how our universal-algebraic proof technique lends itself
to a constraint-based implementation, establishing a new link between
universal algebra and verification technology.

Keywords: Residuated lattices · Universal algebra · Decision proce-
dures · Graded modalities · Type systems · Programming languages.

1 Introduction

Program types are almost as old as programs themselves. Their initial role was to
allow compilers to determine data sizes at compilation time, e.g., distinguishing
machine integers from double precision numbers [1]. Type system research has
developed tremendously since these humble beginnings, benefiting from close
connections to logic [15]. For example, dependent types are expressive enough
to serve as specification languages for program results [23,24].

Another line of research into type systems aims to classify not only what

programs compute, but also how they do so. Such type systems describe the effect
of a program—e.g., which parts of memory it modifies [18]—or the resources it
requires—e.g., how long it takes to run [12]. Recently, graded modalities [7,8]
have emerged as a unified setting for describing effect- and resource-annotated
types. A graded modality � allows programmers to form a new type �fA from
a type A and a grading f . The meaning of �fA depends on the system at
hand, but can generally be understood as a modification of A that includes the
behavior prescribed by f .

⋆ Supported by Swiss National Science Foundation grant 200021 165850.

http://arxiv.org/abs/2106.06205v2

2 S. van Gool et al.

In many cases, gradings come equipped with an ordered algebraic structure
that is relevant for programming applications. Most commonly, they form a
monoid whose binary operation corresponds to a notion of composition such
that �gfA is related to �f�gA. It is also often the case that gradings can be
ordered by some sort of precision ordering along which the graded modality acts
contravariantly. That is, we have a generic program of type�gA→ �fA if f ≤ g,
allowing us to freely move from more to less precise types. As a consequence,
the structure of this ordering is reflected by the operations available on types;
for example, when the infimum of f and g exists, it permits the conversion of
two values of types �fA and �gB into a single value of type �f∧g(A×B).

The additional flexibility and descriptive power gained by adopting graded
modalities in a programming language comes at a price, however. The language
implementation must now be able to manipulate gradings in various ways; in
particular, it should be able to decide the ordering between gradings in order to
distinguish between well-typed and ill-typed programs. In this paper, we address
this issue for a specific class of gradings known as time warps : sup-preserving
functions on ω+ = ω ∪ {ω}, or, equivalently, monotonic functions f : ω+ → ω+

satisfying f(0) = 0 and f(ω) =
∨

{f(n) | n ∈ ω} [13]. Informally, time warps
describe the growth of data along program execution. In this setting, any type A
describes a family of sets (An)n∈ω, where An is the set of values classified by A at
execution step n. The type �fA classifies the set of values of Af(n) at step n. This
typing discipline generalizes a long line of works on programming languages for
embedded systems [5] and type theories with modal recursion operators [21,2].

Let us denote the set of time warps by W . Then 〈W , ◦, id〉 is a monoid, where
fg := f ◦ g denotes the composition of f, g ∈ W , and id is the identity function.
Moreover, equipping W with the pointwise order, defined by

f ≤ g :⇐⇒ f(p) ≤ g(p) for all p ∈ ω+,

yields a complete distributive lattice 〈W ,∧,∨〉 satisfying, for all f, g1, g2, h ∈ W ,

f(g1 ∨ g2)h = fg1h ∨ fg2h and f(g1 ∧ g2)h = fg1h ∧ fg2h,

with a least element ⊥ that maps all p ∈ ω+ to 0, and a greatest element ⊤ that
maps all p ∈ ω+\{0} to ω. Note that the operation ◦ is a double quasi-operator on
this lattice in the sense of [10,11], and that the structure 〈W ,∧,∨, ◦, id〉 belongs
to the family of unital quantales of sup-preserving functions on a complete lattice
studied in [22].

The monoidal structure of time warps plays the expected role in programming
applications. In particular,�gfA and�f�gA are isomorphic, as are�idA and A.
However, time warps also admit further additional algebraic structure of interest
for programming. Since they are sup-preserving, there exist binary operations
\, / on W , called residuals, satisfying for all f, g, h ∈ W ,

f ≤ h/g ⇐⇒ fg ≤ h ⇐⇒ g ≤ f\h.

From a programming perspective, residuals play a role similar to that of weakest
preconditions in deductive verification. The type �h/gA can be seen as the most

Time Warps, from Algebra to Algorithms 3

general type B such that �hA can be sent generically to �gB. Similarly, f\h is
the most general (largest) time warp f ′ such that �hA can be sent generically
to �f ′�fA. Such questions arise naturally when programming in a modular
way [13], justifying the consideration of residuated structure in gradings.

The algebraic structure W = 〈W ,∧,∨, ◦, \, /, id,⊥,⊤〉, referred to here as
the time warp algebra, belongs to the family of (bounded) residuated lattices,
widely studied as algebraic semantics for substructural logics [3,9,19]. The main
goal of this paper is to prove the following theorem, a necessary condition for
the use of time warps in real-world compilers:

Theorem 1. The equational theory of the time warp algebra W is decidable.

A time warp term is a member of the term algebra over a countably infinite set
of variables of the algebraic language with binary operation symbols ∧,∨, ◦, \, /,
and constant symbols id,⊥,⊤, and a time warp equation consists of an ordered
pair of terms s, t, denoted by s ≈ t. Let s ≤ t denote the equation s ∧ t ≈ s,
noting that W |= s ≈ t if, and only if, W |= s ≤ t and W |= t ≤ s, and,
by residuation, W |= s ≤ t if, and only if, W |= id ≤ t/s. Clearly, to prove
Theorem 1, it will suffice to provide an algorithm that decides W |= id ≤ t for
any time warp term t.

Overview of the proof of Theorem 1

We prove Theorem 1 by describing an algorithm with the following behavior:

Input. A time warp term t in the variables x1, . . . , xk.

Output. If W |= id ≤ t, the algorithm returns ‘Valid’; if W 6|= id ≤ t, the

algorithm returns ‘Invalid at (f̂1, . . . , f̂k, p)’ for some p ∈ ω+ and finite

descriptions f̂1, . . . , f̂k of time warps f1, . . . , fk, such that JtK(p) < p, where
JtK is the time warp obtained from t by mapping each xi to fi.

We now give a high-level overview of the three main steps of the algorithm; the
details and the proof of its correctness will occupy us for the rest of the paper.

I. Pre-processing into a disjunction of basic terms. In Section 2, we show
how to effectively obtain for any time warp term t, a time warp term

t′ :=
m
∧

i=1

ni
∨

j=1

ti,j ,

such that W |= t ≈ t′, where each ti,j is a basic term, constructed using ◦, id,
⊥, and the defined operations sℓ := id/s, sr := s\id, and so := ⊤\s (Theorem 9).
Since W |= id ≤ t if, and only if, W |= id ≤

∨ni

j=1 ti,j for each i ∈ {1, . . . ,m}, our
task is reduced to giving an algorithm with the required behavior for terms of
the form t1 ∨ · · · ∨ tn, where each ti is a basic term. Once we have an algorithm
that solves this case, we can run it for each of the m conjuncts of t′ in turn,
returning ‘Invalid at (f̂1, . . . , f̂k, p)’ whenever this is the result of one of these
runs, and otherwise ‘Valid’.

4 S. van Gool et al.

II. Finitary characterization through diagrams. The crucial step in our
algorithm is the finitary characterization of ‘potential counterexamples’ for an
equation of the form id ≤ t1 ∨ · · · ∨ tn, where each ti is a basic term. Our main
tool for providing these finitary characterizations is the notion of a diagram.3

Let us give an example to illustrate the basic idea. To falsify the equation
id ≤ xyxℓ ∨ yℓ in W, it suffices to find time warps fx and fy, and an element
p ∈ ω+, such that (fx◦fy◦f ℓ

x)(p) < p and f ℓ
y(p) < p. Although time warps are, as

functions on ω+, infinite objects, only finitely many of the values of fx and fy are
relevant for falsifying the equation. Moreover, an upper bound for the number
of values required for such a counterexample can be computed. The condition
(fx◦fy◦f ℓ

x)(p) < p is ‘unravelled’ by stating that there exist α1, α2, α3 ∈ ω+ such
that α3 < p, where α1 := f ℓ

x(p), α2 := fy(α1), and α3 := fx(α2). More formally,
using a ‘time variable’ κ to refer to the value p, we build a finite sample set Γ1 ⊇
{κ, xℓ[κ], y[xℓ[κ]], x[y[xℓ[κ]]]}, where Γ1 is ‘saturated’ with extra conditions used
to describe, e.g., the behavior of f ℓ

x at relevant values. Similarly, we obtain a finite
saturated sample set Γ2 ⊇ {κ, yℓ[κ]} for the condition f ℓ

y(p) < p. The problem

of deciding if there exists a counterexample to id ≤ xyxℓ ∨ yℓ then becomes the
problem of deciding if there exists a suitable function δ : Γ1∪Γ2 → ω+ satisfying
δ(x[y[xℓ[κ]]]) < δ(κ) and δ(yℓ[κ]]]) < δ(κ). In particular, δ should determine

partial sup-preserving functions f̂x and f̂y on ω+ satisfying f̂x(δ(α)) = δ(x[α])

for all x[α] ∈ Γ1 ∪ Γ2, and f̂y(δ(α)) = δ(y[α]) for all y[α] ∈ Γ1 ∪ Γ2.

Clearly, not every function δ from a saturated sample set to ω+ extends to a
valuation in W; e.g., if δ(κ) = 0, then we must also have δ(x[κ]) = 0. Moreover,
although time warp equations in the residual-free language can be decided by
considering an algebra of sup-preserving functions on a finite totally ordered
set, this is not the case for the full language.4 Section 3 develops a general
theory that precisely characterizes the functions—called diagrams—that extend
to valuations and can be used to falsify a given equation. This allows us to prove
that there exists a counterexample to id ≤ t1∨· · ·∨tn if, and only if, there exists
a diagram δ : Γ → ω+ satisfying δ(κ) > δ(ti[κ]) for each i ∈ {1, . . . , n}, where Γ
is the finite saturated sample set extending {t1[κ], . . . , tn[κ]} (Theorem 31).

III. Encoding as a satisfiability query. In the last step of the algorithm,
described in Section 4, we use the decidability of the satisfiability problem in
the first-order logic of natural numbers with the natural ordering and successor.
More precisely, we show that the existence of a diagram in Theorem 31 can be
encoded as an existential first-order sentence in that signature. Concretely, our
algorithm constructs a quantifier-free formula which is satisfiable in the structure
(N,≤, S, 0) if, and only if, there exists a diagram as specified by Theorem 31.

3 The name ‘diagram’ recalls a similar concept used to prove the decidability of the
equational theory of lattice-ordered groups in [14].

4 Indeed, the equational theory of the time warp algebra without residuals coincides
with the equational theory of distributive lattice-ordered monoids [6], but an elegant
(finite) axiomatization of the equational theory in the full language is not known.

Time Warps, from Algebra to Algorithms 5

Moreover, a satisfying assignment can be converted into a valuation into W that
provides a counterexample to the equation id ≤ t1 ∨ · · · ∨ tn.

2 A normal form for time warps

The main aim of this section is to provide a normal form for time warp terms. Our
first step is to provide a more precise description of the left and right residuals
of time warps. Note that to prove that two time warps are equal, it suffices to
show that they coincide on every non-zero natural number, since for any time
warp f , it is always the case that f(0) = 0 and f(ω) =

∨

{f(n) | n ∈ ω}.

Lemma 2. For any time warps f, g and p ∈ ω+,

(a) (f\g)(p) =

0 if p = 0;
∨

{q ∈ ω+ | f(q) ≤ g(p)} if p ∈ ω\{0};
∨

{q ∈ ω+ | (∃m ∈ ω)(f(q) ≤ g(m))} if p = ω

(b) (g/f)(p) =
∧

g[{q ∈ ω+ | p ≤ f(q)}].

Proof. (a) Let h denote the function defined by cases on the right of the equation.
Clearly, h is monotonic and satisfies h(0) = 0 and h(ω) =

∨

{h(n) | n ∈ ω}, so
h is a time warp. Moreover, since f preserves arbitrary joins, fh ≤ g, and
hence h ≤ f\g. For the converse, just observe that for any n ∈ ω\{0}, since
f((f\g)(n)) ≤ g(n), also (f\g)(n) ≤ h(n). So h = f\g.

(b) Let h be the function defined by h(p) :=
∧

g[{q ∈ ω+ | p ≤ f(q)}].
Clearly, h is monotonic and satisfies h(0) = 0 and h(ω) =

∨

{h(n) | n ∈ ω}, so
h is a time warp. Moreover, hf ≤ g, and hence h ≤ g/f . For the converse, let
n ∈ ω\{0}. If q ∈ ω+ satisfies n ≤ f(q), then (g/f)(n) ≤ (g/f)(f(q)) ≤ g(q),
and hence (g/f)(n) ≤

∧

g[{q ∈ ω+ | n ≤ f(q)}] = h(n). So h = g/f .

Next, we show that residuals of time warps distribute over joins and meets.

Lemma 3. For any time warps f, g, h,

(a) f\(g ∧ h) = (f\g) ∧ (f\h) (e) (g ∧ h)/f = (g/f) ∧ (h/f)

(b) (g ∧ h)\f = (g\f) ∨ (h\f) (f) f/(g ∧ h) = (f/g) ∨ (f/h)

(c) f\(g ∨ h) = (f\g) ∨ (f\h) (g) (g ∨ h)/f = (g/f) ∨ (h/f)

(d) (g ∨ h)\f = (g\f) ∧ (h\f) (h) f/(g ∨ h) = (f/g) ∧ (f/h).

Proof. Parts (a), (d), (e), and (h) hold in any residuated lattice (see, e.g., [3]).
For (b), consider any n ∈ ω\{0}. Using Lemma 2(a),

((g ∧ h)\f)(n) =
∨

{q ∈ ω+ | (g ∧ h)(q) ≤ f(n)}

=
∨

{q ∈ ω+ | g(q) ≤ f(n) or h(q) ≤ f(n)}

=
∨

{q ∈ ω+ | g(q) ≤ f(n)} ∨
∨

{q ∈ ω+ | h(q) ≤ f(n)}

= ((g\f) ∨ (h\f))(n).

6 S. van Gool et al.

For (f), consider any n ∈ ω\{0}. Using Lemma 2(b),

(f/(g ∧ h))(n) =
∧

f [{q ∈ ω+ | n ≤ (g ∧ h)(q)}]

=
∧

f [{q ∈ ω+ | n ≤ g(q) and n ≤ h(q)}]

=
∧

f [{q ∈ ω+ | n ≤ g(q)}] ∨
∧

f [{q ∈ ω+ | n ≤ h(q)}]

= ((g/f) ∨ (h/f))(n).

Parts (c) and (g) are proved similarly.

It follows from Lemma 3 that every time warp term is equivalent to a meet of
joins of terms constructed using the operations ◦, \, /, id, ⊥, and ⊤. However, we
can take this simplification process one step further by expressing the residuals
of time warps in terms of their restrictions to certain unary operations.

Definition 4. For any time warp f , let

f ℓ := id/f, f r := f\id, and f o := ⊤\f.

Lemma 5. For any time warps f, g,

(a) f\g = f rg ∨ (⊤f)r ∨ go

(b) g/f = gf ℓ ∨ (f ℓ)
o
.

Proof. For (a), note first that clearly f rg ∨ (⊤f)r ∨ go ≤ f\g. For the converse,
consider any n ∈ ω\{0}. If g(n) = 0, then, by Lemma 2(a),

(f\g)(n) =
∨

{q ∈ ω+ | f(q) ≤ 0} =
∨

{q ∈ ω+ | ⊤f(q) ≤ id(n)} = (⊤f)r(n).

If g(n) ∈ ω\{0}, then, by Lemma 2(a),

(f\g)(n) =
∨

{q ∈ ω+ | f(q) ≤ g(n)} =
∨

{q ∈ ω+ | f(q) ≤ id(g(n))} = f r(g(n)).

Finally, if g(n) = ω, then, by Lemma 2(a),

(f\g)(n) =
∨

{q ∈ ω+ | f(q) ≤ ω)} = ω =
∨

{q ∈ ω+ | ⊤(q) ≤ ω)} = go(n).

So f\g = f rg ∨ (⊤f)r ∨ go.
For (b), note first that clearly gf ℓ ∨ (f ℓ)

o
≤ g/f . For the converse, consider

any n ∈ ω\{0}. If {q ∈ ω+ | n ≤ f(q)} = ∅, then, by Lemma 2(b),

(g/f)(n) =
∧

g[∅] = ω = ((f ℓ)
o

)(n).

Otherwise, {q ∈ ω+ | n ≤ f(q)} 6= ∅ and, by Lemma 2(b),

(g/f)(n) =
∧

g[{q ∈ ω+ | n ≤ f(q)}] = g(
∧

id[{q ∈ ω+ | n ≤ f(q)}]) = (gf ℓ)(n).

So g/f = gf ℓ ∨ (f ℓ)
o
.

Time Warps, from Algebra to Algorithms 7

To gain a better understanding of these defined unary operations, we observe
that Lemma 2 yields for any n ∈ ω\{0},

f o(n) = max{m ∈ ω+ | ω ≤ f(n)}

f r(n) = max{m ∈ ω+ | f(m) ≤ n}

f ℓ(n) =
∧

{m ∈ ω+ | n ≤ f(m)}.

The following lemmas collect some simple consequences of these observations.

Lemma 6. For any time warp f and n ∈ ω\{0},

f o(n) = 0 ⇐⇒ f(n) < ω

f o(n) = ω ⇐⇒ f(n) = ω

f o(ω) = 0 ⇐⇒ f(k) < ω for all k ∈ ω

f o(ω) = ω ⇐⇒ f(k) = ω for some k ∈ ω.

Lemma 7. For any time warp f , n ∈ ω\{0}, and m ∈ ω,

f r(n) = m ⇐⇒ f(m) ≤ n < f(m+ 1)

f r(n) = ω ⇐⇒ f(ω) ≤ n

f r(ω) = m ⇐⇒ f(m+ 1) = ω and f r(k) = m for some k ∈ ω

f r(ω) = ω ⇐⇒ f(ω) < ω or (f(ω) = ω and ∀k ∈ ω : f(k) < ω).

Lemma 8. For any time warp f , n ∈ ω\{0}, and m ∈ ω,

f ℓ(n) = m ⇐⇒ f(m− 1) < n ≤ f(m)

f ℓ(n) = ω ⇐⇒ f(ω) < n

f ℓ(ω) = m ⇐⇒ f(m) = ω and f ℓ(k) = m for some k ∈ ω

f ℓ(ω) = ω ⇐⇒ f(ω) < ω or (f(ω) = ω and ∀k ∈ ω : f(k) < ω).

Note also that ⊤ = ⊥ℓ. We call a time warp term basic if it is constructed
using only ◦, id,⊥, and the defined operations tℓ := id/t, tr := t\id, and to := ⊤\t.
Our normal form theorem now follows, using Lemma 5 to remove residuals from
a time warp term, then Lemma 3 and other distributivity properties of W to
push out meets and joins, preserving equivalence in W at every step.

Theorem 9. There is an effective procedure that given any time warp term

t, produces positive integers m,n1, . . . , nm and a set of basic time warp terms

{ti,j | 1 ≤ i ≤ m; 1 ≤ j ≤ ni} satisfying W |= t ≈
∧m

i=1

∨ni

j=1 ti,j.

Corollary 10. The equational theory of W is decidable if, and only if, there

exists an effective procedure that decides for any finite non-empty set of basic

time warp terms {t1, . . . , tn} if W |= id ≤ t1 ∨ · · · ∨ tn.

We conclude this section by introducing a further notion that will be useful
for providing finitary characterizations of time warps.

8 S. van Gool et al.

Definition 11. For any time warp f , let

last(f) :=
∧

{p ∈ ω+ | f(p) = f(ω)}.

Observe that last(f) < ω if, and only if, f is eventually constant, i.e., increases
a finite number of times, and that last(f) can be defined equivalently in the
language of time warps as (f ℓf)(ω). For future reference, we record the following
easy consequences of this definition.

Lemma 12. For any time warps f, g,

(a) last(fg) = ω ⇐⇒ (last(f) = ω and last(g) = ω)

(b) last(f) = ω ⇐⇒ last(f r) = ω ⇐⇒ last(f ℓ) = ω.

3 Diagrams

In this section, we define diagrams as finitary characterizations of ‘potential
counterexamples’ for equations of the form id ≤ t1 ∨ · · · ∨ tn, where each ti
is a basic time warp term. This definition is obtained by considering relevant
properties of time warps assigned to variables in a refuting valuation, and it
therefore follows easily that if W 6|= id ≤ t1∨· · ·∨ tn, then there exists a suitable
refuting diagram. The more challenging direction is to show that every refuting
diagram extends to a refuting valuation witnessing W 6|= id ≤ t1 ∨ · · · ∨ tn.

Note first that, using Theorem 9, we may without loss of generality express
validity in W using a simplified language where the restricted residuals are taken
as fundamental operations. Let TV be a countably infinite set of term variables,
with elements denoted by x, y, z, etc.

Definition 13. A basic term belongs to the grammar

T ∋ t, u ::= x | tu | to | tℓ | tr | id | ⊥.

We also define valuations and interpretations explicitly for basic terms.

Definition 14. A valuation θ is a map TV → W . The interpretation of a basic
term t under θ, denoted by JtKθ, is the time warp defined inductively by

JxKθ := θ(x), JtuKθ := JtKθJuKθ, Jt⋆Kθ := JtK⋆θ for ⋆ ∈ {o, ℓ, r}.

Corollary 10 tells us that the equational theory of W is decidable if, and only
if, there exists an effective procedure that decides, for any finite set of basic
terms T , if there exists a valuation θ and p ∈ ω+ such that JtKθ(p) < p for all
t ∈ T . To refer to this element p, we let IV be a countably infinite set of time

variables containing elements denoted by κ, κ′, etc, noting that in fact only one
time variable will be required for the proofs in this paper. We now define a new
language of ‘samples’ that will be used to refer to values considered in a diagram.

Definition 15. A sample belongs to the grammar (where t is any basic term)

I ∋ α ::= κ | t[α] | s(α) | p(α) | last(t).

Time Warps, from Algebra to Algorithms 9

Although samples are purely syntactic, the notation is indicative of their
intended meaning. Given an initial sample set {t1[κ], . . . , tn[κ]}, obtained from
the equation id ≤ t1 ∨ · · ·∨ tn, the idea is to ‘saturate’ this set by adding further
samples required to describe the existence of a counterexample.

Definition 16. A sample set∆ is called saturated if whenever α ∈ ∆ and α β,
also β ∈ ∆, where is the relation between samples defined by

t[α] α to[α] t[α]

s(α) α tr[α] t[tr[α]], t[s(tr[α])]

p(α) α tℓ[α] t[tℓ[α]], t[p(tℓ[α])]

tu[α] t[u[α]] t[α] t[last(t)].

The saturation of a sample set ∆ is

∆ := {β | ∃α ∈ ∆,α ∗ β},

where ∗ denotes the reflexive transitive closure of .

A proof of the following result can be found in Appendix A.1.

Lemma 17. The saturation of a finite sample set is finite.

Let us fix, until after Definition 25, a saturated sample set ∆.

Definition 18. A ∆-prediagram is a map δ : ∆→ ω+.

We now give a list of conditions for a ∆-prediagram to be a ∆-diagram.

Definition 19. For p ∈ ω+, let

p⊖ 1 :=

{

p− 1 if p ∈ ω \{0}

p if p ∈ {0, ω}
, p⊕ 1 :=

{

p+ 1 if p ∈ ω

p if p = ω
.

Definition 20. A ∆-prediagram δ is called structurally-sound if

∀t[α], t[β] ∈ ∆, δ(α) ≤ δ(β) ⇒ δ(t[α]) ≤ δ(t[β]) (1)

∀t[α] ∈ ∆, δ(α) = 0 ⇒ δ(t[α]) = 0 (2)

∀p(α) ∈ ∆, δ(p(α)) = δ(α)⊖ 1 (3)

∀s(α) ∈ ∆, δ(s(α)) = δ(α)⊕ 1 (4)

∀t[α] ∈ ∆, δ(last(t)) ≤ δ(α) ⇔ δ(t[α]) = δ(t[last(t)]) (5)

∀t[last(t)] ∈ ∆, δ(last(t)) = ω ⇒ δ(t[last(t)]) = ω. (6)

Definition 21. A ∆-prediagram δ is called logically-sound if

∀id[α] ∈ ∆, δ(id[α]) = δ(α) (7)

∀⊥[α] ∈ ∆, δ(last(⊥)) = 0 (8)

∀tu[α] ∈ ∆, δ(tu[α]) = δ(t[u[α]]) (9)

∀tu[last(tu)] ∈ ∆, δ(last(tu)) = ω ⇒ δ(last(t)) = δ(last(u)) = ω. (10)

10 S. van Gool et al.

Definition 22. A ∆-prediagram δ is called o-sound if

∀to[α] ∈ ∆, δ(to[α]) = 0 or δ(to[α]) = ω (11)

∀to[α] ∈ ∆, δ(α) < ω ⇒ (δ(to[α]) = ω ⇔ δ(t[α]) = ω) (12)

∀last(to) ∈ ∆, δ(last(to)) < ω (13)

∀t[α], to[last(to)] ∈ ∆, (δ(to[last(to)]) < ω and δ(α) < ω) ⇒ δ(t[α]) < ω. (14)

Definition 23. A ∆-prediagram δ is called r-sound if

∀t[tr[α]] ∈ ∆, δ(t[tr[α]]) ≤ δ(α) (15)

∀tr[α] ∈ ∆, (0 < δ(α) < ω and δ(tr[α]) < ω) ⇒ δ(α) < δ(t[s(tr[α])])
(16)

∀tr[last(tr)] ∈ ∆, δ(last(tr)) = ω ⇒ δ(last(t)) = ω (17)

∀tr[last(tr)] ∈ ∆, δ(tr[last(tr)]) < ω ⇒ δ(t[s(tr[last(tr)])]) = ω. (18)

Definition 24. A ∆-prediagram δ is called ℓ-sound if

∀t[tℓ[α]] ∈ ∆, δ(tℓ[α]) < ω ⇒ δ(α) ≤ δ(t[tℓ[α]]) (19)

∀tℓ[α] ∈ ∆, (0 < δ(α) < ω and δ(tℓ[α]) < ω) ⇒ δ(t[p(tℓ[α])]) < δ(α)
(20)

∀t[tℓ[α]] ∈ ∆, (δ(α) < ω and δ(tℓ[α]) = ω) ⇒ δ(t[tℓ[α]]) < δ(α) (21)

∀tℓ[last(tℓ)] ∈ ∆, δ(last(tℓ)) = ω ⇒ δ(last(t)) = ω (22)

∀tℓ[last(tℓ)] ∈ ∆, δ(tℓ[last(tℓ)]) < ω ⇒ δ(t[tℓ[last(tℓ)]]) = ω. (23)

Definition 25. A ∆-prediagram δ is called a ∆-diagram if it is structurally
sound, logically sound, o-sound, ℓ-sound, and r-sound.

It follows from the next proposition that any counterexample to the validity
of an equation in W restricts to a finite diagram witnessing this failure. More
precisely, if W 6|= id ≤ t1 ∨ · · · ∨ tn, where each ti is a basic term, and ∆ is the
saturation of the sample set {t1[κ], . . . , tn[κ]}, then there exists a ∆-diagram δ
satisfying δ(κ) > δ(ti[κ]) for each i ∈ {1, . . . , n}.

Proposition 26. Let T be a set of basic terms, κ a time variable, and ∆ the

saturation of the sample set {t[κ] | t ∈ T }. Then for any valuation θ and p ∈ ω+,

there exists a ∆-diagram δ such that δ(κ) = p and δ(t[κ]) = JtKθ(p) for all t ∈ T .

Proof. We define the map δ : ∆→ ω+ recursively by

δ(κ) := p
∀t[α] ∈ ∆, δ(t[α]) := JtKθ(δ(α))

∀last(t) ∈ ∆, δ(last(t)) := last(JtKθ)
∀p(α) ∈ ∆, δ(p(α)) := δ(α)⊖ 1
∀s(α) ∈ ∆, δ(s(α)) := δ(α)⊕ 1.

The map δ is well-defined since α ∈ ∆ if, and only if, there exist samples
α1, . . . , αn such that α1 = t[κ] for some t ∈ T , αn = α, and αj αj+1 for

Time Warps, from Algebra to Algorithms 11

each j ∈ {1, . . . , n−1}. So δ is a ∆-prediagram. A proof that δ is a ∆-diagram—
i.e., that δ satisfies conditions (1) to (23)—may be found in Appendix A.2.

We now turn our attention to proving that every ∆-diagram δ extends to a
valuation θ satisfying JtKθ(δ(α)) = δ(t[α]) for all t[α] ∈ ∆. First, we use δ to
define a partial sup-preserving function ⌊t⌋δ for each basic term t.

Definition 27. For any ∆-diagram δ and basic term t, let

⌊t⌋δ := {(δ(α), δ(t[α])) | t[α] ∈ ∆}.

A time warp f extends ⌊t⌋δ if f(i) = j for all (i, j) ∈ ⌊t⌋δ, and strongly extends

⌊t⌋δ if also

either ⌊t⌋δ = ∅ or (⌊t⌋δ 6= ∅ and δ(last(t)) = ω =⇒ last(f) = ω).

Lemma 28. There exists an effective procedure that produces for any finite ∆-

diagram δ and term variable x, an algorithmic description of a time warp f that

strongly extends ⌊x⌋δ.

Proof. If ⌊x⌋δ = ∅, then any time warp strongly extends it, so assume ⌊x⌋δ 6= ∅.
By (1), ⌊x⌋δ can be considered as a partial map from ω+ to ω+. Moreover,
since ∆ is saturated, and, by (5), δ(x[last(x)]) ≥ j for all (i, j) ∈ ⌊x⌋δ, we
have (δ(last(x)), δ(x[last(x)])) ∈ ⌊x⌋δ.

Let X := ⌊x⌋δ ∪ {(0, 0), (ω, δ(x[last(x)]))}. This is still a partial map by (2)
and (5). For each i ∈ ω, there exists a unique pair (i1, j1), (i2, j2) ∈ X such
that i1 ≤ i < i2 and there is no (i3, j3) ∈ X with i1 < i3 < i2, and we define

f(i) := min(j2, j1 ⊕ (i − i1)),

where n⊕m := min{ω, n+m}. Let also f(ω) := δ(x[last(x)])).
Clearly f is monotonic. It extends ⌊x⌋δ, since i = i1 < ω implies f(i1) =

min(j2, j1) = j1. In particular, f(0) = 0. To confirm that f is a time warp, it
remains to show that f(ω) =

∨

{f(i) | i ∈ ω}. If δ(x[last(x)]) = f(ω) < ω, then,
by (6), δ(last(x)) < ω and, by monotonicity, f(i) = f(ω) for each i ≥ δ(last(x))
and f(ω) = f(δ(last(x))) =

∨

{f(i) | i ∈ ω}. If f(ω) = ω, then for each j ∈ ω,
there exists an i ∈ ω such that f(i) > j, and hence

∨

i<ω f(i) = ω = f(ω).
Finally, suppose that δ(last(x)) = ω. Then (6) yields (ω, ω) ∈ ⌊x⌋δ and for

any (i, j) ∈ ⌊x⌋δ, if i ∈ ω, then also j ∈ ω. Hence, last(f) = ω, by the definition
of f . So f strongly extends ⌊x⌋δ.

Lemma 29. For every basic term t, valuation θ, and ∆-diagram δ, if θ(x)
strongly extends ⌊x⌋δ for every term variable x, then JtKθ strongly extends ⌊t⌋δ.

Proof. By induction on t. The case t = x is immediate and the other cases follow
by a series of lemmas proved in Appendix A.3, and the induction hypothesis.

The next proposition is then a direct consequence of Lemmas 28 and 29.

12 S. van Gool et al.

Proposition 30. There is an effective procedure that produces for any finite

∆-diagram δ, an algorithmic description of a valuation θ satisfying JtKθ(δ(α)) =
δ(t[α]) for all t[α] ∈ ∆.

We are now ready to establish the main theorem of this section.

Theorem 31. Let t1, . . . , tn be basic terms, κ a time variable, and ∆ the satura-

tion of the sample set {t1[κ], . . . , tn[κ]}. Then W 6|= id ≤ t1∨· · ·∨ tn if, and only

if, there exists a ∆-diagram δ such that δ(κ) > δ(ti[κ]) for all i ∈ {1, . . . , n}.

Proof. Suppose first that W 6|= id ≤ t1 ∨ · · · ∨ tn. Then there exist a valuation
θ and p ∈ ω+ such that p = id(p) > JtiKθ(p) for all i ∈ {1, . . . , n}. Hence, by
Proposition 26, there exists a ∆-diagram δ such that δ(κ) = p > JtiKθ(p) =
δ(ti[κ]) for all i ∈ {1, . . . , n}.

Now suppose that there exists a ∆-diagram δ such that δ(κ) > δ(ti[κ]) for
all i ∈ {1, . . . , n}. Then, by Proposition 30, there exists a valuation θ such that
JtiKθ(δ(κ)) = δ(ti[κ]) for all i ∈ {1, . . . , n}. So id(δ(κ)) = δ(κ) > JtiKθ(δ(κ)) for
all i ∈ {1, . . . , n}. Hence W 6|= id ≤ t1 ∨ · · · ∨ tn.

4 Decidability via Logic

Let t1, . . . , tn be basic terms, κ a time variable, and ∆ the saturation of the
sample set {t1[κ], . . . , tn[κ]}. Our aim in this section is to express the existence
of a ∆-diagram witnessing W 6|= id ≤ t1 ∨ . . .∨ tn, as stated in Theorem 31, via
an existential sentence over the natural numbers with the ordering and successor
relations. Since the first-order theory of this structure is decidable, it follows that
the equational theory of W is decidable, concluding the proof of Theorem 1.

Note that in the logic encoding, we will no longer allow ω as a value for
the variables. The theoretical reason why this is possible is that the ordinal
ω+ admits a first-order (even quantifier-free) interpretation in ω. However, we
will avoid relying upon such model-theoretic generalities here and just give the
necessary concrete definitions.

Our construction of a first-order formula φ encoding the existence of a ∆-
diagram uses the samples in ∆ as variables and proceeds in two steps:

1. We define a formula ψ with variables in ∆, intended to be interpreted in ω+,
using the order relation symbol �, the successor relation symbol S, and two
further unary relation symbols O and I, where the intended interpretations
of O(x) and I(x) are “x = ω” and “x = 0”, respectively.

2. We obtain φ by eliminating the symbols O and I from ψ and re-interpreting
� and S using an encoding of ω+ in the structure (N,≤, S, 0).

Let τ be the relational first-order signature with two binary relation symbols
� and S, and two unary relation symbols O and I. We consider ω+ as a τ -
structure by defining �ω+

to be the natural ordering of ω+, Sω+

:= {(n, n+1) |

n ∈ ω} ∪ {(ω, ω)}, Iω+

:= {0}, and Oω+

:= {ω}. Note that a ∆-prediagram is a
valuation of the variables in ∆ in this structure.

Time Warps, from Algebra to Algorithms 13

We define ψ by translating the defining properties of being a ∆-diagram
into quantifier-free formulas of first-order logic in the signature τ with variables
from ∆. In the following definition, the symbols f and g denote the logical
connectives ‘and’ and ‘or’, respectively, and the notation a ≺ b is shorthand for
a � bf¬(b � a). Note also that ψ is well-defined, since ∆ is finite by Lemma 17.

Definition 32. Let ψ be the first-order quantifier-free τ -formula

f(struct ∪ log ∪ bounds ∪ right ∪ left ∪ fail),

where the first five sets, corresponding to Definitions 20-24 in the definition of
a diagram, and fail, expressing the failure of id ≤ t1 ∨ . . . ∨ tn in W at the time
variable κ, are defined as follows:

struct := {α � β ⇒ t[α] � t[β] | t[α], t[β] ∈ ∆} ∪

{I(α) ⇒ I(t[α]) | t[α] ∈ ∆} ∪

{S(p(α), α) g (I(p(α)) f I(α)) | p(α) ∈ ∆} ∪

{S(α, s(α)) | s(α) ∈ ∆} ∪

{last(t) � α ⇔ t[α] = t[last[t]] | t[α] ∈ ∆} ∪

{O(last(t)) ⇒ O(t[last(t)]) | t[last(t)] ∈ ∆}

log := {id[α] = α | id[α] ∈ ∆} ∪

{I(last(⊥)) | ⊥[α] ∈ ∆} ∪

{tu[α] = t[u[α]] | tu[α] ∈ ∆} ∪

{O(last(tu)) ⇒ (O(last(t))fO(last(u))) | tu[last(tu)] ∈ ∆}

bounds := {I(to[α])gO(to[α]) | to[α] ∈ ∆} ∪

{¬O(α) ⇒ (O(to[α]) ⇔ O(t[α])) | to[α] ∈ ∆} ∪

{¬O(last(to)) | last(to) ∈ ∆} ∪

{(¬O(to[last(to)])f ¬O(α)) ⇒ ¬O(t[α]) | t[α], to[last(to)] ∈ ∆}

right := {t[tr[α]] � α | t[tr[α]] ∈ ∆}∪

{(¬I(α) f ¬O(α) f ¬O(tr[α]) ⇒ α ≺ t[s(tr[α])] | t[s(tr[α])] ∈ ∆} ∪

{O(last(tr)) ⇒ O(last(t)) | tr[last(tr)] ∈ ∆} ∪

{¬O(tr[last(tr)]) ⇒ O(t[s(tr[last(tr)])]) | t[s(tr[last(tr)])] ∈ ∆}

left := {¬O(tℓ[α]) ⇒ α � t[tℓ[α]] | t[tℓ[α]] ∈ ∆} ∪

{(¬I(α) f ¬O(α) f ¬O(tℓ[α])) ⇒ t[p(tℓ[α])] ≺ α | t[p(tℓ[α])] ∈ ∆} ∪

{(¬O(α) fO(tℓ[α])) ⇒ t[tℓ[α]] ≺ α | t[tℓ[α]] ∈ ∆} ∪

{O(last(tℓ)) ⇒ O(last(t)) | tℓ[last(tℓ)] ∈ ∆} ∪

{¬O({tℓ[last(tℓ)]} ⇒ O(t[tℓ[last(tℓ)]]) | tℓ[last(tℓ)] ∈ ∆}

fail := {ti[κ] ≺ κ | 1 ≤ i ≤ n}.

14 S. van Gool et al.

The next lemma then follows directly from the definition of a ∆-diagram.

Lemma 33. Let δ : ∆ → ω+ be a ∆-prediagram. Then ω+, δ |= ψ if, and only

if, δ is a ∆-diagram such that δ(ti[κ]) < δ(κ) for each i ∈ {1, . . . , n}.

Theorem 31 and Lemma 33 together show that W 6|= id ≤ t1 ∨ . . . ∨ tn
if, and only, if ψ is satisfiable in ω+. We could therefore conclude the proof of
Theorem 1 at this point by appealing to classical decidability results on the
first-order theory of ordinals [16]. Instead, however, we show explicitly how to
interpret the τ -structure ω+ inside the standard model (N,≤, S, 0), which is
more commonly available in satisfiability solvers.

Consider the first-order signature σ with two binary relation symbols ≤ and
S, and one constant symbol 0, and let N denote the σ-structure based on the
natural numbers, where ≤N is the usual order, SN := {(n, n + 1) | n ∈ N},
and 0N := 0. The following definition and lemma contain the crucial observation
needed for encoding τ -formulas over ω+ into σ-formulas over N.5

Definition 34. Define the bijection ι : N → ω+ by ι(0) := ω, and ι(n) := n− 1
for each n ∈ ω \{0}.

For any valuation w : ∆ → N, let ŵ : ∆ → ω+ denote the function defined
by ŵ(x) := ι(w(x)). Note that the map w 7→ ŵ is a bijection between N∆ and
(ω+)∆, since ι is a bijection.

Lemma 35. Let χ be a quantifier-free τ-formula. Define χ′ to be the quantifier-

free σ-formula obtained from χ by making the following symbolic substitutions

for every occurrence of an atomic formula in χ:

(i) O(x) is replaced by x = 0
(ii) I(x) is replaced by S(0, x)
(iii) S(x, y) is replaced by (x = 0f y = 0)g (¬(x = 0)f S(x, y))
(iv) x � y is replaced by y = 0g (¬(x = 0)f x ≤ y).

Then, for any valuation w : ∆→ N, N, w |= χ′ if, and only if, ω+, ŵ |= χ.

Proof. By induction on the complexity of χ. The induction step is immediate,
and the atomic cases essentially follow from the definitions; we just show the
proof for x � y as an example. For any valuation w, we have ω+, ŵ |= x � y
if, and only if, ŵ(y) = ω or (ŵ(x) 6= ω and ŵ(x) ≤ ŵ(y)) in ω+. Using the
definition of ŵ, this is equivalent to w(y) = 0 or (w(x) 6= 0 and w(x) ≤ w(y)) in
N, that is, N, w |= y = 0g (¬(x = 0)f x ≤ y).

Finally, we define our quantifier-free σ-formula φ encoding the non-validity
of id ≤ t1 ∨ · · · ∨ tn in W.

Definition 36. Let φ := ψ′, the σ-formula obtained from the τ -formula ψ
(Definition 32) by performing the replacements in Lemma 35.

5 We thank Thomas Colcombet for suggesting this idea.

Time Warps, from Algebra to Algorithms 15

We are now ready to put everything together.

Theorem 37. The time warp equation id ≤ t1∨· · ·∨tn is valid in W if, and only

if, the quantifier-free σ-formula φ is unsatisfiable in N. Moreover, any valuation

w : ∆ → N such that N, w |= φ effectively yields a valuation θ of the time warp

variables occurring in t1 ∨ · · · ∨ tn such that W, θ |= id � t1 ∨ · · · ∨ tn.

Proof. By Theorem 31, the equation id ≤ t1,∨ · · · ∨ tn is not valid in W if, and
only if, there exists a ∆-diagram δ such that δ(ti[κ]) < δ(κ) for all i ∈ {1, . . . , n}.
By Lemma 33, the latter is equivalent to the existence of a valuation v : ∆→ ω+

such that ω+, v |= ψ. By Lemma 35, the latter is in turn equivalent to the
existence of a valuation w : ∆→ N such that N, w |= φ.

For the second claim, we retrace our steps. If w : ∆→ N is a valuation such
that N, w |= φ, define the function δ : ∆→ ω+ by δ(α) := ι(w(α)) for α ∈ ∆. By
Lemma 33, δ is a ∆-diagram such that δ(ti[κ]) < δ(κ) for each i ∈ {1, . . . , n}. By
Proposition 30, δ effectively yields a valuation θ that falsfies id ≤ t1∨· · ·∨tn.

Theorem 1 follows now directly from Theorem 37 and the decidability of the
first-order theory of N (see, e.g., [16]).

Concluding remark. The proof of Theorem 37, together with the normal form
results of Section 2, provides a decision procedure for the equational theory of
the time warp algebra, as explained in Section 1. We are currently in the pro-
cess of implementing this decision procedure in a software tool. This tool is
written in the OCaml functional programming language [17] and uses the Z3
theorem prover [20] to decide the satisfiability of the final logic formula. Our
experiments with a preliminary implementation for basic time warp terms have
been encouraging so far, and we hope to integrate a full version in a compiler for
graded modalities. From a complexity perspective, the most challenging issue
here is to deal with the potentially very large saturated sample sets and corre-
sponding logic formulas produced by time warp equations. We therefore intend
to consider encodings of the decision problem for time warps using alternative,
possibly more efficient, data structures such as—following a helpful suggestion
of one of the referees of this paper—arrays (see [4]) that are also supported by
the Z3 theorem prover.

References

1. Backus, J.W., Beeber, R.J., Best, S., Goldberg, R., Haibt, L.M., Herrick, H.L.,
Nelson, R.A., Sayre, D., Sheridan, P.B., Stern, H., Ziller, I., Hughes, R.A., Nutt,
R.: The FORTRAN automatic coding system. In: Astrahan, M.M. (ed.) Proc.
IRE-AIEE-ACM 1957 (Western). pp. 188–198. ACM (1957)

2. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8(4) (2012)

3. Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebr. Com-
put. 13(4), 437–461 (2003)

16 S. van Gool et al.

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) Proc. VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer (2006)

5. Caspi, P., Pouzet, M.: Synchronous Kahn Networks. In: Proc. ICFP 1996. pp.
226–238. ACM (1996)

6. Colacito, A., Galatos, N., Metcalfe, G., Santschi, S.: From distributive ℓ-monoids
to ℓ-groups, and back again (2021), https://arxiv.org/pdf/2103.00146

7. Fujii, S., Katsumata, S., Melliès, P.: Towards a formal theory of graded monads. In:
Jacobs, B., Löding, C. (eds.) Proc. FOSSACS 2016. LNCS, vol. 9634, pp. 513–530.
Springer (2016)

8. Gaboardi, M., Katsumata, S.y., Orchard, D., Breuvart, F., Uustalu, T.: Combining
effects and coeffects via grading. ACM SIGPLAN Notices 51(9), 476–489 (2016)

9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier (2007)

10. Gehrke, M., Priestley, H.: Canonical extensions of double quasioperator algebras:
An algebraic perspective on duality for certain algebras with binary operations.
J. Pure Appl. Algebra 209(1), 269–290 (2007)

11. Gehrke, M., Priestley, H.: Duality for double quasioperator algebras via their
canonical extensions. Studia Logica 86(1), 31–68 (2007)

12. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) Proc. ESOP 2014. LNCS, vol. 8410, pp. 331–350. Springer (2014)

13. Guatto, A.: A Generalized Modality for Recursion. In: Dawar, A., Grädel, E. (eds.)
Proc. LICS 2018. pp. 482–491. ACM (2018)

14. Holland, W., McCleary, S.: Solvability of the word problem in free lattice-ordered
groups. Houston J. Math. 5(1), 99–105 (1979)

15. Howard, W.A.: The formulae-as-types notion of construction. In: Curry, H., B.,
H., Roger, S.J., Jonathan, P. (eds.) To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pp. 479–490. Academic Press (1980)

16. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fund. Math.
59, 109–116 (1966)

17. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy,
D., Vouillon, J.: The OCaml system release 4.12 (2021),
https://ocaml.org/releases/4.12/htmlman/index.html

18. Lucassen, J., Gifford, D.: Polymorphic effect systems. In: Proc. POPL 1988. pp.
47–57. ACM (1988)

19. Metcalfe, G., Paoli, F., Tsinakis, C.: Ordered algebras and logic. In: Hosni, H.,
Montagna, F. (eds.) Uncertainty and Rationality, pp. 1–85. Publications of the
Scuola Normale Superiore di Pisa, Vol. 10 (2010)

20. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337–340. Springer (2008)

21. Nakano, H.: A Modality for Recursion. In: Proc. LICS 2000. pp. 255–266. IEEE
(2000)

22. Santocanale, L.: The involutive quantaloid of completely distributive lattices. In:
Fahrenberg, U., Jipsen, P., Winter, M. (eds.) Proc. RAMICS 2020. LNCS, vol.
12062, pp. 286–301. Springer (2020)

23. The Agda Development Team: The Agda Dependently-Typed Programming Lan-
guage. https://wiki.portal.chalmers.se/agda/Main/HomePage (2021)

24. The Coq Development Team: The Coq Proof Assistant. https://coq.inria.fr
(2021)

https://arxiv.org/pdf/2103.00146
https://ocaml.org/releases/4.12/htmlman/index.html
https://wiki.portal.chalmers.se/agda/Main/HomePage
https://coq.inria.fr

Time Warps, from Algebra to Algorithms 17

A Appendix

A.1 Proof of Lemma 17

Definition A.1. The sample γβα is defined inductively for samples α, β, γ by

κβα :=

{

β if κ = α

κ otherwise;
last(t)βα :=

{

β if last(t) = α

last(t) otherwise;

t[γ]βα :=

{

β if t[γ] = α

t[γβα] otherwise;
q(γ)βα :=

{

β if q(γ) = α

q(γβα) otherwise
for q ∈ {s, p}.

Note that (γβα)
α
β = γ.

Definition A.2. For samples α, β1, . . . , βk, let µ(β1, . . . , βk) := |{β1, . . . , βk} |
and µα(β1, . . . , βk) := |Mα(β1, . . . , βk)|, whereMα(β1, . . . , βk) denotes the set of
samples β ∈ {β1, . . . , βk} such that whenever α1 · · · αn with α1 = βj
and αn = β, there exists an i ∈ {1, . . . , n} such that αi = α.

Note that clearly µ(α1, . . . , αk) ≤ µ(α1) + . . .+ µ(αk).

Lemma A.3. For any basic term t, q ∈ {s, p}, samples α, γ1, γ2, and time

variable κ,

µ(t[α], t[q(α)], γ1, γ2) ≤ µ(t[κ], t[q(κ)], γ1, γ2) + µα(t[α], t[q(α)], γ1, γ2)

µ(t[α]) ≤ µ(t[κ]) + µ(α).

In particular, µ(t[last(u)]) ≤ µ(t[κ]) for any basic term u.

Proof. If α = last(u) for some basic term u, then clearly even the inequality
µ(t[α], t[q(α)], γ1, γ2) ≤ µ(t[κ], t[q(κ)], γ1, γ2) holds. Suppose that α 6= last(u).
Let A := {t[κ], t[q(κ)]} ∪ {γ1, γ2} ∪Mα(t[κ], t[q(κ)], γ1, γ2), where we assume
for convenience of notation that these unions are disjoint. Define the function K
from A to the set of all samples by

K(β) :=

{

β if β ∈Mα(t[κ], t[q(κ)], γ1, γ2) ∪ {γ1, γ2}

βα
κ if β ∈ {t[κ], t[q(κ)]} .

It suffices to show that {t[α], t[q(α)], γ1, γ2} is contained in the image of K.
Let β ∈ {t[α], t[q(α)], γ1, γ2} . If β ∈ {γ1, γ2} , then clearly β is in the image
of K. So we may assume that β ∈ {t[α], t[q(α)]} \{γ1, γ2} . Then either there
exist α1, . . . , αn with α1 ∈ {t[α], t[q(α)]}, αn = β, and α1 . . . αn such that
αi 6= α for all i ∈ {1, . . . , n}, or not. If not, then β ∈ Mα(t[κ], t[q(κ)], γ1, γ2),
i.e., β = K(β) is in the image of K. Otherwise we want to show that α1

κ
α

. . . αn
κ
α. Then, since α1

κ
α = {t[κ], t[q(κ)]}, we have βκ

α ∈ {t[κ], t[q(κ)]} and
β = K(βκ

α) is in the image of K. We prove the claim by induction on n. If
n = 1, then there is nothing to prove. Suppose that the claim is proved for n
and we have α1 ∈ {t[α], t[q(α)]}, αn+1 = β, and α1 . . . αn αn+1. By
the induction hypothesis we get α1

κ
α . . . αn

κ
α. Since αn 6= α, αn+1 6= α and

α 6= last(u) for any basic term u, it is clear from the saturation conditions that
also αn

κ
α αn+1

κ
α. For the second inequality the proof is analogous.

18 S. van Gool et al.

Proof of Lemma 17. It suffices to prove that the saturation of {α} is finite
for any sample α, i.e., that µ(α) is finite. Clearly, µ(s(α)) ≤ 1 + µ(α) and
µ(p(α)) ≤ 1 + µ(α). So, by Lemma A.3, it suffices to prove that µ(t[κ]) is
finite for every term t and time variable κ, proceeding by induction on t. If
t ∈ TV ∪ {id,⊥}, then {t[κ]} = {t[κ], κ, t[last(t)], last(t)}, so µ(t[κ]) = 4.

If t = a1 · · · an, where a1, . . . , an are terms that are not products, then by
the saturation conditions,

{t[κ]} = {t[κ], t[last(t)])} ∪
n
⋃

i=1

⋃

α∈{κ,last(t)}

{a1 · · · ai[ai+1 · · · an[α]]}
 .

So, by Lemma A.3,

µ(t[κ]) ≤ 2 + 2

(

n
∑

i=1

µ(a1 · · · ai[κ]) + µ(ai+1 · · · an[κ])

)

and, by the induction hypothesis, the right-hand-side is finite.
If t = uo, then, by the saturation conditions,

{t[κ]} = {t[κ], t[last(t)]} ∪ {u[κ]} ∪ {u[last(t)]} .

So we get µ(t[κ]) ≤ 2 + 2µ(u[κ]) and, by the induction hypothesis, the right-
hand-side is finite.

If t = ur, then clearly

µ(t[κ]) = µ(u[s(t[κ])], u[t[κ]], u[s(t[last(t)])], u[t[last(t)]])

and, by applying Lemma A.3 for α = t[κ], γ1 = u[s(t[last(t)])], and γ2 =
u[t[last(t)]],

µ(t[κ]) ≤ µ(u[s(κ)], u[κ], γ1, γ2) + µα(u[s(α)], u[α], γ1, γ2).

But applying Lemma A.3 again for α′ = t[last(t)] with γ′1 = u[s(κ)], γ′2 = u[κ],
and a new time variable κ′,

µ(u[s(κ)], u[κ], γ1, γ2) ≤ µ(u[s(κ′)], u[κ′], γ′1, γ
′
2) + µα′(u[s(α′)], u[α′], γ′1, γ

′
2)

≤ 2µ(u[s(κ)]) + 2µ(u[κ]) + µα′(u[s(α′)], u[α′], γ′1, γ
′
2).

In summary,

µ(t[κ]) ≤ 2µ(u[s(κ)])+2µ(u[κ])+µα′(u[s(α′)], u[α′], γ′1, γ
′
2)+µα(u[s(α)], u[α], γ1, γ2).

By the induction hypothesis, the sum 2µ(u[s(κ)]) + 2µ(u[κ]) is finite. But also

Mt[κ](u[s(t[κ])], u[t[κ]], u[s(t[last(t)])], u[t[last(t)]]) = {t[κ], κ}

Mt[last(t)](u[s(t[last(t)])], u[t[last(t)]], u[s(κ)], u[κ]) = {t[last(t)], last(t)}.

So µ(t[κ]) is finite.
The case where t = uℓ is analogous to the case where t = ur.

Note that this proof yields a rough upper-bound µ(t[κ]) ≤ (6 ·c(t))c(t), where
c(t) is the complexity of the term t.

Time Warps, from Algebra to Algorithms 19

A.2 Proof of Proposition 26

To conclude the proof of Proposition 26, it remains to prove that δ is a diagram,
i.e., that δ satisfies conditions (1)-(23). For convenience, we assume without
further mention that all samples used are in ∆, and write JtK for JtKθ.

(1) If δ(α) ≤ δ(β), then, by the definition of δ and the fact that time warps are
monotonic, δ(t[α]) = JtK(δ(α)) ≤ JtK(δ(β)) = δ(t[β]).

(2) If δ(α) = 0, then δ(t[α]) = JtK(δ(α)) = 0.

(3) By the definition of δ.

(4) By the definition of δ.

(5) By the definition of δ,

δ(last(t)) = last(JtK) = min{n ∈ ω+ | JtK(n) = JtK(ω)}.

So clearly, for each k ∈ ω+,

last(JtK) ≤ k ⇐⇒ JtK(last(JtK)) = JtK(k).

Hence, for all t[α] ∈ ∆,

δ(last(t)) ≤ δ(α) ⇐⇒ δ(t[last(t)]) = δ(t[α]).

(6) If last(JtK) = δ(last(t)) = ω, then JtK(n) < JtK(ω) for all n < ω, and
δ(t[last(t)]) = JtK(ω) =

∨

n<ωJtK(n) = ω.

(7) δ(id[α]) = JidK(δ(α)) = δ(α).

(8) δ(last(⊥)) = last(J⊥K) = 0.

(9) δ(tu[α]) = JtuK(δ(α)) = JtK(JuK(δ(α))) = δ(t[u[α]]).

(10) If δ(last(tu)) = ω, then last(JtKJuK) = ω and, by Lemma 12, δ(last(t)) =
last(JtK) = ω and δ(last(u)) = last(JuK) = ω.

(11) By the definition of δ, we have δ(to[α]) = JtK
o
(δ(α)). Moreover, by Lemma 6,

we have δ(to[α]) = JtK
o
(δ(α)) = 0 or δ(to[α]) = JtK

o
(δ(α)) = ω.

(12) If δ(α) < ω, then, by Lemma 6,

δ(to[α]) = JtK
o
(δ(α)) = ω ⇐⇒ δ(t[α]) = JtK(δ(α)) = ω.

(13) δ(last(to)) = last(JtKo) < ω, by Lemma 6.

(14) Suppose that JtKo(last(JtKo)) = δ(to[last(to)]) < ω. Then, since JtKo(last(JtKo)) =
JtK

o
(ω), by Lemma 6, we get JtK(k) < ω for all k < ω. So in particular for

all δ(α) < ω, we have δ(t[α]) = JtK(δ(α)) < ω.

(15) δ(t[tr[α]]) = JtK(JtK
r
(δ(α))) ≤ δ(α), by Lemma 7.

(16) If 0 < δ(α) < ω and JtK
r
(δ(α)) = δ(tr[α]) < ω, then δ(α) < JtK(JtK

r
(δ(α)) +

1) = δ(t[s(tr[α])]), by Lemma 7.

(17) If last(JtK
r
) = δ(last(tr)) = ω, then δ(last(t)) = last(JtK) = ω, by Lemma 12.

(18) If JtK
r
(last(JtK

r
)) = δ(tr[last(tr)]) < ω, then JtK

r
(ω) = JtK

r
(last(JtK

r
)) < ω

and δ(t[s(tr[last(tr)])]) = JtK(JtKr(ω) + 1) = ω, by Lemma 7.

20 S. van Gool et al.

(19) If JtKℓ(δ(α)) = δ(tℓ[α]) < ω, then either δ(α) = 0 and δ(t[tℓ[α]]) = JtK(JtKℓ(0)) =

0, or 0 < δ(α) < ω and δ(α) ≤ JtK(JtKℓ(δ(α))) = δ(t[tℓ[α]]), by Lemma 8.

(20) If 0 < δ(α) < ω and JtK
ℓ
(δ(α)) = δ(tℓ[α]) < ω, then δ(t[p(tℓ[α])]) =

JtK(JtK
ℓ
(δ(α)) − 1) < δ(α), by Lemma 8.

(21) If δ(α) < ω and JtK
ℓ
(δ(α)) = δ(tℓ[α]) = ω, then δ(α) > 0 and δ(t[tℓ[α]] =

JtK(ω) < δ(α), by Lemma 8.

(22) If last(JtKℓ) = δ(last(tℓ)) = ω, then δ(last(t)) = last(JtK) = ω, by Lemma 12.

(23) If JtK
ℓ
(last(JtK

ℓ
)) = δ(tℓ[last(tℓ)]) < ω, then JtK

ℓ
(ω) = JtK

ℓ
(last(JtK

ℓ
)) < ω

and δ(t[tℓ[last(tℓ)]]) = JtK(JtK
ℓ
(ω)) = ω, by Lemma 8.

A.3 Proof of Lemma 29

Recall that the proof of Lemma 29 proceeds by induction on t and that the
case t = x follows by assumption. The other cases are direct consequences of the
following lemmas and the induction hypothesis.

Lemma A.4. If f1 strongly extends ⌊t1⌋δ and f2 strongly extends ⌊t2⌋δ, then f1f2
strongly extends ⌊t1t2⌋δ.

Proof. Suppose that f1 strongly extends ⌊t1⌋δ and f2 strongly extends ⌊t2⌋δ.
Then for all t1t2[α] ∈ ∆,

f1f2(δ(α)) = f1(f2(δ(α))) (by definition)

= f1(δ(t2[α])) (since f2 extends ⌊t2⌋δ)

= δ(t1[t2[α]]) (since f1 extends ⌊t1⌋δ)

= δ(t1t2[α]) (by (9)).

So f1f2 extends ⌊t1t2⌋δ, and it remains to show that the extension is strong. We
can assume that ⌊t1t2⌋δ is non-empty, since otherwise there is nothing to prove.
Suppose that δ(last(t1t2)) = ω. Then δ(last(t1)) = δ(last(t2)) = ω, by (10), and,
since f1 and f2 strongly extend ⌊t1⌋δ and ⌊t2⌋δ, respectively, also last(f1) =
last(f2) = ω. Hence last(f1f2) = ω, by Lemma 12.

Lemma A.5. If f strongly extends ⌊t⌋δ, then f o strongly extends ⌊to⌋δ.

Proof. Suppose that f strongly extends ⌊t⌋δ and consider any to[α] ∈ ∆. We
prove that f o(δ(α)) = δ(to[α]). Suppose first that δ(α) < ω. We reason by cases
for δ(to[α]).

(i) δ(to[α]) = ω. Then δ(t[α]) = ω, by (12), and, since f extends ⌊t⌋δ, also f(δ(α)) =
ω. Hence f o(δ(α)) = ω, by Lemma 6.

(ii) δ(to[α]) < ω. Then δ(to[α]) = 0, by (11), and hence δ(t[α]) < ω, by (12).
Since f extends ⌊t⌋δ, also f(δ(α)) < ω. Hence f o(δ(α)) = 0, by Lemma 6.

Now suppose that δ(α) = ω. Then δ(to[α]) = δ(to[last(to)]), by (5), and δ(last(to)) <
ω, by (13). As in the previous cases, f o(δ(last(to))) = δ(to[last(to)]), recalling that
by (11), either δ(to[α]) = ω or δ(to[α]) = 0.

Time Warps, from Algebra to Algorithms 21

1. δ(to[last(to)]) = δ(to[α]) = ω. Then f o(δ(last(to))) = ω, and f o(ω) = ω.
2. δ(to[last(to)]) = δ(to[α]) = 0. Then there are two cases. If δ(t[α]) < ω,

then, since f extends ⌊t⌋δ, we have f(ω) < ω and f o(ω) = 0, by Lemma 6.
Otherwise, δ(t[α]) = ω. In this case, δ(t[β]) < ω for all δ(β) < ω with
t[β] ∈ ∆, by (14), so δ(last(t)) = ω. Hence, since f strongly extends ⌊t⌋δ, we
have last(f) = ω and f o(ω) = 0, by Lemma 6.

That f o strongly extends ⌊to⌋δ is clear, since δ(last(to)) < ω, by (13).

Lemma A.6. If f strongly extends ⌊t⌋δ, then f r strongly extends ⌊tr⌋δ.

Proof. Let tr[α] ∈ ∆. Note first that, by (2), if δ(α) = 0, then δ(tr[α]) = 0 =
f r(0). Hence assume that δ(α) > 0. Suppose first that δ(α) < ω. We reason by
cases for δ(tr[α]).

1. δ(tr[α]) < ω. Then δ(t[tr[α]]) ≤ δ(α) < δ(t[s(tr[α])]), by (15) and (16). Since
f extends ⌊t⌋δ, we have f(δ(tr[α])) = δ(t[tr[α]]) ≤ δ(α) < δ(t[s(tr[α])]) =
f(δ(s(tr[α]))), and, by (4), also f(δ(s(tr[α]))) = f(δ(tr[α]) + 1). So δ(tr[α]) =
f r(δ(α)), by Lemma 7.

2. δ(tr[α]) = ω. Then, since δ(t[tr[α]]) ≤ δ(α), by (15), and f extends ⌊t⌋δ, we
have f(ω) = f(δ(tr[α])) ≤ δ(α) < ω. Hence f r(δ(α)) = ω, by Lemma 7.

Now suppose that δ(α) = ω and hence δ(tr[α]) = δ(tr[last(tr)]). We reason by
cases for δ(tr[α]).

1. δ(tr[last(tr)]) = δ(tr[α]) < ω. Then δ(last(tr)) < ω and δ(t[s(tr[last(tr)])]) =
ω, by (6) and (18). So, using the previous cases, (4), and the fact that f
extends ⌊t⌋δ, we get f r(δ(last(tr))) = δ(tr[α]) and f(δ(tr[α]) + 1) = ω. Hence
f r(δ(α)) = δ(tr[α]), by Lemma 7.

2. δ(tr[last(tr)]) = δ(tr[α]) = ω. Then there are two cases. If δ(last(tr)) < ω,
then, using the previous cases, f r(δ(last(tr))) = ω, and hence f r(ω) = ω by
Lemma 7. Otherwise δ(last(tr)) = ω. Then δ(last(t)) = ω, by (17), and since
f strongly extends ⌊t⌋δ, we have last(f) = ω. Hence f r(ω) = ω, by Lemma 7.

It remains to show that the extension is strong. Again we can assume that ⌊tr⌋δ is
non-empty. Suppose that δ(last(tr)) = ω. Then δ(last(t)) = ω, by (17), and, since
f strongly extends ⌊t⌋δ, also last(f) = ω. Hence last(f r) = ω, by Lemma 12.

Lemma A.7. If f strongly extends ⌊t⌋δ, then f
ℓ strongly extends ⌊tℓ⌋δ.

Proof. Let tℓ[α] ∈ ∆. Note first that, by (2), if δ(α) = 0, then δ(tℓ[α]) = 0 =
f ℓ(0). Hence assume that δ(α) > 0. Suppose first that δ(α) < ω. We reason by
cases for δ(tℓ[α]).

1. δ(tℓ[α]) < ω. Then δ(t[p(tℓ[α])]) < δ(α) ≤ δ(t[tℓ[α]]), by (19) and (20). Since
f extends ⌊t⌋δ, we have f(δ(p(tℓ[α]))) = δ(t[p(tℓ[α])]) < δ(α) ≤ δ(t[tℓ[α]]) =
f(δ(tℓ[α])). But also f(δ(p(tℓ[α]))) = f(δ(tℓ[α]) − 1), by (3), noting that
0 < δ(tℓ[α]), since f(0) = 0 < δ(α). Hence δ(tℓ[α]) = f ℓ(δ(α)), by Lemma 8.

22 S. van Gool et al.

2. δ(tℓ[α]) = ω. Then δ(t[tℓ[α]]) < δ(α), by (21), and, since f extends ⌊t⌋δ, also
f(ω) = f(δ(tℓ[α])) < δ(α). Hence f ℓ(δ(α)) = ω, by Lemma 8.

Suppose now that δ(α) = ω and hence δ(tℓ[α]) = δ(tℓ[last(tℓ)]). We reason by
cases on δ(tℓ[α]).

1. δ(tℓ[last(tℓ)]) = δ(tℓ[α]) < ω. Then δ(last(tℓ)) < ω and δ(t[tℓ[last(tℓ)]]) = ω,
by (6) and (23). So, by the previous cases and the fact that f extends ⌊t⌋δ,
we have f ℓ(δ(last(tℓ))) = δ(tℓ[α]) and f(δ(tℓ[α])) = ω. Hence f ℓ(δ(α)) =
δ(tℓ[α]), by Lemma 8.

2. δ(tℓ[last(tℓ)]) = δ(tℓ[α]) = ω. Then there are two cases. If δ(last(tℓ)) < ω,
then by the previous cases, f ℓ(δ(last(tℓ))) = ω, and f ℓ(ω) = ω by Lemma 8.
If δ(last(tℓ)) = ω, then δ(last(t)) = ω, by (22), and, since f strongly ex-
tends ⌊t⌋δ, also last(f) = ω and f ℓ(ω) = ω, by Lemma 8.

It remains to show that the extension is strong. Again we can assume that ⌊tℓ⌋δ
is non-empty. Suppose that δ(last(tℓ)) = ω. Then, by (22), we get δ(last(t)) = ω.
So, since f strongly extends ⌊t⌋δ, also last(f) = ω. Hence last(f ℓ) = ω, by
Lemma 12.

Lemma A.8. The time warp id strongly extends ⌊id⌋δ.

Proof. The extension property follows from (7); the fact that it is strong follows
from the fact that last(id) = ω.

Lemma A.9. The time warp ⊥ strongly extends ⌊⊥⌋δ.

Proof. The extension property follows from (5) and (8); the fact that it is strong
is immediate by (8).

	Time Warps, from Algebra to Algorithms

