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Abstract. In this article, we introduce a new technique for precision
tuning. This problem consists of finding the least data types for numerical
values such that the result of the computation satisfies some accuracy
requirement. State of the art techniques for precision tuning use a try
and fail approach. They change the data types of some variables of the
program and evaluate the accuracy of the result. Depending on what is
obtained, they change more or less data types and repeat the process.
Our technique is radically different. Based on semantic equations, we
generate an Integer Linear Problem (ILP) from the program source code.
Basically, this is done by reasoning on the most significant bit and the
number of significant bits of the values which are integer quantities. The
integer solution to this problem, computed in polynomial time by a (real)
linear programming solver, gives the optimal data types at the bit level.
A finer set of semantic equations is also proposed which does not reduce
directly to an ILP problem. So we use policy iteration to find the solution.
Both techniques have been implemented and we show that our results
encompass the results of state of the art tools.

Keywords: Static analysis, computer arithmetic, integer linear prob-
lems, numerical accuracy, policy iteration.

1 Introduction

Let us consider a program P computing some numerical result R, typically but
not necessarily in the IEEE754 floating-point arithmetic [1]. Precision tuning
then consists of finding the smallest data types for all the variables and expres-
sions of P such that the result R has some desired accuracy. These last years,
much attention has been paid to this problem [6,8,10,11,12,18]. Indeed, precision
tuning makes it possible to save memory and, by way of consequence, it has a
positive impact on the footprint of programs concerning energy consumption,
bandwidth usage, computation time, etc.

A common point to all the techniques cited previously is that they follow a
try and fail strategy. Roughly speaking, one chooses a subset S of the variables
of P , assigns to them smaller data types (e.g. binary32 instead of binary64

[1]) and evaluates the accuracy of the tuned program P ′. If the accuracy of the
result returned by P ′ is satisfying then new variables are included in S or even
smaller data types are assigned to certain variables already in S (e.g. binary16).
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Otherwise, if the accuracy of the result of P ′ is not satisfying, then some variables
are removed from S. This process is applied repeatedly, until a stable state
is found. Existing techniques differ in their way to evaluate the accuracy of
programs, done by dynamic analysis [10,11,12,18] or by static analysis [6,8] of P
and P ′. They may also differ in the algorithm used to define S, delta debugging
being the most widespread method [18].

Anyway all these techniques suffer from the same combinatorial limitation: If
P has n variables and if the method tries k different data types then the search
space contains kn configurations. They scale neither in the number n of variables
(even if heuristics such as delta debugging [18] or branch and bound [6] reduce
the search space at the price of optimality) or in the number k of data types
which can be tried. In particular, bit level precision tuning, which consists of
finding the minimal number of bits needed for each variable to reach the desired
accuracy, independently of a limited number k of data types, is not an option.

So the method introduced in this article for precision tuning of programs
is radically different. Here, no try and fail method is employed. Instead, the
accuracy of the arithmetic expressions assigned to variables is determined by
semantic equations, in function of the accuracy of the operands. By reasoning
on the number of significant bits of the variables of P and knowing the weight of
their most significant bit thanks to a range analysis performed before the tuning
phase, we are able to reduce the problem to an Integer Linear Problem (ILP)
which can be optimally solved in one shot by a classical linear programming
solver (no iteration). Concerning the number n of variables, the method scales
up to the solver limitations and the solutions are naturally found at the bit
level, making the parameter k irrelevant. An important point is that the optimal
solution to the continuous linear programming relaxation of our ILP is a vector
of integers, as demonstrated in Section 4.2. By consequence, we may use a linear
solver among real numbers whose complexity is polynomial [19] (contrarily to
the linear solvers among integers whose complexity is NP-complete [16]). This
makes our precision tuning method solvable in polynomial-time, contrarily to
the existing exponential methods.

Next, we go one step further by introducing a second set of semantic equa-
tions. These new equations make it possible to tune even more the precision
by being less pessimistic on the propagation of carries in arithmetic operations.
However the problem do not reduce any longer to an ILP problem (min and max
operators are needed). Then we use policy iteration (PI) [7] to find efficiently
the solution.

Both methods have been implemented inside a tool for precision tuning
named XXX3 [5]. Formerly, XXX was expressing the precision tuning problem
as a set of first order logical propositions among relations between linear integer
expressions. An SMT solver (Z3 in practice [15]) was used repeatedly to find the
existence of a solution with a certain weight expressing the number of significant
bits (nsb) of the variables [5]. In the present article, we compare experimentally

3 In this article, XXX hides the actual name of our tool and missing references refer
to our previous work for anonymity.
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our new methods to the SMT based method previously used by XXX [5] and
to the Precimonious tool [10,18]. These experiments on programs coming from
mathematical libraries or other applicative domains such as IoT [3] show that
the technique introduced in this article for precision tuning clearly encompasses
the state of the art techniques.

The rest of this article is organized as follows. In the next section, we provide
a motivating example. We then present in Section 3 some essential background
on the functions needed for the constraint generation and also we detail the
set of constraints for both ILP and PI methods. Section 4 presents the proofs of
correctness. We end up in Section 5 by showing that our new techniques exhibits
very good results in practice before concluding in Section 6.

2 Motivating Example

A motivating example to better explain our method is given by the code snippet
of Figure 1. In this example, we aim at modeling the movement of a simple
pendulum without damping. Let l = 0.5 m be the length of this pendulum,
m = 1 kg its mass and g = 9.81 m · s−2 Newton’s gravitational constant. We
denote by θ the tilt angle in radians as shown in Figure 1 (initially θ = π

4 ). The
Equation describing the movement of the pendulum is given in Equation (1).

m · l · d
2θ

dt2
= −m · g · sin θ (1)

Equation (1) being a second order differential equation, we need to transform
it into a system of two first order differential equations for resolution so we obtain
y1 = θ and y2 = dθ

dt . By applying Euler’s method to these last equations, we
obtain Equation (2) implemented in Figure 1.

dy1
dt

= y2 and
dy2
dt

= −g
l
· sin y1 (2)

The key point of our technique is to generate a set of constraints for each
statement of our imperative language introduced further in Section 3. For our
example, we suppose that all variables, before XXX analysis, are in double pre-
cision (source program in the top left corner of Figure 1) and that a range
determination is performed by dynamic analysis on the program variables (we
plan to use a static analyzer in the future). XXX assigns to each node of the
program’s syntactic tree a unique control point in order to determine easily the
number of significant bits of the result as mentioned in the bottom corner of Fig-
ure 1. Some notations can be stressed about the structure of XXX source code.
For instance, the annotation g`1 = 9.81`0 denotes that g has a unique control
point `1. As well, we have the statement require nsb(y2,20) which informs
the tool that the user wants to get on variable y2 only 20 bits (we consider that
a result has n significants if the relative error between the exact and approx-
imated results is less than 2−n). Finally, the minimal precision needed for the
inputs and intermediary results satisfying the user assertion is observed on the
bottom right corner of Figure 1. In this code, if we consider for instance Line 6,
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1 g = 9.81; l = 0.5;
2 y1 = 0.785398; y2 = 0.785398;
3 h = 0.1; t = 0.0;
4 while (t <10.0) {
5 y1new = y1 + y2 * h ;
6 aux1 = sin(y1) ;
7 aux2 = aux1 * h * g / l;
8 y2new = y2 - aux2;
9 t = t + h;

10 y1 = y1new; y2 = y2new;
11 };
12 require_nsb(y2 ,20);

l
�

1 g`1 = 9.81`0 ; l`3 = 0.5`2 ;

2 y1`5 = 0.785398`4 ;

3 y2`7 = 0.785398`6 ;

4 h`9 = 0.1`8 ; t`11 = 0.0`10 ;

5 while (t`13 <`15 10.0`14 )`59 {

6 y1new`24 = y1`17 +`23 y2`19 *`22 h`21 ;

7 aux1`28 = sin(y1`26 )`27 ;

8 aux2`40 = aux1`30 *`39 h`32

9 *`38 g`34 /`37 l`36 ;

10 y2new`46 = y2`42 -`45 aux2`44 ;

11 t`52 = t`48 +`51 h`50 ;

12 y1`55 = y1new`54 ;

13 y2`58 = y2new`57 ;
14 };

15 require_nsb(y2 ,20)`61 ;

1 g|20| = 9.81|20|; l|20| = 1.5|20|;
2 y1|29| = 0.785398|29|;
3 y2|21| = 0.0|21|;
4 h|21| = 0.1|21|; t|21| = 0.0|21|;
5 while (t<1.0) {
6 y1new |20| = y1|21| +|20| y2|21|
7 *|22| h|21|;
8 aux1 |20| = sin(y1|29|) |20|;
9 aux2 |20| = aux1 |19| *|20| h|18|

10 *|19| g|17| /|18|l|17|;
11 y2new |20| = y2|21| -|20| aux2 |18|;
12 t|20| = t|21| +|20| h|17|;
13 y1|20| = y1new |20|;
14 y2|20| = y2new |20|;
15 };
16 require_nsb(y2 ,20);

Fig. 1. Top left: source program. Top right: pendulum movement for θ = π
4

. Bottom
left: program annotated with labels. Bottom right: program with inferred accuracies.

then y1new|20| means that the variable needs 20 significant bits at this point.
Similarly, y1 and y2 need 21 bits each and the addition requires 20 bits.

The originality of our method is that we reduce the precision tuning problem
to an ILP. For example, taking again Line 6 of the pendulum code, we generate
six constraints as shown in Equation 3 (this is detailed further in Section 3).

C1 =


nsb(`17) ≥ nsb(`23) + (−1) + ξ(`23)(`17, `22)− (−1),
nsb(`22 ≥ nsb(`23 + 0 + ξ(`23)(`17, `22)− (1),
nsb(`19) ≥ nsb(`22) + ξ(`22)(`19, `21)− 1,
nsb(`21) ≥ nsb(`22) + ξ(`22)(`19, `21)− 1,
nsb(`23) ≥ nsb(`24), ξ(`23)(`17, `22) ≥ 1, ξ(`22)(`19, `21) ≥ 1

 (3)

The first two constraints are for the addition. Basically, nsb(`23) stands for
number of significant bits as described in Section 3.1. It represents the difference
between the unit in the first place (ufp, see Section 3.1) of the result of the sum
and the ufp of its error denoted ufpe(`23). We have ufp(`17) = ufp(`17)−nsb(`17).
As mentioned previously, the ufp are computed by a prior range analysis. Then,
at constraint generation time, they are constants. For our example, ufp(`17) =
−1. This quantity occurs in the first constraints. The next two constraints are for
the multiplication. The fourth constraint nsb(`23) ≥ nsb(`24) is for the assign-
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ment and the last two constraints are for the constant functions ξ(`23)(`17, `22)
and ξ(`22)(`19, `21) respectively for the addition and multiplication (see next
paragraphs and Section 3 for more details). Note that XXX generates such con-
straints for all the statements of the program.

For a user requirement of 20 bits on the variable y2 as shown in the original
program of the top right corner of Figure 1 (all variables are in double precision
initially), XXX succeeds in tuning the majority of variables of the pendulum
program into simple precision with a total number of bits at bit level equivalent
to 274 (originally the program used 689 bits). The new mixed precision formats
obtained for line 6 are y1new|20| = y1|21| +|20| y2|22| ×|22| h|22|.

Let us now focus on the term ξ(`23)(`17, `22) (for the addition). In our ILP, we
always assume that ξ is a constant function equal to 1. This corresponds to the
carry bit which can be propagated up to the ufp and ufpe and increments them
by 1 which is correct but pessimistic. In large codes, this function becomes very
costly if we perform several computations at a time and therefore the errors
would be considerable, especially that in many cases adding this carry bit is
useless because the operands and their errors do not overlap. It is then crucial to
use the most precise function ξ. Unfortunately, when we model this optimization
the problem is no more linear (min and max operators arise) and we have to use
the PI technique [7] to solve it (see Section 3.3).

In this case, by analyzing Line 6 of our program, we have to add the following
new constraints (along with the former ones) as mentioned in Equation (4). In
fact, policy iteration makes it possible to break the min in the ξ(`23)(`17, `22)
function by choosing the max between ufp(`22)−ufp(`17)−nsb(`17)−nsb(`22)−
nsbe(`17) and 0, the max between ufp(`17) − ufp(`22) + nsb(`22) − nsb(`17) −
nsbe(`22) and 0 and the constant 1. Next, it becomes possible to solve the corre-
sponding ILP. If no fixed point is reached, XXX iterates until a solution is found
as shown in Section 3.3. By applying this optimization, the new formats of line
6 are given as y1new|20| = y1|21| +|20| y2|21| ×|22| h|21|. By comparing
with the formats obtained above, a gain of precision of 1 bit is observed on vari-
ables y2 and h (total of 272 bits at bit level for the optimized program). The
program on the bottom right corner of Figure 1 illustrates the new optimized
formats obtained by using the policy iteration technique.

C2 =



nsbe(`23) ≥ nsbe(`17),
nsbe(`23) ≥ nsbe(`22),
nsb(`23) ≥ −1− 0 + nsb(`22)− nsb(`17) + nsbe(`22) + ξ(`23, `17, `22),
nsbe(`23) ≥ 0− (−1) + nsb(`17)− nsb(`22) + nsbe(`17) + ξ(`23, `17, `22),
nsbe(`23) ≥ nsbe(`24),
nsbe(`22) ≥ nsb(`19) + nsbe(`19) + nsbe(`21)− 2,
nsbe(`22) ≥ nsb(`21) + nsbe(`21) + nsbe(`19)− 2,

ξ(`23)(`17, `22) = min

(
max

(
0− 6 + nsb(`17)− nsb(`22)− nsbe(`17), 0

)
,

max
(
6− 0 + nsb(`22)− nsb(`17)− nsbe(`22), 0

)
, 1

)


(4)

3 Constraints Generation for Bit-Level Precision Tuning

In this section, we start by providing essential definitions for understanding the
rest of the article. Also, we define a simple imperative language (see Figure 3)
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ε(c`#p) ≤ 2ufp(c)−min
(
p,prec(`)

)
(5)

ε(c`11 #p1 +` c`22 #p2) ≤ ε(c`11 #p1) + ε(c`22 #p2) + 2ufp(c1+c2)−prec(`) (6)

ε(c`11 #p1 −` c`22 #p2) ≤ ε(c`11 #p1)− ε(c`22 #p2) + 2ufp(c1−c2)−prec(`) (7)

ε(c`11 #p1 ×` c`22 #p2) ≤
c1 · ε(c`22 #p2) + c2 · ε(c`11 #p1) + ε(c`11 #p1) · ε(c`22 #p2) + 2ufp(c1×c2)−prec(`) (8)

ε(c`11 #p1 ÷` c`22 #p2) ≤ ε(c`11 #p1 ×` c′`22 #p2) with c′2 =
1

c2
(9)

ε
(
φ(c`1#p)`

)
≤ 2ufp(φ(c))−p+ϕ + 2ufp(φ(c))−prec(`) with φ ∈ {sin, cos, tan, log, . . .} (10)

ε
(√

(c`1#p)
`
)
≤ 2ufp(

√
c)−p + 2ufp(

√
c)−prec(`) (11)

Fig. 2. Numerical error on arithmetic expressions.

from which we generate semantic equations in order to determine the least pre-
cision needed for the program numerical values. Then, we will focus on the dif-
ference between the two sets of constraints obtained when using the simple ILP
and the more complex PI formulations which optimizes the carry bit that can
propagate throughout computations. The operational semantics of the language
as well as the theorem proving that the solution to the system of constraints
gives the desired nsb when running programs are detailed further in Section 4.

3.1 Elements of Computer Arithmetic

Our technique is independent of a particular computer arithmetic. In fact, we
manipulate numbers for which we know their unit in the first place (ufp) and
the number of significant digits (nsb) defined as follows.

Unit in the First Place The unit in the first place of a real number x (pos-
sibly encoded up to some rounding mode by a floating-point or a fixpoint
number) is given in Equation (12). This function, which is independent of
the representation of x, will be used further in this section to describe the
error propagation across the computations.

ufp(x) = min{i ∈ Z : 2i+1 > x} = blog2(x)c . (12)

Number of Significant Bits Intuitively, nsb(x) is the number of significant
bits of x. Formally, following Parker [17], if nsb(x) = k, for x 6= 0 then the
error ε(x) on x is less than 2ufp(x)−k. If x = 0 then nsb(x) = 0. For example,



Fast and Efficient Bit-Level Precision Tuning 7

` ∈ Lab x ∈ Id � ∈ {+, -, ×, ÷} math ∈ {sin, cos, tan, arcsin, log, . . .}

Expr 3 e : e ::= c#p` | x` | e`11 �
` e
`2
2 | math(e

`1 )` | sqrt(e`1 )`

Cmd 3 c : c ::= c
`1
1 ; c

`2
2 | x =` e`1 | while` b`0 do c

`1
1 | if

` b`0 then c
`1
1 else c | require nsb(x, n)`

Fig. 3. Simple imperative language of constraints.

if the exact binary value 1.0101 is approximated by either x = 1.010 or
x = 1.011 then nsb(x) = 3.

In the following, we also use ufpe(x) and nsbe(x) to denote the ufp and nsb of
the error on x, i.e. ufpe(x) = ufp(ε(x)) and nsbe(x) = nsb(ε(x)).

In this article, we consider a finite precision arithmetic, independently of
any particular representation (IEEE754 [1], POSIT [7], . . .). Nevertheless, the
representation being finite, roundoff errors may arise when representing values
or performing elementary operation. These errors are defined in Figure 2. First
of all, by definition, using the function ufp of Equation (12), for a number x
with p number of significant bits, the roundoff error ε(x) is bounded as shown
in Equation (13).

ε(x) ≤ 2ufp(x)−p+1 (13)

Let prec(`) be the precision of the operation at control point `. For example,
the precision is 53 bits for the IEEE754 binary64 format. In fact, prec(`) is
used to compute the truncation error of the operations. Equations (5) to (11) of
Figure 2 define the numerical errors of the arithmetic expressions of our language
(presented in Section 3). For constants occurring in the code, the initial precision
must be given by the user and we write c`#p a constant c with p significant bits at
control point `. Then, following Equation (13), ε(c`#p) is defined in Equation (5)
of Figure 2: the nsb of the constant is min(p, prec(`)) and consequently the error

is bounded by 2ufp(c)−min
(
p,prec(`)

)
. In equations (6) to (9), we propagate the

errors on the operands and we add the roundoff error due to the elementary
operation itself. For an elementary function φ, we assume that ϕ bits are lost as
shown in Equation (10) (more details are given in Section 3). The last equation
is for the square root function. This function being computable exactly, no more
error than for the elementary operation is introduced.

3.2 Integer Linear Problem Formulation

First, we define in Figure 3 the simple imperative language in which our input
programs are written.

We denote by Id the set of identifiers and by Lab the set of control points
of the program as a means to assign to each element e ∈ Expr and c ∈ Cmd
of our language a unique control point ` ∈ Lab. First, in c#p, p indicates the
number of significant bits of the constant c in the source code. The parameter p
is computed by our tool XXX, when solving the constraints. Next, the statement
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E [c#p`]% = ∅ (Const) E [x`]% =
{
nsb(%(x)) ≥ nsb(`)

}
(Id)

E [e`11 +` e`22 ]% = E [e`11 ]% ∪ E [e`22 ]%
∪

{nsb(`1) ≥ nsb(`) + ufp(`1)− ufp(`) + ξ(`)(`1, `2),
nsb(`2) ≥ nsb(`) + ufp(`2)− ufp(`) + ξ(`)(`1, `2)}

(Add)

E [e`11 −` e
`2
2 ]% = E [e`11 ]% ∪ E [e`22 ]%

∪
{nsb(`1) ≥ nsb(`) + ufp(`1)− ufp(`) + ξ(`)(`1, `2),
nsb(`2) ≥ nsb(`) + ufp(`2)− ufp(`) + ξ(`)(`1, `2)}

(Sub)

E [e`11 ×` e
`2
2 ]% = E [e`11 ]% ∪ E [e`22 ]%

∪
{nsb(`1) ≥ nsb(`) + ξ(`)(`1, `2)− 1, nsb(`2) ≥ nsb(`) + ξ(`)(`1, `2)− 1}

(Mult)

E [e`11 ÷` e
`2
2 ]% = E [e`11 ]% ∪ E [e`22 ]%

∪
{nsb(`1) ≥ nsb(`) + ξ(`)(`1, `2)− 1, nsb(`2) ≥ nsb(`) + ξ(`)(`1, `2)− 1}

(Div)

E
[√

e`1
`
]
% = E [e`11 ]% ∪

{
nsb(`1) ≥ nsb(`)

}
(Sqrt)

E
[
φ
(
e`1
)`]

% = E [e`11 ]% ∪
{
nsb(`1) ≥ nsb(`)+ϕ

}
with φ ∈ {sin, cos, tan, log, . . .} (Math)

C
[
x:=`e`1

]
% =

(
C, % [x 7→ `]

)
where C = E [e`11 ]% ∪ {nsb(`1) ≥ nsb(`)} (Assign)

C
[
c`11 ;c`22

]
% =

(
C1 ∪ C2, %2

)
where

(
C1, %1

)
= C

[
c`11

]
% and

(
C2, %2

)
= C

[
c`22

]
%1

(Seq)

C[if` e`0 then c`1 else c`2 ] % = (C1 ∪ C2 ∪ C3, %
′)

where

∣∣∣∣∣∀x ∈ Id, %′(x) = `, (C1, %1) = C[c`11 ] %, (C2, %2) = C[c`22 ] %,
C3 =

⋃
x∈Id
{nsb(%1(x)) ≥ nsb(`), nsb(%2(x)) ≥ nsb(`)}

(Cond)

C[while` e`0 do c`1 ] % = (C1 ∪ C2, %
′)

where

∣∣∣∣∣∀x ∈ Id, %′(x) = `, (C1, %1) = C[c`11 ] %′

C2 =
⋃
x∈Id
{nsb(%(x)) ≥ nsb(`), nsb(%1(x)) ≥ nsb(`)}

(While)

C[require nsb(x, p)`]% =
{
nsb(%(x)) ≥ p

}
(Req)

ξ(`)(`1, `2) = 1

Fig. 4. ILP constraints with pessimistic carry bit propagation ξ = 1.
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require nsb(x,n)` indicates the number of significant bits n that a variable x
must have at a control point `. The rest of the grammar is standard.

As we have mentioned, we are able to reduce the problem of determining the
lowest precision on variables and intermediary values in programs to an Integer
Linear Problem (ILP) by reasoning on their unit in the first place (ufp) and
the number of significant bits. In addition, we assign to each control point ` an
integer variable nsb(`) corresponding to the nsb of the arithmetic expressions.
nsb(`) is determined by solving the ILP generated by the rules of Figure 4.

Let us now focus on the rules of Figure 4 where % : Id → Id × Lab is an
environment which relates each identifier x to its last assignment x`: Assuming
that x :=`e`1 is the last assignment of x, the environment % maps x to x`.
Then, E [e] % generates the set of constraints for an expression e ∈ Expr in the
environment %. We now formally define these constraints for each element of our
language. No constraint is generated for a constant c#p as mentioned in Rule
(Const) of Figure 4. For Rule (Id) of a variable x`, we require that the nsb
at control point ` is less than its nsb in the last assignment of x given in %(x).
For a binary operator � ∈ {+, -, ×, ÷}, we first generate the set of constraints
E [e`11 ]% and E [e`22 ]% for the operands at control points `1 and `2. Considering
Rule (ADD), the result of the addition of two numbers is stored in control point
`. Recall that a range determination is performed before the accuracy analysis,
ufp(`), ufp(`1) and ufp(`2) are known at constraint generation time.

Now, before going further in the explanation of the constraints generation for
binary operations, we introduce the function ξ which computes the carry bit that
can occur throughout an addition (similar reasoning will be done for the other
elementary operations). In the present ILP of Figure 4, we over-approximate the
function ξ by ξ(`)(`1, `2) = 1 for all `, `1 and `2, thus assuming the worst case, i.e.
a carry bit is added at each operation. We will optimize ξ in Section 3.3 but the
problem will not remain an ILP any longer. To wrap up, for the addition (Rule
(Add)), the nsb(`) of the exact result is the number of bits between ufp(`1 + `2)
and the ufp of the error e which is:

e = max
(
ufp(`1)− nsb(`1), ufp(`2)− nsb(`2)

)
− ξ(`)(`1, `2) (14)

Hence, the error on the addition in precision prec(`) is

e′ = max
(
ufp(`1)− nsb(`1), ufp(`2)− nsb(`2), prec(`)

)
− ξ(`)(`1, `2) (15)

Equation (14) is obtained from Equation (6):

ε(c`11 #p1 +` c`22 #p2) ≤ ε(c`11 #p1) + ε(c`22 #p2) + 2ufp(c1+c2)−prec(`)

= max
(
ε(c`11 #p1), ε(c`22 #p2)

)
+ 2ufp(c1+c2)−prec(`) − ξ(`)(`1, `2)

= max
(
ufp(`1)− nsb(`1), ufp(`1)− nsb(`1)

)
+2ufp(c1+c2)−prec(`) − ξ(`)(`1, `2)

Since nsb(`) ≤ prec(`), we may get rid of the last term of e′ in Equation (15) and
the two equations generated for Rule (ADD) are derived from Equation (16).

nsb(`) ≤ ufp(`)−max
(
ufp(`1)− nsb(`1), ufp(`2)− nsb(`2)

)
− ξ(`)(`1, `2) (16)
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For example, let us consider the piece of code hereafter.

1 x`2 = 5.0`1 ; y`4 = 3.0`3 ;

2 z`8 = x`6 +`5 y`7 ;

3 require_nsb(z,15)`9 ;

Wrapping up our constraints, we have 15 ≤ nsb(`9) ≤ nsb(`8) ≤ nsb(`5),
and nsb(`6) ≥ nsb(`8) + ufp(`6) − ufp(`7) + ξ(`8)(`6, `7). Since ufp(`6) = 2 and
ufp(`7) = 1 we have nsb(`6) ≥ nsb(`8) + 1 + ξ(`8)(`6, `7) and, consequently,
nsb(`6) ≥ 15 + 1 + 1 = 17. Rule (Sub) for the subtraction is obtained similarly
to the addition case. For Rule (Mult) of multiplication (and in the same manner
Rule(Div)), the reasoning mimics the one of the addition. Let x and y be two
floating point numbers and z the result of their product, z = x`1 ×` y`2 . We
denote by ε(x), ε(y) and ε(z) the errors on x, y and z, respectively. The error
ε(z) of this multiplication is ε(z) = x · ε(y) +y · ε(x) + ε(x) · ε(y). These numbers
are bounded as shown in Equation (17).

2ufp(x) ≤ x ≤ 2ufp(x)+1 and 2ufp(x)−nsb(x) ≤ ε(x) ≤ 2ufp(x)−nsb(x)+1

2ufp(y) ≤ y ≤ 2ufp(y)+1 and 2ufp(y)−nsb(y) ≤ ε(y) ≤ 2ufp(y)−nsb(y)+1

2ufp(x)+ufp(y)−nsb(y) + 2ufp(y)+ufp(x)−nsb(x) ≤ ε(z) ≤ 2ufp(z)−nsb(z)+1

+2ufp(x)+ufp(y)−nsb(x)−nsb(y)

(17)

By getting rid of the last term 2ufp(x)+ufp(y)−nsb(x)−nsb(y) of the error ε(z) which
is strictly less than the former two ones, assuming that ufp(x+ y) = ufp(z) and,
finally, by reasoning on the exponents, we obtain the equations of Rule (Mult).

nsb(x) ≥ nsb(z) + ξ(`)(`1, `2)− 1 and nsb(y) ≥ nsb(y) + ξ(`)(`1, `2)− 1

Although the square root (Sqrt) is included, e.g, in the IEEE754 Standard,
it is not the case for the other elementary functions such as the natural loga-
rithm, the exponential functions and the hyperbolic and trigonometric functions
gathered in Rule (Math). Also, each implementation of these functions has its
own nsb which we have to know to model the propagation of errors in our anal-
yses. To cope with this limitation, we consider that each elementary function
introduces a loss of precision of ϕ bits, where ϕ ∈ N is a parameter of the
analysis and consequently of our tool, XXX.

The rules of commands are rather classical, we use control points to distin-
guish many assignments of the same variable and also to implement joins in
conditions and loops. Given a command c and an environment %, C[c] % returns
a pair (C, %′) made of a set C of constraints and of a new environment %′. The
function C is defined by induction on the structure of commands in figures 4 and
5. For conditionals, we generate the constraints for the then and else branches
plus additional constraints to join the results of both branches. For loops, we
relate the number of significants bits at the end of the body to the nsb of the
same variables and the beginning of the loop.

3.3 Policy Iteration for Optimized Carry Bit Propagation

The policy iterations algorithm is used to solve nonlinear fixpoint equations
when the function is written as the infimum of functions for which a fixpoint
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E ′[c#p`]% =
{
nsbe(`) = 0

}
(Const′) E ′[x`]% =

{
nsbe(%(x)) ≥ nsbe(`)

}
(Id′)

E ′[e`11 +` e`22 ]% = E ′[e`11 ]% ∪ E ′[e`22 ]% (Add′)
∪

nsbe(`) ≥ nsbe(`1), nsbe(`) ≥ nsbe(`2),
nsbe(`) ≥ ufp(`1)− ufp(`2) + nsb(`2)− nsb(`1) + nsbe(`2) + ξ(`)(`1, `2),
nsbe(`) ≥ ufp(`2)− ufp(`1) + nsb(`1)− nsb(`2) + nsbe(`1) + ξ(`)(`1, `2)


E ′[e`11 −` e

`2
2 ]% = E ′[e`11 ]% ∪ E ′[e`22 ]% (Sub′)

∪
nsbe(`) ≥ nsbe(`1), nsbe(`) ≥ nsbe(`2),

nsbe(`) ≥ ufp(`1)− ufp(`2) + nsb(`2)− nsb(`1) + nsbe(`2) + ξ(`)(`1, `2),
nsbe(`) ≥ ufp(`2)− ufp(`1) + nsb(`1)− nsb(`2) + nsbe(`1) + ξ(`)(`1, `2)


E ′[e`11 ×` e

`2
2 ]% = E ′[e`11 ]% ∪ E ′[e`22 ]% (Mult′)

∪{
nsbe(`) ≥ nsb(`1) + nsbe(`1) + nsbe(`2)− 2, nsbe(`) ≥ nsb(`2) + nsbe(`2) + nsbe(`1)− 2

}
E ′[e`11 ÷` e

`2
2 ]% = E ′[e`11 ]% ∪ E ′[e`22 ]% (Div′)

∪{
nsbe(`) ≥ nsb(`1) + nsbe(`1) + nsbe(`2)− 2, nsbe(`) ≥ nsb(`2) + nsbe(`2) + nsbe(`1)− 2

}
E ′
[√

e`1
`
]
% = E ′[e`11 ]% ∪

{
nsbe(`) ≥ nsbe(`1)

}
(Sqrt′)

E ′
[
φ
(
e`1
)`]

% = E ′[e`11 ]% ∪
{
nsbe(`) ≥ +∞

}
with φ ∈ {sin, cos, tan, log, . . .} (Math′)

C′
[
x:=`e`1

]
% =

(
C, % [x 7→ `]

)
where C = E ′[e`11 ]% ∪ {nsbe(`1) ≥ nsbe(`)} (Assign′)

C′
[
c`11 ;c`22

]
% =

(
C1∪C2, %2

)
with

(
C1, %1

)
= C′

[
c`11

]
% and

(
C2, %2

)
= C′

[
c`22

]
%1 (Seq′)

C′[if` e`0 then c`1 else c`2 ] % = (C1 ∪ C2 ∪ C3, %
′)

where

∣∣∣∣∣∀x ∈ Id, %′(x) = `, (C1, %1) = C′[c`11 ] %, (C2, %2) = C′[c`22 ] %,
C3 =

⋃
x∈Id
{nsbe(%1(x)) ≥ nsbe(`), nsbe(%2(x)) ≥ nsbe(`)}

(Cond′)

C′[while` e`0 do c`1 ] % = (C1 ∪ C2, %
′)

where

∣∣∣∣∣∀x ∈ Id, %′(x) = `, (C1, %1) = C′[c`11 ] %′

C2 =
⋃
x∈Id
{nsbe(%(x)) ≥ nsbe(`), nsbe(%1(x)) ≥ nsbe(`)}

(While′)

C′[require nsb(x, p)`]% = ∅ (Req′)

ξ(`)(`1, `2) = min

(
max

(
ufp(`2)− ufp(`1) + nsb(`1)− nsb(`2)− nsbe(`2), 0

)
,

max
(
ufp(`1)− ufp(`2) + nsb(`2)− nsb(`1)− nsbe(`1), 0

)
, 1

)

Fig. 5. Constraints solved by PI with min and max carry bit formulation.
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can be easily computed. The infimum formulation makes the function not being
differentiable in the classical sense. The one proposed in [7] to solve smallest
fixpoint equations in static analysis requires the fact that the function is order-
preserving to ensure the decrease of the intermediate solutions provided by the
algorithm. In this article, because of the nature of the semantics, we propose a
policy iterations algorithm for a non order-preserving function.

More precisely, let F be a map from a complete L to itself such that F =
infπ∈Π f

π. Classical policy iterations solve F (x) = x by generating a sequence

(xk)k such that fπ
k

(xk) = xk and xk+1 < xk. The set Π is called the set
of policies and fπ a policy map (associated to π). The set of policy maps has
to satisfy the selection property meaning that for all x ∈ L, there exists π ∈
Π such that F (x) = fπ(x). This is exactly the same as for each x ∈ L, the
minimization problem Minπ∈Π f

π(x) has an optimal solution. If Π is finite and
F is order-preserving, policy iterations converge in finite time to a fixpoint of
F . The number of iterations is bounded from above by the number of policies.
Indeed, a policy cannot be selected twice in the running of the algorithm. This
is implied by the fact that the smallest fixpoint of a policy map is computed.
In this article, we adapt policy iterations to the problem of precision tuning.
The function F here is constructed from inequalities depicted in Figure 4 and
Figure 5. We thus have naturally constraints of the form F (x) ≤ x. We will
give details about the construction of F at Proposition 1. Consequently, we are
interested in solving:

Min
nsb,nsbe

∑
`

nsb(`)

s. t. F

(
nsb
nsbe

)
≤
(

nsb
nsbe

)
nsb ∈ NLab, nsbe ∈ NLab

(18)

Let ξ : Lab→ {0, 1}. We will write S1
ξ the system of inequalities depicted in

Figure 4 and S2
ξ the system of inequalities presented at Figure 5. Note that the

final system of inequalities is Sξ = S1
ξ ∪S2

ξ meaning that we add new constraints

to S1
ξ . If the system S1

ξ is used alone, ξ is the constant function equal to 1.
Otherwise, ξ is defined by the formula at the end of Figure 5.

Proposition 1. The following results hold:

1. Let ξ the constant function equal to 1. The system S1
ξ can be rewritten as

{nsb ∈ NLab | F (nsb) ≤ (nsb)} where F maps RLab×RLab to itself, F (NLab×
NLab) ⊆ (NLab×NLab) and has coordinates which are the maximum of a finite
family of affine order-preserving functions.

2. Let ξ the function such that ξ(`) equals the function defined at Figure 5. The
system Sξ can be rewritten as {(nsb, nsbe) ∈ NLab × NLab | F (nsb, nsbe) ≤
(nsb, nsbe)} where F maps RLab×RLab to itself, F (NLab×NLab) ⊆ (NLab×
NLab) and all its coordinates are the min-max of a finite family of affine
functions.

From Proposition 1, when Sξ is used, we can write F as F = minπ∈Π f
π,

where fπ is the maximum of a finite family of affine functions and thus used a
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modified policy iterations algorithm. The set of policies here is a map π : Lab 7→
{0, 1}. A choice is thus a vector of 0 or 1. A policy map fπ is a function NLab
to itself such that the coordinates are fπ` (`). If the coordinate fπ` (`) depends on
ξ then ξ(`) = π(`). Otherwise, the function is the maximum of affine functions
and a choice is not required.

Algorithm 1: Non-monotone Policy Iterations Algorithm
Result: An over-approximation of an optimal solution of Equation (18)

1 Let k := 0, S := +∞;

2 Choose π0 ∈ Π;

3 Select an optimal solution of (nsbk, nsbe
k) the integer linear program:

Min

 ∑
`∈Lab

nsb(`) | fπ
k
(nsb, nsbe) ≤ (nsb, nsbe), nsb ∈ NLab, nsbe ∈ NLab

 ;

if
∑
`∈Lab nsb

k(`) < S then

4 S :=
∑
`∈Lab nsb

k(`);

5 Choose πk+1 ∈ Π such that F (nsbk, nsbe
k) = fπ

k+1
(nsbk, nsbe

k);
6 k := k + 1 and go to 3;

7 else

8 Return S and nsbk.
9 end

Proposition 2 (Algorithm correctness). The sequence (
∑
`∈Lab nsb

k(`))0≤k≤K
generated by Algorithm 1 is of finite length (i.e. K ∈ N) and satisfies a strict
decrease before convergence:

∑
`∈Lab nsb

k+1(`) <
∑
`∈Lab nsb

k(`) if k < K − 1

and
∑
`∈Lab nsb

K(`) =
∑
`∈Lab nsb

K−1(`). The number of terms is smaller than
the number of policies.

Proof. Let
∑
`∈Lab nsb

k(`) be a term of the sequence and (nsbk, nsbe
k) be the opti-

mal solution of Min{
∑
`∈Lab nsb(`) | fπ

k

(nsb, nsbe) ≤ (nsb, nsbe), nsb ∈ NLab, nsbe ∈
NLab}. Then F (nsbk, nsbe

k) ≤ fπ
k

(nsbk, nsbe
k) by definition of F . Moreover,

F (nsbk, nsbe
k) = fπ

k+1

(nsbk, nsbe
k) and fπ

k

(nsbk, nsbe
k) ≤ (nsbk, nsbe

k). It follows

that fπ
k+1

(nsbk, nsbe
k) ≤ (nsbk, nsbe

k) and (nsbk, nsbe
k) is feasible for the minimi-

sation problem for which (nsbk+1, nsbe
k+1) is an optimal solution. We conclude that∑

`∈Lab nsb
k+1(`) ≤

∑
`∈Lab nsb

k(`) and the Algorithm terminates if the equality holds
or continues as the criterion strictly decreases. Finally, from the strict decrease, a policy
cannot be selected twice without terminating the algorithm. In conclusion, the number
of iterations is smaller than the number of policies. �

Figure 5 displays the new rules that we add to the global system of con-
straints in the case where we optimize the carry bit of the elementary operations.
Before introducing the optimized function ξ, the definition of the unit in the last
place ulp of a real number x is defined in Equation(19).

ulp(x) = ufp(x)− nsb(x) + 1 . (19)
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Indeed, during an operation between two numbers, the ξ function is computed
as follows: If the ulp of one of the two operands is greater than the ufp of the other
one (or conversely) then the two numbers are not aligned and no carry bit can
be propagated through the operation (otherwise ξ = 1). This idea is presented
in Figure 5 in which ξ is formulated by min and max operators. Winning one bit
may seen a ridiculous optimization at first sight. However, when many operations
are done in a program which has to compute with some tens of nsb, this is far from
being negligible. Formally, let x and y be the operands of some operation whose
result is z. The errors are ε(x), ε(y) and ε(z) respectively on x, y and z. Note
that the behaviour of ξ is also valid in the case of propagation of the carry bit
on the errors. Consequently, using the definitions of ufpe and nsbe introduced in
Section 3.1, we have ufpe(x) = ufp(x)−nsb(x) and ulpe(x) = ufpe(x)−nsbe(x)+1
with ufpe and ulpe are the unit in the first and in the last place of the errors,
respectively, for x (same reasoning for y and z). The optimized function ξ of
Figure 5 derives from Equation (20).

ξ(z, x, y) =

{
0 ufpe(x)− nsbe(x) ≥ ufp(y)− nsb(y) or conversely,

1 otherwise.
(20)

As mentioned in Equation (20), to compute the ulp of the errors on the operands,
we need to estimate the number of bits of the error nsbe for each operand which
explains the new rules and constraints given in Figure 5. Hence, these constraints
are complementary to the rules of Figure 4, already explained in Section 3.2, in
which the only difference is that we activate the new function ξ instead of its
over-approximation of Figure 4. Let us concentrate on the rules of Figure 5. The
function E ′[e] % generates the new set of constraints for an expression e ∈ Expr in
the environment %. For Rule (Const′), the number of significant bits of the error
nsbe = 0 whereas we impose that the nsbe of a variable x at control point ` is
less than the last assignment of nsbe in %(x) as shown in Rule (Id′) of Figure 5.
Considering Rule (Add′), we start by generating the new set of constraints
E ′[e`11 ]% and E ′[e`22 ]% on the operands at control points `1 and `2. Then, we require
that nsbe(`) ≥ nsbe(`1) and nsbe(`) ≥ nsbe(`2) where the result of the addition
is stored at control point `. Additionally, the number of significant bits of the
error on the result nsbe(`) at control point ` is computed as shown hereafter.

nsbe(`) ≥ max

(
ufp(`1)− nsb(`1)
ufp(`2)− nsb(`2)

)
−min

(
ufp(`1)− nsb(`1)− nsbe(`1)
ufp(`2)− nsb(`2)− nsbe(`2)

)
+ξ(`)(`1, `2)

By breaking the min and max operators, we obtain the constraints on nsbe(`) of
Rule (Add′). For the subtraction, the constraints generated are similar to the
addition case. Considering now Rule (Mult′), as we have defined in Section 3.2,
ε(z) = x · ε(y) + y · ε(x) + ε(x) · ε(y) where z is the result of the product of x
and y. By reasoning on the ulp of the error, we bound ε(z) by

ε(z) = 2ufp(x) · 2ufp(y)−nsb(y)−nsbe(y)+1 + 2ufp(y) · 2ufp(x)−nsb(x)−nsbe(x)+1

+2ufp(y)+ufp(x)−nsb(x)−nsb(y)−nsbe(x)−nsbe(y)+2
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%(x) = c#p

〈x`, %〉 −→ 〈c`#p, %〉

c = c1 � c2, p = ufp(c)− ufpe
(
c`#p

)
〈c`11 #p1 �` c`22 #p2, %〉 −→ 〈c#p, %〉

� ∈ {+,−,×,÷}

〈e`11 , %〉 −→ 〈e
′`1
1 , %〉

〈e`11 �` e
`2
2 , %〉 −→ 〈e

′`1
1 �` e

`2
2 , %〉

〈e`22 , %〉 −→ 〈e
′`2
2 , %〉

〈c`11 #p�` e`22 , %〉 −→ 〈c
`1
1 ]p�` e

′`2
2 , %〉

〈e`1 , %〉 −→ 〈e′`1 , %〉
〈φ(e`1)`, %〉 −→ 〈φ(e′`1)`, %〉

c = φ(c1) q = ufp(c)− ufpe(c
`#p)

〈φ(c`11 #p)`, %〉 −→ 〈c`#q, %〉
φ ∈ {sin, cos, . . .}

〈e`1 , %〉 −→ 〈e′`1 , %〉
〈
√
e`1

`
, %〉 −→ 〈

√
e′`1

`
, %〉

c =
√
c1 q = ufp(c)− ufpe(c

`#p)

〈
√
c`11 #p

`

, %〉 −→ 〈c`#q, %〉

Fig. 6. Small Step Operational semantics of arithmetic expressions.

By selecting the smallest term ufp(y) + ufp(x) − nsb(x) − nsb(y) − nsbe(x) −
nsbe(y) + 2, we obtain that

nsbe(`) ≥ max

(
ufp(`1) + ufp(`2)− nsb(`1)
ufp(`1) + ufp(`2)− nsb(`2)

)
−

ufp(`1) + ufp(`2)− nsb(`1)−
nsb(`2)− nsbe(`1)− nsbe(`2)
+2

.

Finally, by simplifying the equation above we found the constraints of Rule
(Mult′) in Figure 5 (same for Rule (Div′)). For Rule (Sqrt′), we generate
the constraints on the expression E ′[e`11 ]% and we require that nsbe of the result
stored at control point ` is greater than the nsbe of the expression a control point
`1. For Rule (Math′) , we assume that nsbe(`) is unbounded. Concerning the
commands, we define the set C′[c] % which has the same function as C defined
in Figure 4. The reasoning on the commands also remains similar except that
this time we reason on the number of bits of the errors nsbe. The only difference
is in Rule (Req′) where the set of constraints is empty. Let us recall that the
constraints of Figure 5 are added to the former constraints of Figure 4 and are
sent to a linear solver (GLPK in practice).

4 Correctness

In this section, we present proofs of correctness concerning the soundness of the
analysis (Section 4.1) and the integer nature of the solutions (Section 4.2).

4.1 Soundness of the Constraint System

Let ≡ denote the syntactic equivalence and let e` ∈ Expr be an expression. We
write Const(e`) the set of constants occurring in the expression e`. For example,
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Const(18.0`1×`2 x`3 +`4 12.0`5×`6 y`7 +`8 z`9) = {18.0`1 , 12.0`5}. Also, we denote
by τ : Lab → N a function mapping the labels of an expression to a nsb. The
notation τ |= E [e`]% means that τ is the minimal solution to the ILP E [e`]%. We
write %⊥ the empty environment (dom(%⊥) = ∅).

The small step operational semantics of our language is displayed in Fig-
ure 6. It is standard, the only originality being to indicate explicitly the nsb of
constants. For the result of an elementary operation, this nsb is computed in
function of the nsb of the operands. Lemma 1 below asses the soundness of the
constraints for one step of the semantics.

Lemma 1 Given an expression e` ∈ Expr, if e` → e′` and τ |= E [e`]%⊥ then
for all c`c#p ∈ Const(e′`) we have p = τ(`c).

Proof. By case examination of the rules of Figure 4. Hereafter, we focus on the most
interesting case of addition of two constants. Recall that ufpe(`) = ufp(`) − nsb(`) for
any control point `. Assuming that e` ≡ c`11 +` c`22 then by following the reduction
rule of Figure 6, we have e` → c`#p with p = ufp(c) − ufpe

(
c
)
. On the other side, by

following the set of constraints of Rule (Add) in Figure 4 we have E [e`]% = {nsb(`1) ≥
nsb(`)+ufp(`1)−ufp(`)+ξ(`)(`1, `2), nsb(`2) ≥ nsb(`)+ufp(`2) −ufp(`)+ξ(`)(`1, `2)}.
These constraints can be written as

nsb(`) ≤ ufp(`)− ufp(`1) + nsb(`1)− ξ(`)(`1, `2)

nsb(`) ≤ ufp(`)− ufp(`2) + nsb(`2)− ξ(`)(`1, `2)

and may themselves be rewritten as Equation (16), i.e.

nsb(`) ≤ ufp(`)−max
(
ufp(`1)− nsb(`1), ufp(`2)− nsb(`2)

)
− ξ(`)(`1, `2) .

Since, obviously, ufp(c) = ufp(`) and since the solver finds the minimal solution to the
ILP, it remains to show that

ufpe(`) = max
(
ufp(`1)− nsb(`1), ufp(`2)− nsb(`2), ufp(`)− prec(`)

)
− ξ(`)(`1, `2)

which corresponds to the assertion of Equation(15). Consequently, nsb(`) = p as re-
quired, for this case, in Figure 6. �

Theorem 1. Given an expression e` → e′`. If e` →∗ e′` and if τ |= E [e`]%⊥ ,
then ∀ c`c#p ∈ Const(e′`) we have p = τ(`c).

Proof. By recurrence on the length of the reduction path. �

4.2 ILP Nature of the Problem

In this section, we give insights about the complexity of the problem. The com-
putation relies on integer linear programming. Integer linear programming is
known to belong to the class of NP-Hard problems. A lower bound of the opti-
mal value in a minimization problem can be furnished by the continuous linear
programming relaxation. This relaxation is obtained by removing the integrity
constraint. Recall that a (classical) linear program can be solved in polynomial-
time. Then, we can solve our problem in polynomial-time if we can show that
the continuous linear programming relaxation of our ILP has an unique optimal
solution with integral coordinates. Proposition 3 presents a situation where a
linear program has a unique optimal solution which is a vector of integers.
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Proposition 3. Let G : [0,+∞)d 7→ [0,+∞)d be an order-preserving function
such that G(Nd) ⊆ Nd. Suppose that the set {y ∈ Nd | G(y) ≤ y} is non-empty.
Let ϕ : Rd 7→ R a strictly monotone function such that ϕ(Nd) ⊆ N. Then, the
minimization problem:

Min
y∈[0,+∞)d

ϕ(y) s. t. G(y) ≤ y

has an unique optimal solution which is integral.

Proof. Let L := {x ∈ [0,+∞)d | G(x) ≤ x} and u = inf L. It suffices to prove that
u ∈ Nd. Indeed, as ϕ is stricly monotone then ϕ(u) < ϕ(x) for all x ∈ [0,+∞)d s.t.
G(x) ≤ x and x 6= u. The optimal solution is thus u. If u = 0, the result holds. Now
suppose that 0 < u, then 0 ≤ G(0). Let M := {y ∈ Nd | y ≤ G(y), y ≤ u}. Then 0 ∈M
and we write v := supM . As M is a complete lattice s.t. G(M) ⊆ M , from Tarski’s
theorem, v satisfies G(v) = v and v ≤ u. Moreover, v ∈ Nd and v ≤ u. Again, from
Tarski’s theorem, u is the smallest fixpoint of G then it coincides with v. We conclude
that u ∈ Nd. �

Theorem 2. Assume that the system of inequalities depicted in Figure 4 has
a solution. The smallest amount of memory

∑
`∈Lab nsb(`) for the system of

inequalities depicted in Figure 4 can be computed in polynomial-time by linear
programming.

Proof. The function
∑
`∈Lab nsb(`) is strictly monotone and stable on integers. From

the first statement of Proposition 1, the system of constraints is of the form F (nsb) ≤
nsb where F is order-preserving and stable on integers. By assumption, there exists an
vector of integers nsb s.t. F (nsb) ≤ nsb. We conclude from Proposition 3. �

For the second system, in practice, we get integral solutions to the continuous
linear programming relaxation of our ILP of Equation (18). However, because
of the lack of monotonicity of the functions for the rules (ADD) and (SUB), we
cannot exploit Proposition 3 to prove the polynomial-time solvability.

5 Experimental Results

In this section, we aim at evaluating the performance of our tool XXX imple-
menting the techniques of Section 3. Recall that XXX reduces the problem of
precision tuning to an ILP by generating the constraints defined in Section 3.2
which can be solved by a linear solver. We use GLPK4 in practice with continu-
ous variables since we know from Section 3.3 that it is possible. Indeed, GLPK’s
constant col-kind is set to cv and not to iv as for integer problems. Alterna-
tively, a second optimized set of constraints may be generated by applying the
PI technique introduced in Section 3.3.

We have evaluated XXX on several numerical programs. Two of them were
used as a benchmark for precision tuning in prior work [18] and are coming from
the GNU scientific library (GSL): arclength which is a program first introduced

4 https://www.gnu.org/software/glpk/



18 Ben Khalifa et al.

Program TH BL IEEE ILP-time BL IEEE PI-time H S D LD

10−4 61% 43% 0.9s 62% 45% 1.5s 8 88 25 0

10−6 50% 21% 0.9s 51% 21% 1.4s 2 45 74 0

arclength 10−8 37% 3% 0.8s 38% 4% 1.6s 2 6 113 0

10−10 24% -1% 1.0s 25% -1% 1.7s 2 0 116 3

10−12 12% -17% 0.3s 14% -8% 1.5s 2 0 109 10

10−4 64% 45% 0.1s 67% 56% 0.5s 6 42 1 0

10−6 53% 30% 0.2s 56% 31% 0.5s 1 27 21 0

simpson 10−8 40% 4% 0.1s 43% 7% 0.3s 1 5 43 0

10−10 27% 1% 0.1s 28% 1% 0.4s 1 0 48 0

10−12 16% 1% 0.1s 16% 1% 0.3s 0 1 48 0

10−4 73% 61% 0.2s 76% 62% 1.0s 53 69 0 0

10−6 62% 55% 0.2s 65% 55% 1.0s 2 102 0 0

accelerometer 10−8 49% 15% 0.2s 52% 18% 1.0s 2 33 69 0

10−10 36% 1% 0.2s 39% 1% 1.0s 2 0 102 0

10−12 25% 1% 0.2s 28% 1% 1.0s 2 0 102 0

10−4 78% 66% 0.08s 79% 68% 1.3s 46 38 0 0

10−6 67% 53% 0.08s 68% 56% 0.5s 12 70 2 0

rotation 10−8 53% 29% 0.07s 54% 29% 0.4s 0 46 38 0

10−10 40% 0% 0.1s 41% 0% 0.5s 0 0 84 0

10−12 29% 0% 0.09s 30% 0% 0.5s 0 0 48 0

10−4 68% 46% 1.8s 69% 46% 10.7s 260 581 0 0

10−6 57% 38% 1.8s 58% 45% 11.0s 258 580 3 0

lowPassFilter 10−8 44% -7% 2.0s 45% -7% 11.4s 258 2 581 0

10−10 31% -7% 1.7s 32% -7% 10.9s 258 0 583 0

10−12 20% -7% 1.8s 21% -7% 11.3s 258 0 583 0

10−4 71% 54% 0.15s 71% 54% 0.4s 0 13 0 0

10−6 60% 50% 0.2s 60% 50% 0.5s 0 12 1 0

Pendulum 10−8 47% 0% 012s 47% 0% 0.4s 0 0 13 0

10−10 33% 0% 0.16s 34% 0% 0.5 0 0 13 0

10−12 22% 0% 0.11s 22% 0% 0.4s 0 0 13 0

Table 1. Precision tuning results for XXX for the ILP and PI methods.

in [2] and the simpson program which corresponds to an implementation of the
widely used Simpson’s rule for integration in numerical analysis [13]. In addition,
we have experimented the techniques introduced in this article on three programs
used as benchmarks for XXX in its former version [3,4,5]. The program rotation
performs a matrix-vector product to rotate a vector around the z axis by an angle
of θ [5]. The second program accelerometer is an application to measure an
inclination angle with an accelerometer [3] and, finally, lowPassFilter program
[4] which is taken from a pedometer application [14] that counts the number of
footsteps of the user. The last two programs come from the IoT field. Also, we
take the pendulum program already introduced in Section 2.

The experiments shown in Table 1 present the results of precision tuning re-
turned by XXX for each error threshold 10−4, 10−6, 10−8 and 10−10. The error
threshold represents the nsb. For instance, the result is required to be correct up
to 4 digits for an error threshold of 10−4. Obviously, XXX counting the number
of significant bits, these threshold are converted in binary. In Table 1, we repre-
sent by ”TH” the error threshold given by the user. ”BL” is the percentage of
optimization at bit level. ”IEEE” denotes the percentage of optimized variables
in IEEE754 formats (binary16, binary32, . . . The nsb obtained at bit level is
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Program Tool #Bits saved - Time in seconds

Threshold 10−4 Threshold 10−6 Threshold 10−8 Threshold 10−10

arclength XXX ILP (28) 2464b. - 1.8s. 2144b. - 1.5s. 1792b. - 1.7s. 1728b. - 1.8s.
XXX SMT (22) 1488b. - 4.7s. 1472b. - 3.04s. 864b. - 3.09s. 384b. - 2.9s.
Precimonious (9) 576b. - 146.4s. 576b. - 156.0s. 576b. - 145.8s. 576b. - 215.0s.

simpson XXX ILP (14) 1344b. - 0.4s. 1152b. - 0.5s. 896b. - 0.4s. 896b. - 0.4s.
XXX SMT (11) 896b. - 2.9s. 896b. - 1.9s. 704b. - 1.7s. 704b. - 1.8s.
Precimonious (10) 704b. - 208.1s. 704b. - 213.7s. 704b. - 207.5s. 704b. - 200.3s.

rotation XXX ILP (25) 2624b. - 0.47s. 2464b. - 0.47s. 2048b. - 0.54s. 1600b. - 0.48s.
XXX SMT (22) 1584b. - 1.85s. 2208b. - 1.7s. 1776b. - 1.6s. 1600b. - 1.7s.
Precimonious (27) 2400b. - 9.53s. 2592b. - 12.2s. 2464b. - 10.7s. 2464b. - 7.4s.

accel. XXX ILP (18) 1776b. - 1.05s. 1728b. - 1.05s. 1248b. - 1.04s. 1152b. - 1.03s.
XXX SMT (15) 1488b. - 2.6s. 1440b. - 2.6s. 1056 - 2.4s. 960b. - 2.4s.
Precimonious (0) - - - -

Table 2. Comparison between XXX ILP, XXX SMT and Precimonious: number of
bits saved by the tool and time in seconds for analyzing the programs.

approximated by the immediately the upper number of bits corresponding to
a IEEE754 format). ”ILP-time” is the total time of XXX analysis in the case
of ILP formulation. We have also ”PI-time” to represent the time passed by
XXX to find the right policy and to resolve the precision tuning problem. ”H”,
”S”, ”D” and ”LD” denote respectively the number of variables obtained in,
half, float, double and long-double precision when using the PI formulation that
clearly displays better results.

Let us focus on the first ”TH”, ”BL”, ”IEEE” and ”ILP-time” columns of
Table 1. These columns have been measured for the case of ILP by being pes-
simistic on the propagation of carry bit as described in Section 3.2. We recall
that all variables of our programs are in double precision before analysis. For the
arclength program, the final percentage of bits after optimization reaches 61%
at bit level while it achieves 43% in IEEE formats (100% is the percentage of all
variables initially in double precision, 121 variables for the original arclength
program that used 7744 bits). This is obtained in only 0.9 second by applying the
ILP formulation. As another option, when we refine the solution by applying the
policy iteration method (from the sixth column), XXX displays better results
attaining 62% at bit level and 43% for the IEEE formats. Although XXX needs
more time of analysis to find and iterate between policies, the time of analysis
remain negligible, not exceeding 1.5 seconds. For a total of 121 variables for the
arclength original program, XXX succeeds in tuning 8 variables to half preci-
sion (H), the majority with 88 variables passes to simple precision (S) whereas
25 variables remain in double precision (D) for an error threshold of 10−4. We
remark that our second method displays better results also for the other user
error thresholds. For the simpson, accelerometer, rotation and lowPass-
Filter, the improvement is also more important when using the PI technique
than when using the ILP formulation. For instance, for an error threshold of
10−6 for the simpson program, only one variable passes to half precision, 27
variables turns to simple precision while 21 remains in double precision with
56% of percentage of total number of bits at bit level using the policy iteration
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method. Concerning the pendulum code, the two techniques return the same
percentage at bit level and IEEE754 format for the majority of error thresholds
(except 10−10 where XXX reaches 34% at bit level when using the PI method).

Now, we stress on the negative percentage that we obtain in Table 1, espe-
cially for the arclength program with 10−10 and 10−12 for the columns IEEE
and for the lowPassFilter program for errors of 10−8, 10−10 and 10−12. In fact,
XXX being able to return new formats for any precision required by the user
without additional cost nor by increasing the complexity even if it fails to have
a significant improvement on the program output. To be specific, taking again
the arclength program, for an error of 10−12, XXX fulfills this requirement by
informing the user that this precision is achievable only if 10 variables passes to
the long double precision (LD) which is more than the original program whose
variables are all in double precision. By doing so, the percentage of IEEE formats
for both ILP and PI formulations reaches −17% and −8%, respectively. Same
reasoning is adopted for the lowPassFilter which spends more time, nearly 12
seconds, with the policy iteration technique to find the optimized formats (total
of 841 variables). Note that in these cases, other tools like Precimonious [18] fail
to propose formats.

Table 2 shows a comparison between the new version of XXX combining both
ILP and PI formulations, the former version of XXX that uses the Z3 SMT solver
coupled to binary search to find optimal solution [5] and the prior state-of the-
art Precimonious [18]. The results of the mixed precision tuning are shown for
the arclength, simpson, rotation and accelerometer programs. Since XXX
and Precimonious implement two different techniques, we have adjusted the
criteria of comparison in several points. First, we mention that XXX optimizes
much more variables than Precimonious. While it disadvantages XXX, we only
consider in the experiments of Table 2 the variables optimized by Precimonious
to estimate the quality of the optimization. Second, let us note that the error
thresholds are expressed in base 2 in XXX and in base 10 in Precimonious. For
the relevance of comparisons, all the thresholds are expressed in base 10 in tables
1 and 2. In practice, XXX will use the base 2 threshold immediately lower than
the required base 10 threshold.

In Table 2, we indicate in bold the tool that exhibits better results for each
error threshold and each program. Starting with the arclength program, XXX
ILP displays better results than the other tools by optimizing 28 variables. For
an error threshold of 10−4, 2464 bits are saved by XXX ILP in 1.8 seconds while
XXX Z3 saved only 1488 bits in more time (11 seconds). Precimonious were
the slowest tool on this example, more than 2 minutes with 576 bits for only 9
variables optimized. For the simpson program, XXX ILP do also better than
both other tools. However, for the rotation program, XXX ILP saves more bits
than the other tools only for an error of 10−4 while Precimonious do well for
this program for the rest of error thresholds. Finally, Precimonious fails to tune
the accelerometer program (0 variables) at the time that XXX ILP do faster
(only 1 second) to save much more bits than XXX SMT for the four given error
thresholds.



Fast and Efficient Bit-Level Precision Tuning 21

6 Conclusion and Perspectives

In this article, we have introduced a new technique for precision tuning, totally
different from the existing ones. Instead of changing more or less randomly the
data types of the numerical variables and running the programs to see what
happens, we propose a semantical modelling of the propagation of the numerical
errors throughout the code. This yields a system of constraints whose minimal
solution gives the best tuning of the program, furthermore, in polynomial time.
Two variants of this system are proposed. The first one corresponds to a pure
ILP. The second one, which optimizes the propagation of carries in the elemen-
tary operations can be solved using policy iterations [7]. Proofs of correctness
concerning the soundness of the analysis and the integer nature of the solutions
have been presented in Section 4 and experimental results showing the efficiency
of our method have been introduced in Section 5.

Compared to other approaches, the strength of our method is to find directly
the minimal number of bits needed at each control point to get a certain accuracy
on the results. Consequently, it is not dependant of a certain number of data
types (e.g. the IEEE754 formats) and its complexity does not increase as the
number of data types increases. The information provided may also be used to
generate computations in the fixpoint arithmetic with an accuracy guaranty on
the results. Concerning scalability, we generate a linear number of constraints
and variables in the size of the analyzed program. The only limitation is the
size of the problem accepted by the solver. Note that the number of variables
could be reduced by assigning the same precision to a whole piece of code (for
example an arithmetic expression, a line of code, a function, etc.) Code synthesis
for the fixpoint arithmetic and assigning the same precision to pieces of code are
perspectives we aim at explore at short term.

At longer term, other developments of the present work are planned. First
we wish to adapt the techniques developed in this article to the special case
of Deep Neural Networks for which it is important to save memory usage and
computational resources. Second, we aim at using our precision tuning method
to guide lossy compression techniques for floating-point datasets [9]. In this case,
the bit-level accuracy inferred by our method would determine the compression
rate of the lossy technique.

References

1. ANSI/IEEE: IEEE Standard for Binary Floating-point Arithmetic, std 754-2008
edn. (2008)

2. Bailey, D.: Resolving numerical anomalies in scientific computation (03 2008)
3. Ben Khalifa, D., Martel, M.: Precision tuning and internet of things. In: Interna-

tional Conference on Internet of Things, Embedded Systems and Communications,
IINTEC 2019. pp. 80–85. IEEE (2019)

4. Ben Khalifa, D., Martel, M.: Precision tuning of an accelerometer-based pedometer
algorithm for iot devices. In: International Conference on Internet of Things and
Intelligence System, IOTAIS 2020. pp. 113–119. IEEE (2020)



22 Ben Khalifa et al.
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7 Appendix

We need a lemma on some algebraic operations stable on the set of functions
written as the min-max of a finite family of affine functions. The functions are
defined on Rd.

Lemma 1. The following statements hold:

– The sum of two min-max of a finite family of affine functions is a min-max
of a finite family of affine functions.

– The maximum of two min-max of a finite family of affine functions is a
min-max of a finite family of affine functions.

Proof. Let g and h be two min-max of a finite family of affine functions and
f = g+h. We have g = mini maxj g

ij and h = mink maxl h
kl. Let x ∈ Rd. There

exist i, k such that f(x) ≥ maxj g
ij(x)+maxl h

kl(x) = maxj,l g
ij(x)+hkl(x). We

have also, for all i, k, f(x) ≤ maxj g
ij(x) + maxl h

kl(x) = maxj,l g
ij(x) + hkl(x).

We conclude that f(x) = mini,k maxj,l g
ij(x) +hkl(x) for all x. We use the same

argument for the max. �

Proposition 4. The following results hold:

1. Let ξ the constant function equal to 1. The system S1
ξ can be rewritten as

{nsb ∈ NLab | F (nsb) ≤ (nsb)} where F maps RLab×RLab to itself, F (NLab×
NLab) ⊆ (NLab×NLab) and has coordinates which are the maximum of a finite
family of affine order-preserving functions.

2. Let ξ the function such that ξ(`) equals the function defined at Fig. 5. The
system Sξ can be rewritten as {(nsb, nsbe) ∈ NLab × NLab | F (nsb, nsbe) ≤
(nsb, nsbe)} where F maps RLab×RLab to itself, F (NLab×NLab) ⊆ (NLab×
NLab) and all its coordinates are the min-max of a finite family of affine
functions.

Proof. We only give details about the system S1
ξ (Figure 4). By induction on

the rules. We write L = {` ∈ Lab | F` is constructed }. This set is used in the
proof to construct F inductively.

For the rule (CONST), there is nothing to do. For the rule (ID), if the
label `′ = ρ(x) ∈ L then we define F`′(nsb) = max(F`′(nsb), nsb(`)). Otherwise
F`′(nsb) = nsb(`). As nsb 7→ nsb(`) is order-preseving and the maximum of one
affine function, F`′ is the maximum of a finite family of order-preserving affine
functions since max preserves order-preservation.

For the rules (ADD), (SUB), (MULT), (DIV), (MATH) and (ASSIGN),
by induction, it suffices to focus on the new set of inequalities. If `1 ∈ L,
we define F`1 as the max with old definition and RHS(nsb) i.e. F`1(nsb) =
max(RHS(nsb), F`1(nsb)) where RHS(nsb) is the right-hand side part of the
new inequality. If `1 /∈ L, we define F`1(nsb) = RHS(nsb). In the latter rules,
RHS(nsb) are order-preserving affine functions. It follows that F`1 is the maxi-
mum of a finite family of order-preserving affine functions.

The result follows by induction for the rule (SEQ).
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The rules (COND) and (WHILE) are treated as the rules (ADD), (SUB),
(MULT), (DIV), (MATH) and (ASSIGN), by induction and the consideration
of the new set of inequalities.

The last rule (REQ) constructs Fρ(x) either as the constant function equal to
p at label ρ(x) or the maximum of the old definition of Fρ(x) and p if ρ(x) ∈ L.

The proof for the system Sξ uses the same arguments and Lemma 1. �
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