
Axiomatic Reals and Certified Efficient Exact
Real Computation ?

Michal Konečný1, Sewon Park2, and Holger Thies3

1 Aston University, Birmingham, UK m.konecny@aston.ac.uk
2 KAIST, Daejeon, Korea swelite@kaist.ac.kr

3 Kyoto University, Kyoto, Japan thies.holger.5c@kyoto-u.ac.jp

Abstract. We introduce a new axiomatization of the constructive real
numbers in a dependent type theory. Our main motivation is to provide
a sound and simple to use backend for verifying algorithms for exact real
number computation and the extraction of efficient certified programs
from our proofs. We prove the soundness of our formalization with re-
gards to the standard realizability interpretation from computable analy-
sis. We further show how to relate our theory to a classical formalization
of the reals to allow certain non-computational parts of correctness proofs
to be non-constructive. We demonstrate the feasibility of our theory by
implementing it in the Coq proof assistant and present several natu-
ral examples. From the examples we can automatically extract Haskell
programs that use the exact real computation framework AERN for ef-
ficiently performing exact operations on real numbers. In experiments,
the extracted programs behave similarly to native implementations in
AERN in terms of running time.

Keywords: Constructive Real Numbers · Formal Proofs · Exact Real
Number Computation · Program Extraction.

1 Introduction

Verifying the correctness of software is becoming increasingly important, in par-
ticular in safety critical application domains. Often, such programs need to inter-
act in some way with the outside, physical world requiring numerical calculations
over the real numbers and other uncountable mathematical entities. While proof
assistants and formal methods are becoming more mature and are increasingly
used in practical applications, verification of numerical programs remains ex-
tremely challenging [2]. One difficulty arises from the fact that in practice real

? Holger Thies is supported by JSPS KAKENHI Grant Number JP20K19744. Se-
won Park is supported by the National Research Foundation of Korea (NRF)
grants funded by the Korea government (No. NRF-2016K1A3A7A03950702, NRF-
2017R1E1A1A03071032 (MSIT) & No. NRF-2017R1D1A1B05031658 (MOE)).

This project has received funding from the EU’s Horizon 2020 research and inno-
vation programme under the Marie Sk lodowska-Curie grant agreement No 731143.

2 Michal Konečný, Sewon Park, and Holger Thies

numbers are commonly replaced by floating-point approximations, introducing
rounding errors and uncertainties that pose additional problems for verification.

While there is active ongoing work on the verification of floating-point arith-
metic [4, 15], we here consider a different approach known as exact real computa-
tion. In exact real computation, real numbers are basic entities that allow exact
manipulation without rounding errors. Programs can output finite approxima-
tions up to any desired absolute precision. This is often realized by adding a
datatype for reals and arithmetic operations on them as primitives in program-
ming languages. Several implementations exist demonstrating the feasibility of
the approach [16, 10, 1]. Although less efficient than optimized hardware-based
floating-point calculations, implementations in exact real computation are by de-
sign more reliable than the former and are thus well-suited for situations where
correctness is of high importance. Further, for efficient implementations there
is often only a small overhead. However, subtilities of the semantics such as
multivaluedness can still make writing correct programs difficult and stronger
guarantees of correctness are highly desirable. One of the strongest such guar-
antees is a computer verified correctness proof e.g. in a proof assistant which
however requires a sound model of the semantics. This poses some theoretical
challenges as operations such as partial comparisons and multivalued branching
are common in exact real computation and need to be computable [18].

Software packages for exact real computation often build on the theoretical
framework of computable analysis and the theory of representations [25, 13]. In
previous work [11] two of the authors of the present paper worked on verified
exact real computation using the Incone library [23], which aims to directly
formulate the model of computable analysis in Coq. Incone requires to define
computational realizers, i.e. functions that work on low-level encodings of the
reals. This low-level approach allows to directly execute the realizers inside of the
proof assistant or to extract to simple Haskell or Ocaml code, but is less elegant
and more labour-intensive than working with a high-level abstract implemen-
tation of a real number type. Further, there are already several sophisticated
implementations of exact real computation in modern programming languages
and those implementations have been tested on numerous examples and proven
to be efficient and reliable. Instead of reimplementing and verifying basic real
number operations, a more practical approach is to trust the implementation of
a core of simple real number operations and to verify programs using those oper-
ations under the assumption that they are correctly implemented. This approach
also provides a certain amount of independence of the concrete implementation
of real numbers and thus allows to easily switch the underlying framework.

In the present work we therefore follow a different approach. We define a
new constructive axiomatization that models the real numbers in a conceptually
similar way as some mature implementations of exact real computation. We
formally define our theory on top of a simple type theory inspired by the one used
in Coq and prove its soundness with respect to the realizability interpretation
used in computable analysis. We also give a theoretical foundation of relating
proofs written over a classical theory of real numbers with our real numbers.

Axiomatic Reals and Certified Efficient Exact Real Computation 3

Of course, there are already several formalizations of real numbers and real
analysis in most proof assistants (see e.g. [3] for an overview) and also large
constructive implementations such as the C-CoRn library [6]. However, our ax-
iomatization very closely models ideas used in computable analysis and practical
implementations of exact real computation such as multivalued operations. We
therefore think that it can be more appealing to people working in this area.

Our approach further allows to easily map the constructive real type, and
its axiomatically defined basic operations such as arithmetic or limits, to corre-
sponding types and operations in an exact real computation framework. Con-
cretely, utilising this mapping and program extraction techniques, we obtain
certified programs over an ERC implementation from correctness proofs.

We implemented the theory in the Coq proof assistant and extracted Haskell
programs from our proofs using Coq code extraction. In the extracted programs,
primitive operations on the reals are mapped to operations in the exact real com-
putation framework AERN [10] which is written and maintained by one of the
authors. Our first examples show that the extracted programs perform efficiently,
having only a small overhead compared to hand-written implementations.

2 Computable Analysis and Exact Real Computation

In this section, we recap some essential concepts and limitations of computable
analysis and exact real computation in order to justify our choice of axioms.

To compute over uncountable mathematical structures such as real numbers
exactly, computable analysis takes assemblies over Kleene’s second algebra (as-
semblies for short) as the basic data type [8, 22].4 An assembly is a pair of a set
A and a relation
⊆ NN × A, which is surjective in that ∀x ∈ A. ∃ϕ. ϕ
 x.
We call ϕ ∈ NN a realizer of an abstract entity x ∈ A if ϕ
 x holds. Given two
assemblies of A and B, a function f : A → B is said to be computable if there
is a computable function τ :⊆ NN → NN that tracks f , i.e. for any x ∈ A and its
realizer ϕ, τ(ϕ) is a realizer of f(x).

For real numbers, there is a unique assembly (up to isomorphism in the
category of assemblies Asm(K2)) that makes the model-theoretic structure [7]
of real numbers computable: (1) 0, 1 ∈ R are computable, (2) field arithmetic
is computable, (3) the order relation < that is undefined at {(x, x) | x ∈ R} is
computable, and (4) the limit operation defined at rapidly converging sequences
is computable. An example is the Cauchy reals where ϕ is a realizer of x ∈ R if
and only if ϕ encodes a sequence of rationals converging rapidly towards x. An
assembly of reals satisfying the above computability conditions is called effective.

An inevitable side-effect of this approach is partiality. Whichever realizabil-
ity relation for reals we take, comparisons of real numbers are only partially
computable [25, Theorem 4.1.16]. Let Kleenean K be the assembly of {ff , tt ,⊥}
where an infinite sequence of zeros realizes ⊥, an infinite sequence that starts

4 Assemblies are generalizations of represented sets [13, 25] which are exactly the as-
semblies where the surjective relations are required to be partial surjective functions.
The terminology multi-representation [20] may be more familiar to some readers.

4 Michal Konečný, Sewon Park, and Holger Thies

with 1 after a finite prefix of zeros realizes ff , and an infinite sequence that
starts with 2 after a finite prefix of zeros realizes tt (see e.g. [11, Example 3]).
The assembly K can be seen as a generalization of the Booleans by adding an
explicit state of divergence ⊥. Comparison in any effective assembly of reals R
is computable as a function x < y = tt if x < y, ff if y < x, and ⊥ if x = y.

Comparisons being partial, multivaluedness becomes an essential notion [14].
For two assemblies of A and B, a multivalued function f : A ⇒ B, which is
basically a nonempty set-valued function, is computable if there is a computable
function that takes a realizer ϕ of x ∈ A and computes a realizer of any y ∈ f(x).
An example is the multivalued soft comparison [5]:

x <k y = {tt | x < y + 2k} ∪ {ff | y < x+ 2k}.

The above total multivalued function approximates the order relation. It is
tracked by evaluating two partial comparisons x < y + 2k and y < x + 2k in
parallel, returning tt if x < y+ 2k = tt , and ff if y < x+ 2k = tt . It is nondeter-
ministic in the sense that for the same x and y but with different realizers, which
of the tests terminates first may vary. Exact real number computation software
such as [16, 10] further offer operators like select :⊆ K × K ⇒ K such that
select(k1, k2) 3 tt iff k1 = tt and select(k1, k2) 3 ff iff k2 = tt as a primitive
operation for generating multivaluedness.

3 Axiomatization

In this section we give an overview of the formalization and the axioms we
introduce. For space reasons we omit most axioms in the main part but provide
a complete list in Appendix A. For those axioms that we do introduce here, we
also reference the corresponding entry from the appendix.

Our theory is formalized in a type theory similar to the one of Coq. More
precisely, we work with a dependent type theory with basic types 0, 1, 2,N,Z,
and a universe of classical propositions. That is, we have an impredicative à
la Russel universe Prop, closed under →,∧,∨, ∃̃,Π, where the law of excluded
middle Π(P : Prop). P ∨ ¬P holds (Axiom TT1) [17]. We assume that the
identity types belong to Prop. Opposed to Prop, Type is an à la Russel universe
of types (with an implicit type level) with type constructors →,×,+,Σ,Π. We
further suppose propositional extensionality in Prop (Axiom TT2) and function
extensionality (Axiom TT3). Based on this setting, we propose an axiomatization
for the assemblies K,R and computable multivalued functions from Section 2.

3.1 Kleenean and Multivalued Lifting

First, we assume that there is a type K : Type of Kleeneans (Axiom K1) and
that there are two distinct elements true : K and false : K (Axioms K2, K3 and
K4). Let us define the abbreviation dte : Prop :≡ t = true. In many cases, we

Axiomatic Reals and Certified Efficient Exact Real Computation 5

do not work directly with Kleenean. Instead, we call a proposition P : Prop
semi-decidable (in its free variables) if there is a Kleenean t that identifies P :

semiDec(P) :≡ Σ(t : K). P = dte

Multivalued computations are axiomatized by a monad M (Axioms M1–M9)
such that a mapping f : A → B expresses a singlevalued function and f : A →
M B expresses a multivalued function. We assume the monad structure: (1)
there is a type constructor M : Type → Type, (2) there is a unit unitM : Π(A :
Type). A → M A, (3) a multiplication multM : Π(A : Type). M(M A) → M A,
(4) a function lifting liftM : Π(A,B : Type). (A → B) → M A → M B, (5) and
the corresponding coherence conditions.

Intuitively, the monad can be understood as the nonempty power-set monad.
In this sense, we assume that there is a mapping

elimM : Π(A : Type). (Π(x, y : A). x = y)→ (M A)→ A

which is an inverse of unitM (Axioms M10-M11).
For any sequence of types P : N→ Type, we assume that the map

λ(X : M(Π(x : N). P x)). λ(n : N). liftM
(
λ(f : Π(x : N). P x). f n

)
X

which is of type M(Π(x : N). P x) → Π(x : N). M(P x) admits a section
(Axioms M12-M13):

ωlift P : (Π(x : N). M(P x))→ M(Π(x : N). P x) .

Intuitively, given a set of sequences S, the first map transforms it to a sequence
of sets (n 7→

⋃
f∈S{f(n)}). And, ωlift is its section which transforms a sequence

of sets f to a set of sequences {g | ∀n. g(n) ∈ f(n)}. This operation enables, for
example, to interchange multivalued sequences of real numbers with sequences
of multivalued real numbers.

The most important axiom we assume is multivalued branching (Axiom M14):

select : Π(x, y : K). (dxe ∨ dye)→ M
(
dxe+ dye

)
.

The above axiom yields the following, which we use more frequently:

choose : Π(P,Q : Prop). P ∨Q→ semiDec(P)→ semiDec(Q)→ M
(
P +Q

)
.

Namely, given two semi-decidable propositions and at least one of them holds
classically, we can nondeterministically decide if P holds or Q holds.

For any two types A,B, we write f : A ⇒ B to denote f : A → M B and
Σ(x : A). P (x) for M Σ(x : A). P (x) (multivalued functions and existences).

Example 1. For any proposition P , suppose both semiDec(P) and semiDec(¬P)
hold. As P∨¬P holds by the classical law of excluded middle, we have M(P+¬P)
by applying choose. As it is provable that P + ¬P is subsingleton, using elimM,
we have P + ¬P , the decidability of the proposition P .

6 Michal Konečný, Sewon Park, and Holger Thies

3.2 Real Numbers

We assume real numbers by declaring that there is a type R : Type for real
numbers (Axiom R1) and axiomatizing its model-theoretic structure. There are
distinct constants 0 : R and 1 : R, (infix) binary operators +,× : R → R → R,
a unary operator − : R → R, a term / : Π(x : R). x 6= 0 → R, and a (infix)
binary predicate <: R→ R→ Prop (Axioms R2-R8). We assume the properties
of the structure classically in a safe way that does not damage constructivity
(Axioms R11-R27). For example, trichotomy (Axiom R22) is assumed as a term
of type

Π(x, y : R). x < y ∨ x = y ∨ y < x .

However, an inhabitant of the type Π(x, y : R). (x < y) + (x = y) + (y < x) is
not posed anywhere.

In addition to the axioms in Prop, we assume Π(x, y : R). semiDec(x < y)
(Axiom R9). Namely, for any two real numbers its order, as a classical proposi-
tion, is semi-decidable.

Example 2. Using the classical trichotomy, we can construct a term of type

Π(x, y, ε : R). 0 < ε→ x < y + ε ∨ y < x+ ε.

Since the inequalities are semi-decidable, using choose, the multivalued version
of the approximate splitting lemma [21, Lemma 1.23]

mSplit : Π(x, y, ε : R). 0 < ε⇒
(
(x < y + ε) + (y < x+ ε)

)
is obtainable, which roughly says, for any real numbers x, y, ε, when ε is positive,
we can nondeterminstically decide if x < y + ε or y < x+ ε.

The set of classical axioms living in Prop includes the completeness of the set
of real numbers (Axiom R27). For its constructive counterpart (Axiom R10), for
any predicate P : R→ Prop such that p : ∃̃!(z : R). P z holds, we assume

lim P p : Π(n : N). Σ(e : R).(∃̃(a : R). P a∧−2−n < e−a < 2−n))→Σ(a : R). P a.

Here, for any n : N, 2−n : R is constructed by recursive division of 1 + 1 on 1
and ∃̃!(a : A). P a stands for ∃̃(a : A). P a ∧ Π(b : A). P b → a = b. Note that
P can be seen as a data that classically defines a real number. The axiom says
that when we have a procedure that computes a 2−n approximation to the real
number for each n, we have the real number constructively.

Example 3. In many cases, we compute an approximation of a real number using
multivalued computation. Using elimM and ωlift, we can define

lim P p : Π(n : N). Σ(e : R).(∃̃(a : R). P a∧−2−n < e−a < 2−n))→Σ(a : R). P a.

where P : R → Prop and p : ∃̃!(z : R). P z. Namely, when we have a procedure
that computes a multivalued approximation to a real number, the procedure
itself gets converted to the real number.

Axiomatic Reals and Certified Efficient Exact Real Computation 7

3.3 Soundness by Realizabiltiy

To prove soundness of the set of axioms, we extend the standard realizability
interpretation of extensional dependent type theories to the category of assem-
blies over Kleene’s second algebra with computable morhpisms Asm(K2) [19, § 4
and § 5]. That is, to each type constant A : Type we axiomatize, we designate
an assembly JA : TypeK and to each axiomatic term constant c : A, we assign a
morphism Jc : AK : 1→ JA : TypeK in Asm(K2) where 1 is a terminal object.

In consequence, by extending the interpretation, we not only prove sound-
ness of the axiomatization but also argue that a closed term in our type theory
automatically gives a construction of a computable function in the sense of com-
putable analysis. For example, suppose we have a proof of the statement

Π(x : R). P x⇒ Σ(y : R). Q x y

where P : R → Prop and Q : R → R → Prop. The interpretation of the proof is
a computable partial multifunction f :⊆ R ⇒ R where for any x ∈ R such that
JP K(x) = 1, f(x) is well-defined and for any y ∈ f(x), JQK(x, y) = 1.

For our axioms, we interpret K to the Kleenean assembly K and R to any
effective assembly of real numbers R. Mapping the axiomatic constants properly,
e.g., true to tt and false to ff , validates most of the axioms.

In order to interpret the multivaluedness, we specify the endofunctor M :
Asm(K2) → Asm(K2) such that for an assembly A, M A is an assembly of the
set of nonempty subsets of A whose realization relation
 is defined by

ϕ
M A S :⇔ ∃x. x ∈ S ∧ ϕ
A x .

In words, ϕ realizes a nonempty subset S of A if ϕ realized an element x of S in
the original A. Note that for any assemblies A,B, a multifunction f : A ⇒ B
is computable if and only if it appears as a morhpism f : A→M B.

The endofunctor M is a monad whose unit is ηA : x 7→ {x}, multiplication
is µA : S 7→

⋃
T∈S T , and its action on morphisms is M(f) : S 7→

⋃
x∈S{f(x)}.

When A is sub-singleton, M A is isomorphic to A. And, for any sequence of
assemblies (Ai)i∈N, there is a mapping Πi∈NM(Ai)→M(Πi∈NAi) that collects
all sections of f ∈ Πi∈NM(Ai). The axioms of multivalue types are validated by
mapping the monad structure of M to the monad structure of M and mapping
select to select. Discussions thus far conclude the soundness of our axioms:

Lemma 1. The axiomatization is sound admitting a realizability interpretation.

4 Relating Classical Analysis

Although our axiomatization is constructive, in some cases we allow a certain
amount of classical reasoning to prove non-computational properties. For exam-
ple, in terms of program extraction (c.f. Section 5) we often want to prove a
statement of the form Π(x : R). Σ(y : R). P x y where P : R→ R→ Prop. To do

8 Michal Konečný, Sewon Park, and Holger Thies

this, we assume any x : R, provide an explicit y : R and prove that P x y holds.
P x y : Prop is a classical statement and thus admits nonconstructive proofs.

As mentioned in the introduction, most proof assistants already provide for-
malizations of classical reals and some theory upon them. Instead of rebuilding
all this theory on top of our axiomatization, in the above situation it would
be more practical to have a way to carefully apply classical results to our type
without breaking constructivity.

More concretely, let us assume a Coq-like dependent type theory that already
provides a rich theory of classical analysis through a type R̃. Here, by classical
analysis, we mean that classical statements such as Π(x : R̃). x > 0 + ¬(x >
0) hold in the type theory. We want to embed our axiomatization and apply
theorems proven over the classical theory to our formalization while separating
the constructive part and the classical part of the type theory correctly so that
realizability results like those from Section 3.3 still hold.

Even though the type theory provides classical types and terms, it stays fully
constructive for the terms that do not access the classical axioms. That means,
a term in the type theory can be formally interpreted into two different models.
We have two type judgements `∼ t : A saying that t of type A may rely on classical
axioms and ` t′ : A′ saying that t′ of type A′ is free from any classical axioms.
When `∼ t : A, we interpret it in the category of sets Set and when ` t : A,
we interpret it in Asm(K2). For example, `∼ t : Π(x : R̃). x > 0 + ¬(x > 0) is
derivable for some t, but ` t : Π(x : R̃). x > 0 + ¬(x > 0) is not for the same t.

The goal is to correctly relate the two type judgements. One way is obvious:
when ` t : A is derivable, then so is `∼ t : A.5 However, we are more interested
in the other direction, i.e. how we can get a constructively well-typed term from
classical well-typedness.

Recall that Set is a reflective subcategory of Asm(K2) by the forgetful functor
Γ : Asm(K2)→ Set and its right adjoint ∇ : Set→ Asm(K2) where for any set A,
∇A is the assembly of A with the trivial realization relation [24, Theorem 1.5.2].

For each type A, define

∇A :≡ Σ(P : A→ Prop). ∃̃!(x : A). P x .

See that for any type A, J`∼ ∇A : TypeK is isomorphic to J`∼ A : TypeK in Set
and J` ∇A : TypeK is isomorphic to ∇ΓJ` A : TypeK in Asm(K2). It can be
understood as a functor that erases all the computational structure of A while
keeping its set-theoretic structure.

We add the type judgement rule:

`∼ t : ∇A
` t : ∇A (Relate)

saying that when t is a classically constructed term of type∇A, we judge t also as
a constructive term of type ∇A. See that this judgement rule is validated in our

5 However, this is no longer true if we assumed counter-classical axioms such as the
continuity principle.

Axiomatic Reals and Certified Efficient Exact Real Computation 9

interpretation. When `∼ t : A, we have a function J`∼ t : ∇AK : {∗} → J`∼ A : TypeK
in Set. Hence, we interpret J` t : ∇AK to be ∇J`∼ t : AK : ∇{∗} →∇J`∼ A : TypeK
in Asm(K2). Note that ∇{∗} ' 1.

It is provable in the type theory using the assumptions of Prop being the
type of classical propositions admitting propositional extensionality that ∇ is
an idempotent monad where its unit unit∇ : Π(A : Type). A → ∇A on ∇A, is
an equivalence with the inverse being the multiplication. Moreover, it holds that
unit∇ Prop : Prop → ∇Prop is an equivalence. That means, given a mapping
f : A1 → A2 → · · · → Ad, there is a naturally defined lifting f†∇ : ∇A1 →
∇A2 → · · · → ∇Ad and given a predicate P : A1 → A2 → · · · → Prop, there is
P †∇ : ∇A1 → ∇A2 · · · → Prop.

We assume the map relator : R → ∇R̃ to relate our axiomatic real numbers
with classical analysis (Axiom ∇1). Its interpretation in Set is the identity map
J`∼ relator : R → ∇R̃K : R 3 x 7→ x ∈ R. We assume enough axioms that
characterize the mapping (Axiom ∇1-∇10). For example, relator 0 = unit∇ R̃ 0
(Axiom ∇4), Π(x, y : R). relator(x+y) = (relator x) +†∇ (relator y) (Axiom ∇6),
Π(x, y : R). (x < y) = (relator x) <†∇ (relator y) (Axiom ∇10), and so on.

Example 4. Suppose from the theory of classical analysis, we have a term f
saying that for any positive real number, there is a square root:

`∼ f : Π(x : R̃). 0 < x→ Σ(y : R̃). x = y × y

From the judgement rule (Relate), we have

` unit∇ f : ∇Π(x : R̃). 0 < x→ Σ(y : R̃). x = y × y

in the constructive part of the type theory. Transferring ∇, we get

` (unit∇ f)′ : Π(x : ∇R̃). (unit∇ 0) <†∇ x→ Σ(y : ∇R̃). x = y ×†∇ y

Using the axioms of the relator, we can obtain a term of type

` Π(x : R). 0 < x→ ∃̃(y : R). x = y × y : Prop.

Thus, we can transport a classical proof of the existence of square root based
on R̃ to a constructive proof of the classical existence of square root based on R.

5 Implementation and Examples

We implemented the above theory in the Coq proof assistant.6 From a correct-
ness proof in our implementation, we can extract Haskell code that uses the
AERN library to perform basic real number arithmetic operations. For this, we
introduce several extraction rules replacing operations on the constructive reals
with the corresponding AERN function. The extracted code requires only mi-
nor mechanical editing, such as adding import statements (c.f. Appendix B for
details of the extraction process).

Let us present the main features of our implementation by giving some ex-
amples of operations on real numbers.

6 The source code can be found on https://github.com/holgerthies/coq-aern

10 Michal Konečný, Sewon Park, and Holger Thies

Lemma Realmax : forall x y, {z | W_M x y z}.

Proof.

intros.

apply mslimit.

+ (* max is single valued predicate *) ...

+ (* construct limit *)

intros.

apply (mjoin (x>y - prec n)

(y > x - prec n)).

++ intros [c1|c2].

+++ (* when x>y-2^n *)

exists x. ...

+++ (* when x<y+2^n *)

exists y. ...

++ apply M_split.

apply prec_pos.

Defined.

realmax :: CReal -> CReal -> CReal

realmax x y =

mslimit (\n ->

mjoin (\h -> case h of {

True -> x;

False -> y})

(m_split x y (((creal 0.5)^) n)))

Fig. 1. Outline of a Coq proof and corresponding extracted Haskell code

5.1 Maximization

A simple example for an operation that requires multivaluedness in its definition
is the maximization operator that takes to real numbers x and y and returns
their maximum. We can define it by the following Coq statement.7

forall x y, {z | (x > y -> z = x) /\ (x = y -> z = x) /\ (x < y -> z = y)}.

The statement can be proven by applying the limit operator defined in Exam-
ple 3. That is, we have to show that there exists exactly one z: Real for which
the condition in the above statement holds and that for each n : nat we can
construct a e : Real multivaluedly that approximates z up to error 2−n. The
first part can be easily concluded from the axioms over the Real type. The ap-
proximation can be constructed by concurrently testing whether x > y− 2−n or
x < y + 2−n, i.e. by multivalued branching from Example 2. In the first case, x
can be used as the desired approximation and in the second case y.

Extracting code from this proof yields a maximization operator in AERN.
Fig. 1 shows parts of the Coq proof and the extracted Haskell code.

5.2 Intermediate Value Theorem (IVT)

A classical example from computable analysis (see e.g. [25, Chapter 6.3]) is
finding the zero of a continuous, real valued function f : [0, 1]→ R with f(0) < 0
and f(1) > 0 under the assumption that there is exactly one zero in the interval
(i.e. a constructive version of the intermediate value theorem from analysis).

More precisely, we prove the following statement in Coq.

forall (f : Real -> Real),

continuous f -> uniq f 0 1 -> {z | 0<z<1 /\ f z = 0}.

7 For sake of presentation, we applied some slight, non-essential simplifications to the
Coq statements in this section compared to the original source code.

Axiomatic Reals and Certified Efficient Exact Real Computation 11

Here, continuous is defined using the usual ε-δ-criterion and uniq f a b is the
statement that f has exactly one zero in the interval [a, b]. The statement can
be proven using the trisection method which is similar to the classical bisection
method but avoids uncomputable comparison to 0. That is we inductively define
sequences ai, bi with f(ai) ∗ f(bi) < 0 and bi − ai ≤ (2/3)i. In each step we let
a′i := (2ai + bi)/3, b′i := (ai + 2bi)/3 and in parallel check if f(a′i) ∗ f(bi) < 0 or
f(ai) ∗ f(b′i) < 0. In the first case we set ai+1 := a′i, bi+1 := bi, in the second
case ai+1 := ai, bi+1 := b′i. As at least one of the inequalities is true by the
assumptions, this selection can be done using the multivalued choose operator
from Section 3.1. The zero can then be defined using the limit operator. Again,
we can extract an AERN program from the proof. The extracted program is an
implementation of a root finding algorithm using the above algorithm.

5.3 Classical proofs and a fast square root algorithm

As a final example let us look at how to use the relator operation defined in
Section 4 to prove facts about our constructive real type using classical results
from the Coq standard library. We follow an example from [11] that implements
the Heron method to compute the square root of a real number in the Incone
library. The proof is interesting as it is mostly classical and makes use of some of
the theory and external libraries for classical analysis that are already available
for Coq. Making use of this huge repertoire on theory already formalized in Coq
vastly simplifies the proof. We repeated the example using our new implemen-
tation and compared it to the implementation in Incone.

The Heron method is an approximation scheme for the square root of a real

x ∈ R by the sequence inductively defined by x0 := 1 and xi+1 := 1
2

(
xi + x

xi

)
. In

this work we only consider a restricted version where 1
4 ≤ x ≤ 2. In this interval,

the sequence converges quadratically to
√
x, i.e. |xi −

√
x| ≤ 2−2

i

. This restricted
version can be expanded to all non-negative reals (see the aforementioned work
on Incone) but we omit it here as it provides little new insights.

We prove the following statement in Coq.

forall x, (/ 4) <= x -> (x <= 2) -> {y | 0 <= y /\ y * y = x}.

The Coq standard library already contains a (non-constructive) definition of
a function sqrt and proves many of its properties. To prove our statement, we
construct a real number y by applying the limit operator to the sequence defined
by the Heron iteration scheme. We then relate it to the classical real number
sqrt(x) and use the characteristics of sqrt to show the condition. All necessary
properties to show that the relation holds are again proven purely classical using
tools from the standard library and other libraries building upon it.

The proof is very similar to the one in Incone and we could reuse large parts of
it without major adaptions. It should be noted though, that Incone additionally
requires to prove the existence of a realizer in the sense of computable analy-
sis which adds an additional layer of complexity that is not required with our
axiomatic approach and the new proof therefore becomes significantly simpler.

12 Michal Konečný, Sewon Park, and Holger Thies

5.4 Performance measurements

Since our axiomatization of constructive reals is built on a datatype similar to
that used by AERN, we expect the performance of the extracted programs to
be similar to that of hand-written AERN code. The measurements summarized
below are consistent with our hypothesis.8 iRRAM is known to be one of the most
efficient implementations of exact real computation and thus we also included
hand-written iRRAM versions for calibration. For IVT, the hand-written AERN
code features tail recursion and the iRRAM code updates a and b in-place.

Benchmark Average execution time (s)

Formula Accuracy Extracted Hand-written Native iRRAM

max(0, π − π) 106 bits 3.5 3.8 3.8 1.59
√

2 106 bits 0.72 0.70 0.40 0.62√√
2 106 bits 1.52 1.38 0.85 1.15

x− 0.5 = 0 103 bits 1.44 0.32 — 0.03

x(2− x)− 0.5 = 0 103 bits 2.02 0.35 — 0.04√
x+ 0.5− 1 = 0 103 bits 12.9 2.35 — 0.29

6 Conclusion and Future Work

We presented a new axiomatization of constructive reals in a type theory and
proved its soundness with respect to the standard realizability interpretation
from computable analysis. We implemented our theory in Coq and used Coq’s
code extraction features to generate efficient Haskell programs for exact real
computation based on the AERN library.

We think our new axiomatization is particularly well-suited for verifying ex-
act real computation programs built on top of the theory of computable analy-
sis. Nevertheless, we plan to more thoroughly compare our implementation with
other implementations of constructive reals in Coq and other proof assistants in
the future. In particular, we plan to take a deeper look at the C-CoRn library
and how it differs from our implementation. Relating to other constructive for-
malization would also allow execution directly in the proof assistant.

From a more practical point of view, we plan to extend our implementation
by other important operations on real numbers such as trigonometric and expo-
nential functions and mathematical constants such as π and e. Such extensions
should be straight-forward and we do not expect any major difficulties in their
implementation. Maybe more interestingly, we also plan to extend to more com-
plicated operations such as solution operators for ordinary or partial differential
equations by applying recent ideas from real complexity theory [9, 12].

8 Benchmarks were run 10 times on a Lenovo T440p laptop with Intel i7-4710MQ CPU
and 16GB RAM, OS Ubuntu 18.04, compiled using Haskell Stackage LTS 17.2.

Axiomatic Reals and Certified Efficient Exact Real Computation 13

References

1. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid au-
tomata. In: In: Proceedings of the International Syposium on Mathematical Theory
of Networks and Systems. (2006)

2. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining coq and gappa for certifying
floating-point programs. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.)
Intelligent Computer Mathematics. pp. 59–74. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

3. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: A survey of
proof assistants and libraries. Mathematical Structures in Computer Science 26(7),
1196–1233 (2016), http://hal.inria.fr/hal-00806920

4. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point al-
gorithms in coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic. pp.
243–252. IEEE (2011)

5. Brattka, V., Hertling, P.: Feasible real random ac-
cess machines. Journal of Complexity 14(4), 490–526
(1998). https://doi.org/https://doi.org/10.1006/jcom.1998.0488,
https://www.sciencedirect.com/science/article/pii/S0885064X98904885

6. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive Coq repository
at Nijmegen. In: International Conference on Mathematical Knowledge Manage-
ment. pp. 88–103. Springer (2004)

7. Hertling, P.: A real number structure that is effectively categorical.
Math. Log. Q. 45, 147–182 (1999). https://doi.org/10.1002/malq.19990450202,
https://doi.org/10.1002/malq.19990450202

8. Hofmann, M.: On the interpretation of type theory in locally cartesian closed
categories. In: Pacholski, L., Tiuryn, J. (eds.) Computer Science Logic. pp. 427–
441. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

9. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform
operators on multidimensional analytic functions and ODE solving. In: Interna-
tional Workshop on Logic, Language, Information, and Computation. pp. 223–236.
Springer (2018)

10. Konecnỳ, M.: AERN-Real: Arbitrary-precision interval arithmetic for approximat-
ing exact real numbers (2008)

11. Konečnỳ, M., Steinberg, F., Thies, H.: Computable analysis for verified exact
real computation. In: 40th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2020)

12. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real power-
ing and improved solving linear differential equations. In: International Computer
Science Symposium in Russia. pp. 215–227. Springer (2019)

13. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical computer science
38, 35–53 (1985)

14. Luckhardt, H.: A fundamental effect in computations on
real numbers. Theoretical Computer Science 5(3), 321 – 324
(1977). https://doi.org/https://doi.org/10.1016/0304-3975(77)90048-2,
http://www.sciencedirect.com/science/article/pii/0304397577900482

15. Melquiond, G.: Proving bounds on real-valued functions with computations. In:
International Joint Conference on Automated Reasoning. pp. 2–17. Springer (2008)

14 Michal Konečný, Sewon Park, and Holger Thies

16. Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: International Workshop
on Computability and Complexity in Analysis. pp. 222–252. Springer (2000)

17. Palmgren, E.: On universes in type theory. Twenty five years of constructive type
theory pp. 191–204 (1998)

18. Park, S., Brauße, F., Collins, P., Kim, S., Konečnỳ, M., Lee, G., Müller, N., Neu-
mann, E., Preining, N., Ziegler, M.: Foundation of computer (algebra) analysis sys-
tems: Semantics, logic, programming, verification. arXiv e-prints pp. arXiv–1608
(2016)

19. Reus, B.: Realizability models for type theories. Electronic Notes in Theoretical
Computer Science 23(1), 128–158 (1999)

20. Schröder, M.: Effectivity in spaces with admissible multirepresentations. Mathe-
matical Logic Quarterly: Mathematical Logic Quarterly 48(S1), 78–90 (2002)

21. Schwichtenberg, H.: Constructive analysis with witnesses. Proof Technology and
Computation. Natio Science Series pp. 323–354 (2006)

22. Seely, R.A.G.: Locally cartesian closed categories and type theory. Mathemat-
ical Proceedings of the Cambridge Philosophical Society 95(1), 33–48 (1984).
https://doi.org/10.1017/S0305004100061284

23. Steinberg, F., Thery, L., Thies, H.: Computable analysis and notions of continuity
in coq. arXiv preprint arXiv:1904.13203 (2019)

24. Van Oosten, J.: Realizability: an introduction to its categorical side. Elsevier (2008)
25. Weihrauch, K.: Computable analysis. Springer, Berlin (2000)

A Full list of axioms

Here we list all our axioms, grouped by the files in our implementation.
Base.v defines our base type theory, making it extensional and Prop classical:

TT1 Π(P : Prop). P ∨ ¬P
TT2 Π(P,Q : Prop). (P → Q)→ (Q→ P)→ P = Q
TT3 Π(A,B : Type). Π(f, g : A→ B). (Π(x : A). f x = g x)→ f = g

Kleene.v axiomatizes the type of Kleeneans and the multivalued monad.

K1 K : Type
K2 true : K
K3 false : K
K4 true 6= false
K5 ¬̂ : K→ K
K6 ∨̂: K→ K→ K
K7 ∧̂: K→ K→ K

Define dk : Ke :≡ k = true, bk : Kc :≡ k = false, and (k : K)↓:≡ dke ∨ bkc.
K8 x↓→ dxe+ bxc

Kleene logic operations:
K9 d¬̂xe = bxc and b¬̂xc = dxe

K10 dx ∧̂ ye = dxe ∧ dye and bx ∧̂ yc = bxc ∨ byc
K11 dx ∨̂ ye = dxe ∨ dye and bx ∨̂ yc = bxc ∧ byc

The monad structure:

Axiomatic Reals and Certified Efficient Exact Real Computation 15

M1 M : Type→ Type
M2 unitM : Π(A : Type). A→ M A
M3 multM : Π(A : Type). M (M A)→ M A
M4 liftM : Π(A,B : Type). (A→ B)→ (M A→ M B)

unitM and multM are natural transformations:
M5 Π(A,B : Type). Π(f : A → B). Π(x : A). liftM A B f(unitM A x) =

unitM, B (f x)
M6 Π(A,B : Type). Π(f : A→ B). Π(x : M (M A).

multM B((liftM (M A) (M B) (liftM A B f)) x) = (liftM A B f) (multM A x)
The coherence conditions:

M7 Π(A : Type). Π(x : M A). multM A (unitM (M A) x) = x
M8 Π(A : Type). Π(x : M A). multM A (liftMA (M A) (unitM A) x) = x
M9 Π(A : Type). Π(x : M (M (M A))). multM A (multM (M A) x) =

multM A (liftM (M (M A))(M A)(multM A) x)
M10 elimM : Π(A : Type). (Π(x, y : A). x = y)→ A→ M A
M11 Π(A : Type).Π(p :

(
Π(x, y : A). x = y

)
).Π(a : MA). unitMA

(
elimMA p a

)
=

a
M12 ωlift : Π(P : N→ Type).

(
Π(x : N). M P (x)

)
→ M

(
Π(x : N). P (x)

)
M13 Π(P : N → Type). Π(f :

(
Π(x : N). M P (x)

)
). f n = λ(n : N). liftM

(
λ(f :(

Π(x : N). P (x)
)
). f n

)
(ωlift P f)

M14 select : Π(x, y : K). (dxe ∨ dye)→ M
(
dxe+ dye

)
RealAxioms.v axiomatizes the real numbers:

The structure of real numbers:
R1 R : Type
R2 0 : R
R3 1 : R
R4 + : R→ R→ R
R5 × : R→ R→ R
R6 − : R→ R
R7 / : Π(x : R). x 6= 0→ R
R8 <: R→ R→ Prop

Semi-decidability of comparison tests:
R9 Π(x, y : R). semiDec(x < y)

Constructive completeness:
R10 Π(P : R → Prop). (∃̃!(x : R). P x) → (Π(n : N). Σ(x : R). ∃̃(x̃ : R). P x ∧

−2−n < x− x̃ < 2−n)→ Σ(x : R). P x
Classical axioms in Prop:

R11 Π(x, y : R). x+ y = y + x
R12 Π(x, y, z : R). (x+ y) + z = x+ (y + z)
R13 Π(x : R). x+−x = 0
R14 Π(x : R). 0 + x = x
R15 Π(x, y : R). x× y = y × x
R16 Π(x, y, z : R). (x× y)× z = x× (y × z)
R17 Π(x : R). Π(p : x 6= 0). (/ x p)× x = 1

16 Michal Konečný, Sewon Park, and Holger Thies

R18 Π(x : R). 1× x = x
R19 Π(x, y, z : R). x× (y + z) = x× y + x× z
R20 1 6= 0
R21 1 > 0
R22 Π(x, y : R). x < y ∨ x = y ∨ x > y
R23 Π(x, y : R). x < y → ¬(y < x)
R24 Π(x, z, y : R). x < y → y < z → x < z
R25 Π(x, y, z : R). y < z → x+ y < x+ z
R26 Π(x, y, z : R). 0 < x→ y < z → x× y < x× z

For each P : R→ Prop and x : R, define P < x :≡ Π(y : R). P y → y ≤ x.
R27 Π(P : R → Prop). (∃̃(x : R). P x) → (∃̃(x : R). P ≤ x) → ∃̃(x : R). P ≤

x ∧Π(y : R). P ≤ y → x ≤ y.

Nabla.v defines the idempotent monad ∇ and RealCoqReal.v axiomatizes the
relator:

∇1 relator : R→ ∇R̃
∇2 Π(x, y : R). relator x = relator y → x = y
∇3 Π(y : ∇R̃). ∃̃(x : R). y = relator x
∇4 relator 0 = unit∇ R̃ 0
∇5 relator 1 = unit∇ R̃ 1
∇6 Π(x, y : R). relator (x+ y) = (relator x) +†∇ (relator y)
∇7 Π(x, y : R). relator (x× y) = (relator x)×∇ (relator y)
∇8 Π(x : R). relator (−x) =−†∇ (relator x)
∇9 Π(x : R). Π(p : x 6= 0). relator (/x p) =/†∇ (relator x)
∇10 Π(x, y : R). (x < y) = (relator x) <†∇ (relator y)

B Code extraction

We have two modes for extraction, defined in files Extract.v and ExtractMB.v.
Here are selected key mappings defined in these files:

Coq AERN (Extract.v) AERN (ExtractMB.v)

Real CReal WithCurrentPrecision (CN MPBall) p

Real0 0 0

Realplus (+) (+)

limit limit limit

choose select select

Realltb (<) (<)

K CKleenean CN Kleenean

sumbool Bool CN Bool

M type identity type identity
unitM id id

Nat.log2 (integer . integerLog2) (integer . integerLog2)

Note that the monad M does not appear in the extracted programs. Multi-
valuedness is intrinsic thanks to redundancy in the underlying representations.

Axiomatic Reals and Certified Efficient Exact Real Computation 17

The AERN comparison < returns a (lazy) Kleenean for real numbers.
The type CN MPBall is the interval type underpinning CReal. ExtractMB.v

produces programs that execute a bit like iRRAM programs, converging to CReal

computation with increasing precision p. This mode gives an efficient implemen-
tation of the choose operator. We used it in our benchmarks in Section 5.4.

Running the extracted code requires a few simple mechanical modifications,
which are specified in files Extract.v and ExtractMB.v.

