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Abstract. Temporal synthesis attempts to construct reactive programs
that satisfy a given declarative (LTL) formula. Practitioners have found
it challenging to work exclusively with declarative specifications, and
have found languages that combine modelling with declarative specifi-
cations more useful. Synthesised controllers may also need to work with
pre-existing or manually constructed programs. In this paper we explore
an approach that combines synthesis of declarative specifications in the
presence of an existing behaviour model as a monitor, with the benefit
of not having to reason about the state space of the monitor. We suggest
a formal language with automata monitors as non-repeating and repeat-
ing triggers for LTL formulas. We use symbolic automata with memory
as triggers, resulting in a strictly more expressive and succinct language
than existing regular expression triggers. We give a compositional syn-
thesis procedure for this language, where reasoning about the monitor
state space is minimal. To show the advantages of our approach we ap-
ply it to specifications requiring counting and constraints over arbitrarily
long sequence of events, where we can also see the power of parametri-
sation, easily handled in our approach. We provide a tool to construct
controllers (in the form of symbolic automata) for our language.

Keywords: synthesis - temporal logic - symbolic automata - monitoring

1 Introduction

Synthesis of programs from declarative specifications is an attractive prospect.
Although thought prohibitive due to the theoretical hardness of LTL synthesis,
recent improvements have made it a more reasonable endeavour, e.g. the iden-
tification of GR(1) [25], for which synthesis is easier, and development of tools
such as Strix [21123] whose decomposition method allows for practical synthesis
of full LTL. Limitations remain in the context of LTL, due to the inherent hard-
ness of the problem. Beyond LTL there are also directions where the practicality
of synthesis is not clear.

* This research is funded by the ERC consolidator grant D-SynMA under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement
No 772459).
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In addition to these algorithmic challenges, there are additional methodologi-
cal challenges. Practitioners have identified that it is sometimes very challenging
to write declarative specifications, and suggested to use additional modelling
[14122]. Furthermore, synthesised parts need to work alongside pre-existing or
manually constructed parts (cf. [20]). This, however, further exacerbates the
algorithmic challenge as the state-space of the additional parts needs to be rea-
soned about by the synthesis algorithm.

We argue that modelling could also be a practical way of dealing with some
of the algorithmic challenges and advocate a partial use of synthesis, leaving
parts that are impractical for synthesis to be manually modelled. This leaves the
question of how to combine the two parts.

We suggest to compose automata with synthesised controllers by transfer
of control rather than co-operation. We define a specification language with re-
peating and non-repeating trigger properties (cf. [2/I8]). Triggers are defined as
environment observing automata/monitors, which transfer control to LTL for-
mulas. Both aspects — control transfer and triggers — are familiar to practitioners
and would be easy to use: control transfer is natural for software; and triggers
are heavily used in industrial verification languages (cf. [2]).

We aim at triggers that are rich, succinct and easy to write. Thus, we use
monitors extracted from symbolic executable automata inspired by DATEs [§].
Expressiveness of automata is increased by having variables that are updated
by guarded transitions, which means that auomata can be infinite-state (but
the benefits remain if they are restricted to finite-state). This choice of monitors
allows to push multiple other interesting concerns that are difficult for LTL
synthesis to the monitor side. Experience of using such monitors in the runtime
verification community suggests that they are indeed easy to write [12].

Our contributions are as follows. We formally define our specification lan-
guage “monitor-triggered temporal logic”. We show that the way we combine
monitors with LTL indeed bypasses the need to reason about the state-space
of monitors. Thus, avoiding some of the algorithmic challenges of synthesis. We
briefly present our synthesis tool. We give examples highlighting the benefits
of using monitors, focusing on counting (with appropriate counter variables up-
dated by monitor transitions) and parametrisation (with unspecified parameter
variables that can be instantiated to any required value). Full proofs of the
propositions and theorems claimed can be found in the appendix.

Related Work In the literature we find several approaches that use monitors
in the context of synthesis. Ulus and Belta use monitors with reactive control
for robotic system navigation, with monitors used for lower-level control (e.g.
to identify the next goal locations), and controllers used for high-level control
to avoid conflicts between different robots [29]. Wenchao et al. consider human-
in-the-loop systems, where occasionally the input of a human is required. The
controller monitors the environment for any possible violations, and invokes the
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human operator when necessary [19] E|T he use of monitors in these approaches is
ad hoc, a more general approach is that of the Spectra language [22]. Essentially,
Spectra monitors have an initial state, and several safety transition rules of the
form p — ¢, where p is a proposition on some low-level variables, and ¢ defines
the next value of the monitor variable. This monitor variable can be used in
the higher-level controller specification. The approach here is more general than
ours in a sense, since we limit ourselves to using monitors as triggers, however
our monitors are more succinct and expressive.

The notion of triggers in temporal logic is not new, with regular expressions
being used as triggers for LTL formulas in different languages [2I28/T0/T3]. Com-
plexity wise, Kupferman et al. show how the synthesis of these trigger properties
is 2EXPTIME-complete [18]. However, in order to support such logics algorithms
would have to incorporate the entire state-space of the automata induced by the
regular expression triggers. We are not aware of implementations supporting syn-
thesis from such extensions of LTL. Using automata directly within the language,
as we do, may be more succinct and convenient. We also include a repetition of
trigger formulas in a way that is different from these extensions. However, the
main difference is in avoiding the need to reason about the triggering parts.

Our combination of monitors and LTL formulas can be seen as a control-flow
composition [20]. Lustig and Vardi discuss how to synthesise a control-flow com-
position that satisfies an LTL formula given an existing library of components.
They consider all components to be given and synthesise the composition itself.
Differently, we assume the composition to be given and synthesise a controller
for the LTL part. Other work given a global specification reduces it according
to that of the existing components, resulting in a specification for the required
missing component [27]. This is at a higher level than our work, since we start
with specifications for each component.

2 Preliminaries

We write o for infinite traces over an event alphabet X'. We use the notation o; j,
where 7,5 € N and i < j, to refer to the sub-trace of ¢ starting from position 4,
ending at (including) position j. We write o; for o, ;, and 0  for the suffix of
o starting at 4.

Linear Temporal Logic (LTL) General LTL (¢) and co-safety LTL (p) are
defined over a set of propositions P respectively as follows, where e € P:

Pttt [ffle|ne|dnd|dVe|Xo|oUs|Go
eZtt|ffle|-e|pAp|leVe| Xp|pUp

We also define and use F¢ = ttU¢ and ¢W¢' = (pU¢') V Gp. We write o - ¢
for 09,00 - ¢. We omit the standard semantics of LTL [24]E|

! 'We can think of our approach as dual, where the monitor invokes the synthesised
controller when necessary.
2 This is also available in the Appendix A.
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Mealy Machines A Mealy machine is a tuple C = (S, s0, XZin, Zout, —, F),
where S is the set of states, so the initial state, X;,, the set of input events, X+
the set of output events, —: S x X, — X, X S the complete deterministic
transition function, and F C S a set of accepting states. For (s,I,0,s’) €= we

) 1/0_
write s — s'.
Notice that by definition for every state s € S and every I € X, there

is O € XY, and s’ such that s I/—O> s’. A run of the Mealy machine C is

r = Sg, 81, ... such that for every ¢ > 0 we have s; i> si+1 for some I; and
O;. A run r produces the word w = 0g, 01, ..., where o; = I; UO;. We say that C
produces the word w if there exists a run r producing w. We say that C accepts
a prefix u of w if s, € F'.

Realisability An LTL formula ¢ over set of events P = P;,, U Py is realisable
if there exists a Mealy machine C over input events 27i» and output events 27eut
such that for all words w produced by C' we have w - ¢. We say C' realises ¢.

Theorem 1 ([26]). Given an LTL formula ¢ it is decidable in 2EXPTIME
whether ¢ is realisable. If ¢ is realisable the same algorithm can be used to
construct a Mealy machine C, realising ¢.

2.1 Flagging Monitors

We introduce our own simplified version of DATEs [83], flagging monitors, as a
formalism for defining runtime monitors. Flagging monitors (monitors, for short)
are different from DATEs in that they work in discrete time, and events are in the
form of sets. Monitors are designed such that once they flag (accept) they never
flag again. This is modeled by having flagging states, which are used to signal
that monitoring has ended successfully. We also use sink states, from which it is
assured the monitor cannot flag in the future. We ensure that the monitor flags
only upon determining a matching sub-trace, and thus a monitor upon reaching
a flagging state can never flag again.

Monitor A monitor is a tuple D = (¥ |V, 0,Q, 0, qo, F, L, —), where X' is the
event alphabet, V is a set of typed variables, © is the set of possible valuations of
V, @ is a finite set of states, §y € © is the initial variable valuation, qg € @ is the
initial state, FF C (Q \ {qo}) is the set of flagging states (we often use qp € F),
Le Q is a sink state, and =€ Q1 X (X' x O > {true, false}) x (X x 6O — O) — Q

is the deterministic transition function, from QT = Q\ {_L}, activated if a guard

holds on the input event and the current variable valuation, while it may perform
some action to transform the valuation.

For (¢,g,a,q") €= we write ¢ 279 o, and we will be using F as the input
event parameter for both g and a. We omit g when it is the true guard, and «a
when it is the null action. We use D, for the monitor that accepts on every

event, ie. <Z7 ‘/7 @a {qo; qr, L}? 907 q0, {C]F}7 Jﬂ {QO M) QF}>
For example, the monitor in Figure|l|keeps a counter that counts the number
of knock events, and flags when the number of knocks is exactly n.
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knock € E N\ counter #n
— counter := counter + 1

knock € E N counter ==n
start —>( 4o qF

Fig. 1. Monitor that counts the number of knocks, and flags after n knocks.

We give an operational semantics to monitors, with configurations as pairs of
states and valuations, with transitions between configurations tagged by events.

Monitor Semantics The semantics of flagging monitors [3] is given over con-
figurations of type @ x ©, with transitions labeled by X', and the transition —
defined by the following rules: (1) A transition from a non-flagging and non-sink
configuration is taken when the guard holds on the event and valuation, and
then the latter is updated according to the transition’s action; (2) If there is
no available transition whose guard holds true on the current valuation then
transition to the same configuration (stutter); (3) A sink configuration cannot
be left; and (4) A flag configuration always transitions to the sink configuration.
We use = for the transitive closure of — [

Flagging Trace A finite trace is said to be flagging if it reaches a flagging state.
0i; Ik D= 3qp,0 - (q0,00) = (qr,0").

The semantics ensures that every extension of a flagging trace is non-flagging.
Proposition [l Yo € ¥* -VneN-o;; FDAn>0 = 040 F D.
We can also easily show that D, accepts all traces of length one.

Proposition 2| Vo € X and Vi € N-0;; - D(yy.

3 Monitors as Triggers for LTL Formulas

We suggest a simple kind of interaction between monitors and LTL, where mon-
itors are used as triggers for LTL. Previous work has considered the use of a
trigger operator that activates the checking of an LTL expression when a cer-
tain regular expression matches [2]. Our approach here is similar, except that we
maintain a stricter separation between the monitored and temporal logic parts.
Our language combining monitors with LTL has three operators: (i) monitors
as a trigger for an LTL formula; (ii) repetition of the trigger formula (when the
LTL formula is co-safety); and (iii) assumptions in the form of LTL formulas.

3 See Definition [7]in Appendix A for full formal semantics.
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Definition 1 (Monitor-Triggered Temporal Logic). Monitor-triggered tem-
poral logic extends LTL with three operators:

' =D:p | (D;p)*
T =¢—7

Formula D:¢p denotes the triggering of an LTL formula ¢ by a monitor D. We
call formulas of this form simple-trigger LTL. Formula (D;p)* repeats infinitely
the triggering of a co-safety LTL formula ¢ by a monitor D. We call formulas
of this form repeating-trigger LTL. Finally, ¢ — © models a specification with
an LTL assumption ¢. LTL formulas are defined over a set of propositions P =
Pin U Pous and monitors over the alphabet X = 2Fin,

In formulas of the form D:¢ if D flags then the suffix must satisfy ¢. In
formulas of the form (D;p)*, the monitor restarts after satisfaction of the co-
safety formula ¢. For example, if D is the monitor in Figure|l|and ¢ = (open A
X (greet A X close))), then D:p would accept every trace that waits for knocks,
and at the nth knock opens the door, then greets, and then closes the door. On
the other hand, (D;¢)* requires the trace to arbitrarily repeat this behaviour.

To support repeating triggers, we define the notion of tight satisfaction.

Definition 2 (Tight Co-Safety LTL Satisfaction). A finite trace is said to
tightly satisfy a co-safety LTL formula if it satisfies the formula and no strict
prefiz satisfies the formula: o, ; IF ¢ el oijFeANVE-i<k<j = o).
We also call such a trace a tight witness for the LTL formula.

Note that here a tight witness is not necessarily a minimal witness (in the
sense that all of its extensions satisfy the LTL formula). For example, for every
set of propositions P, a trace (P) is a minimal witness for Xtt [5]. However it
is not a tight witness in our sense, since (P) I/ Xtt. On the other hand (P, P) is
a tight witness since (P, P) - Xtt and every prefix of it does not satisfy Xtt.

Notice that it would not be simple to just use finite trace semantics for full
LTL [TIJT5I10/415]. Consider for example, the trace ({a}), which satisfies Ga. It
is not clear how to define tight satisfaction in order to start the monitor again.
For example, ({a}) can be extended to ({a},{a}) and still satisfy Ga. Hence
formulas of the form (D;)* are restricted to co-safety LTL, where satisfaction
over finite traces is well-defined and accepted.

We now define the trace semantics of the trigger and repetition operators.

Definition 3 (Monitor-Trigger Temporal Logic Semantics).

1. An infinite trace satisfies a simple-trigger LTL formula if when a prefix of it
causes the monitor to flag then the corresponding suffiz (including the last
element of the prefix) satisfies the LTL formula:

def

Oicob D:p=3j-i<jA(0;;IFD = 0j00 F @) where i € N.
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2. A finite trace satisfies one step of a repeating-trigger LTL formula if a prefiz
of it causes the monitor to flag and the corresponding suffix (including the
last element of the prefiz) tightly satisfies the co-safety LTL formula:

oikF D=3 i<j<kA(0i;IFDAojplF ) where i,k € N.

8. An infinite trace satisfies a repeating-trigger LTL formula if when a prefix
of it matches the monitor then the corresponding infinite suffiz matches the
LTL formula:

ot (D;o)* d:erzWaO,i FD = 3j-j>iAoo;FD;o A ojie0b (Dip)".
4. An infinite trace satisfies a specification ©' with an assumption ¢ when if it

satisfies ¢ it also satisfies 7' :

ot Eok¢p = ok

An interesting aspect of this semantics is that in a formula D; ¢, D and ¢ share
an event, and the same for D:¢. This is a choice we make to allow for message-
passing between the two later on. Here it does not limit us, since not sharing
a time step can be simulated by adding a further transition with a true guard
before flagging, or by simply transforming ¢ into X ¢.

This semantics ensures that given an infinite trace, when a finite sub-trace
satisfies D; p, extensions of the sub-trace do not also satisfy it.

Proposition[3} o; ;- D;o = Vk > j-o0,1 V/ D; <PE|

We can prove that a trace o satisfies an LTL formula ¢ iff it also satisfies the
formula where ¢ is triggered by the empty monitor.

Proposition[d ot ¢ < o D<*>:¢E|

Moreover, we can show that adding these monitors as triggers for LTL for-
mulas results in a language that is more powerful than LTL.

Theorem 2. Our language s strictly more expressive than LTL.

Proof. Proposition [4] shows that every LTL formula ¢ can be written in our
language as D,y; ¢. LTL cannot express the property that each even time step
must have p be true [30] (regardless of what is true at odd steps). In our language
(Dsy;p A Xtt)* specifies that p is true in every even time step, and (D ,y; Xp)*
specifies that p is true in every odd time step. O

Our logic is even more expressive, for example Figure 2| shows a monitor that
flags upon the average occurrence of an event falling below a certain level. We
note that, in general, we have not restricted the types of variables of a monitor
to range over finite domains. Thus, a monitor could also identify context-free or
context-sensitive languages or, indeed, be Turing powerful. However, Theorem [2]
holds even if we consider only monitors whose variables have finite domains, or
even monitors without variables.

4 Proof can be found in Appendix B.
5 Proof can be found in Appendix B.
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e € E N eventsNo + stepsNo > n
— eventsNo := eventsNo + 1; stepsNo := stepsNo + 1

eventsNo = stepsNo < n
start —( 9o qr

e & E N eventsNo = stepsNo > n
— stepsNo := stepsNo + 1

Fig. 2. Monitor that keeps track of the number of time steps, and the number of
occurrences of e, while flagging is the average occurrence of e goes below n.

4 Synthesising Monitor-Triggered Controllers

We have so far discussed our language from a satisfaction viewpoint. However
we are interested in synthesising systems that enforce the specifications in our
language. In this section we present our synthesis approach, which relies on the
synthesis of controllers for LTL formulas.

Consider a specification m = v — «’, where 7’ is either of the form D:¢ or
(D; p)*. We focus on specifications where the assumption = is restricted to con-
junctions of simple invariants, transition invariants, and recurrence properties.
Formally, we have the following:

aZtt|[ffla|-a|aralaVa

BEa|Xa|BAB|IBVS
YEGB|GFa |y Ay

That is, a are Boolean combinations of propositions, 8 allows next operators
without nesting them, and v is a conjunction of invariants of Boolean formu-
las, Boolean formulas that include next, or recurrence of Boolean formulas. We
discuss below the case of general assumptions.

Let m = v — (D:¢). Then t(r) is the formula v — ¢. Let 1 = v — (D; p)*.
Then t(r) is the formula v — . That is, t(7) is the specification obtained by
considering the implication of the assumption v and the LTL formula.

4.1 Tight Synthesis for co-Safety Implication Formulas

Let 7 contain a repeating trigger and let t(m) = v — ¢, where ¢ is a co-
safety formula. Suppose that ¢() is realisable and let Cy .y be a Mealy machine
realising ¢(7).

Definition 4. A Mealy machine C tightly realises a formula of the form v — o,
where ¢ is a co-safety formula, if it realises v — ¢ and in addition for every
word w produced by C such that w F ~y there exists a prefiz u of w such that C
accepts u, ug || I- @, and for every v’ < u we have C does not accept u.
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That is, when the antecedent  holds, the Mealy machine accepts the tight
witness for satisfaction of .

Theorem Bl The formula t(w) = v — ¢ is tightly realisable iff it is realisable.
A Mealy machine tightly realising t(m) can be constructed from Cyry with the
same complezity.

Proof (sketch). We construct a deterministic finite automaton that is at most
doubly exponential in ¢, that accepts all finite prefixes that satisfy ¢. Its product
with Cy(r) results in a Mealy machine that accepts all prefixes that satisfy (),
in particular the shortest prefix, as required for realisabilityﬁ

Note that in the case of tight realisability we can give a controller with a set
of accepting states that enable us to accept upon observing tight witnesses. In
the case where we are only concerned about non-tight realisability we assume
the controller does not have any accepting states.

4.2 Monitor-Triggered Synthesis
We are now ready to handle synthesis for monitor-triggered LTL.

Definition 5. A monitor-triggered LTL formula w over set of events Py, and
Pous is realisable if there exists a Mealy machine C over input events 2% and
output events 2Fwt such that for all words w produced by C we have w - 7. We
say that C realises 7.

In the case of simple triggers, we combine the monitor with a Mealy machine
realising ¢(7). In the case of repeating triggers, we combine the monitor with a
Mealy machine tightly realising ¢(7). In what follows we define the behaviour of
the combination of a monitor and a Mealy machine.

Consider a specification m = v — 7/, where 7’ is either M:¢ or (M;p)*.

Theorem [ Let Cy () be a Mealy machine realising t(m) when 7' is a simple-
trigger LTL, and tightly realising t(m) when 7' is a repeating-trigger LTL. Then
there is a Mealy machine M » Cy(ry that realises .

Proof (sketch). M » Cy() can be constructed over states that correspond to
a tuple of M states, valuations, and Cy(,) states. Monitor transitions can be
unfolded into Mealy machine transitions with no outputs, according to their
semantics. Transitions to a flagging state can be composed with transitions from
the initial state of Cy.y. For the repeating case, transitions to final states of
Cy(x) are made instead to point back to the initial configuration (initial state
and valuation of M, and initial state of Cy(r)). Execution happens only in one
machine at a time, except for the shared transition in the repeating case. We
show by induction the correctness of this constructionm

5 Full proof can be found in Appendix C.
7 Full proof can be found in Appendix C.
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The opposite of Theorem []is, however, not true. If 7 is realisable then it does
not necessarily mean that ¢(7) is also realisable. Consider a specification with a
monitor that never flags, and which thus any Mealy machine realises. Another
example is with a monitor that only flags upon seeing the event set {a}, and
an LTL formula of the form (b = ff) A (a = ¢) (where a and b are input
events, and ¢ an output event). The LTL formula is clearly unrealisable given
the first conjunct, however the combination of the monitor with a controller
for LTL’s second conjunct would realise the corresponding specification. Thus
the construction in Thereom {4 is only sound but not complete, i.e., we have a
procedure to produce controllers for our language only when the underlying LTL
formula (modulo the assumption) is realisable, or when the monitor cannot flag.

Corollary 1. If M cannot flag, or t(m) is realisable, then 7 is realisable.

We recall that we have restricted the assumptions to a combination of in-
variants, transition invariants, and recurrence properties. Such assumptions are
“state-less”. That is, identifying whether a word satisfies an assumption does not
require to follow the state of the assumption. Thus, in our synthesis procedure
it is enough for the controller to check whether the assumption holds without
worrying about what happened during the run of the monitor that triggered it.
In particular, if (safety) assumptions are violated only during the run of moni-
tors, our Mealy machine will still enforce satisfaction of the implied formula. In
order to treat more general assumptions, we would have to either analyse the
structure of the monitor in order to identify in which “assumption states” the
controller could be started or give a precondition for synthesis by requiring that
the controller could start from an arbitrary “assumption state”, which we leave
for future work. Similarly, understanding the conditions the monitor enforces
and using them as assumptions would allow us to get closer to completeness of
Theorem [l One coarse abstraction is simply the disjunction of the monitor’s
flagging transitions’ guards as initial assumptions for the LTL formula.

5 Tool Support

We created a proof-of-concept automated too]ﬂ to support the theory presented
in this paper. Implemented in Python, this tool currently accepts as input a
monitor written in a syntax inspired by that of LARVA [9I3], and an LTL spec-
ification, while it outputs a symbolic representation of the Mealy machine con-
structed in the proof of Theorem [4] in the form of a monitor with outputs.
The proof of Theorem [3]is constructive and provides an optimal algorithm
to synthesise tight controllers using standard automata techniques. For this tool
we have instead opted to re-use an existing synthesis tool, Strix [2T23] due to its
efficiency. To force Strix to synthesise a tight controller (for repeating triggers),
the tool performs a transformation to the co-safety guarantees to output a new
event that is only output once a tight witness is detected. This transformation

8 https://github.com/dSynMa/syMTri
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mUse € ENinUse<n

) nUsee E inUse & E N unused < m
— wnUseFor ++

— unused = 0 — unused ++

inUse € E N inUseFor > n W inUse & E N unused > m
start —>( 4o \ilj @

Fig. 3. Flagging monitor that checks that the room has been in use for n time steps,
after which when there is a period of m time steps where the room is empty it flags.

works well on our case studies, but is exponential in the worst-case. This is due to
the need for disambiguating disjunctions. For example, given 1 V 99 we cannot
in general easily be sure which disjunct the controller will decide to enforce;
instead we disambiguate it to (1 A =tp2) V (=1 Aaba) V (11 Aapa) (cf. [T]).

6 Case Studies

We have applied our monitor approach mainly in the setting of conditions on the
sequence of environment events, for which synthesis techniques can be particu-
larly inefficient. We will consider a case study involving such conditions, where
several events need to be observed before a robot can start cleaning a room.
Furthermore we consider a problem from SYNTCOMP 2020 on which all tools
timed out due to exponential blowup as the parameter values increase, relating
to observing two event buses. We show how our approach using monitors avoids
the pitfalls of existing approaches with regards to these kinds of specifications.

6.1 Event Counting

001/000011111
001/0--000010 o

= 000/00001111
001/000011111 —

101/0-000010 : 110/101-00010 Sooodbor 11
110710100010 A - 000000011111
011/1-1-00010 100/00-001010 001000011111

101/0--001010 S
. 010/110-0-0-0 001/000011111

110/110-0-0-0+110-100-0+110-11100

100/00-001010

000/00-1000-0 T10/110-0-0-0+110-100-0+110-11100 100010 ot 101/0-001010,£.7000/000011111

100/00-1-00-0 010/000-0-0-0 010/110-0-0-0 5 4 111/1-0-00010 11/1-1-00010

> -
111/1-1-00010

000/00-1000-0 111/1-1-00010 101/0--001010
Fig. 4. Tight controller for cleaning robot, with rightmost state as accepting state. (1
(0) in position ¢ means event ¢ (not) occurs, and - when we do not care).

Consider a break room that is used by people intermittently during the day,
and that needs to be cleaned periodically by a cleaning robot. We do not want
to activate the robot every time the room is unclean to not disturb people on
their break. Instead our procedure involves checking that the room is in use for
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a certain amount n of time steps. We also do not want the cleaning robot to
be too eager or to activate immediately upon an empty room. Thus we further
want to constrain the robot’s activation on the room being empty for a number
of m time steps and reset the counting whenever the room is not empty. We can
represent these conditions using the monitor in Figure

Given a set of assumptions on the environment (e.g. cleaning an unclean
locked room eventually results in a clean room), we wish the controller to satisfy
that eventually the room will be clean, after which the robot leaves the room and
opens the door to the public: F(isClean & (X F linRoom) & (X F' !doorLocked))ﬂ
Our tool synthesises Figure [ as a tight controller for this.

Representing the first monitor condition in LTL is not difficult (—=pW (p A
X(—pWpA...))), where proposition p corresponds to inRoom and W is the weak
until operator. The second condition is different, given the possible resetting of
the count, but still easily representable in LTL (/7" X'p)W (A" Xi=p)).
Setting n, m = 2, and ¢ to be what we require out of the cleaning robot in one
step, then a step of our specification (without repetition) in LTL is:

Y =-pWpAXEpWpAX(pV Xp)W(pAX(-pAp))))))-

In fact Strix confirms this to be realisable, and produces an appropriate
Mealy Machine with eighty transitions, the size of which increases with each
increase in any of the parameters.

However, using our approach all we require is Figure [3] and Figure [ By
representing the counting part of the specification using a monitor we can create
a specification much more succinct than the LTL one, while its representation is
of the same size for each value of the parameter. Moreover in LTL it is not clear
how to reproduce our repeating triggers.

The difference is that the traditional approaches explicitly enumerate every
possible behaviour and state of the controller at runtime, which can get very
large. In our approach we are instead doing this symbolically, and allowing the
particular behaviour of the environment at runtime to drive our symbolic mon-
itor. The extra cost associated with this is the semantics of guard evaluation
and maintaining variable states. For this example, the cost of the variable states
(only two variables) is much smaller than the cost of the Strix generated machine,
while guards simply check for membership and use basic arithmetic operations.

6.2 Sequences of Events

We consider a benchmark from SYNTCOMP 2020 [1]@ that generates formulas
of the form, e.g. for n = 2, F(po AF(p1))ANF(qoNF(q1)) <= GFace. Strix [21],
the best-performing tool in the LTL tracks of the competition, was successful
when the bus size was small, however timed out for n = m = 12 (and above). The
issue here is that the generated strategy must take into account every possible
interleaving of the two sequences, which quickly causes a state space explosion.

9 The full specification is available with our tool.
10 The considered benchmark corresponds to files of the form 1t12dba_beta_<n>>.t1sf.
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mazInSeqP(E) #n A mazInSeqQ(E) # n
— pCount := mazInSeqP(FE); qCount := maxInSeqQ(E)

start —>( qo

mazInSeqP(E) = n A maxInSeqQ(E) = m Q
qr

Fig. 5. Event ordering in two buses.

With our approach we can represent the left-hand side in constant-size for
any n and m as illustrated in Figure [5] where mazInSe¢X is a function that
when zCount = ¢ returns ¢ if E does not contain x;;1, and otherwise returns
the maximal j such ©;11, Ziy2, ..., and z; are all in E. The benefits apply however
complex the right-hand side.

To replicate the whole LTL formula we can use M:GFacc, where M is the
monitor in Figure [5| This is somewhat different from the original specification,
where a necessary and sufficient relation was specified. One would be tempted
to specify this as (for n = 1) (M; (Facc))*, however the monitor is not active
while the controller is activated, thus p; and ¢; may occur in tandem with acc
but be missed by the monitor. Although this is not of consequence towards
the satisfaction of the formula here (p; should occur infinitely often), this is
not generally the case. On the other hand M:GFacc captures that upon the
first activation of M there is no need to monitor the environment’s behaviour
anymore, and thus is equivalent to the original specification for control.

7 Discussion

The case studies we considered in the previous section focused on counting and
waiting for sequence of events. We expect other useful applications of monitors
as triggers, given they can be used to specify more sophisticated quantitative
properties out of reach for LTL, e.g. see Figure [2] [9].

We have highlighted how our approach extends the scope of use of reactive
synthesis. It is clear that we can gain in scalability and expressiveness, but there
is a price to pay: the “trigger” part. In general, to avoid lack of guarantees one can
avoid working directly with automata, and instead use regular expressions or co-
safety LTL formulas (under our notion of tight satisfaction) as triggers. Standard
inexpensive monitor synthesis [6] could then be used to generate a monitor. In
the case of more expressive manually-written monitors, which is standard for
runtime verification (e.g. [§]), in practice one can easily apply model checking to
the monitor to ensure it satisfies specific properties (e.g. no infinite loops).

There are certain benefits to using a symbolic representation, including suc-
cinct representation, and easy parametrisation. The Mealy machine construction
we give in the proof of Theorem [ is in fact not carried out by our tool, but in-
stead it produces a symbolic monitor with outputs that essentially performs the
construction on-the-fly. The cost of unfolding is then only paid for the trace at
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runtime, rather than for all possible traces. Moreover, a symbolic representation
allows for specification of parametrised specifications, when parametrisation can
be pushed to the monitor side. This can be done by adding any required pa-
rameter to the variables of the monitor, and instantiating its value in the initial
variable valuation of the monitor appropriately. Note that our results are agnos-
tic of the initial valuation, and thus hold regardless of the parameter values.

We have not yet discussed conjunction of trigger formulas, e.g. (M7;11)* A
(Ma;1)9)*. Conjunction is easy when the output events of 91 and s respectively
talk about are independent from each other. Our controller construction can be
used independently for each. Similarly, when the properties are safety proper-
ties there is no difficulty. However, when, e.g., 17 is a liveness property with at
least one output event correlated with an output event of 15, then conjunction
is more difficult, due to possible interaction between the two possibly concur-
rent controllers. We are investigating a solution for this issue of concurrency of
controllers by identifying appropriate assumptions about the monitor.

Theorem [2] compares our expressive power to that of LTL. We also mention
that we do not restrict the variables used by monitors. Thus, even when com-
paring with languages that include regular expressions or automata [2JT0JIS]
our language would be more expressive. If we were to restrict monitors to be
finite state, then, as these languages can express all w-regular languages, it is
clear that they would be able to express our specifications. We note, however,
that the repeating trigger operator is not directly expressible in these languages.
Thus, the translation involves a conversion of our specification to an automaton
and embedding this automaton in “their” specification. The conversion of our
specification to an automaton includes both the enumeration of the states of the
monitor and the exponential translation of LTL to (tight) automata.

8 Conclusions

We have explored synthesis for specifications that combine modelling and declar-
ative aspects, in the form of symbolic monitors triggers for LTL formulas. We
have shown how this extends the scope of synthesis by allowing parts of a spec-
ification that are hard for synthesis to be instead handled in the monitor part.
The synthesis algorithm we give synthesises the LTL part without requiring
the need to reason about the monitor. Moreover, we have implemented this ap-
proach and applied it to several case studies involving counting and monitoring
multiple sequences of events that can be impossible or hard for LTL synthe-
sis. We showed how by exploiting the symbolic nature of the monitors we can
create fixed-size parameterised controllers for some parameterised specifications.

Future Work Our work opens the door to a number of interesting research
avenues, both by using richer monitor triggers and by exploring different in-
teractions between triggers and controllers. We discuss below just a few such
possibilities. In all the cases below the challenges lie not only in providing a new
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language to capture the extension but rather in the theoretical framework with
a proof that the integration is sound.

A first intuitive extension is to add real-time to the monitors, to express prop-
erties like “compute the average use of a certain resource every week and activate
the controller to act differently depending on whether the average is bigger (or
smaller) than a certain amount”. While extending the monitor with real-time is
quite straightforward (our monitors are restricted versions of DATEs [§] which
already contain timers and stopwatches), the challenge will be to combine it with
the controller in a suitable manner. Having real-time monitors running in paral-
lel with controllers would enable for instance the possibility to add timeouts to
activities performed by the controllers.

Currently we have a strict alternation between the execution of the monitor
and the controller: we would like to explore under which conditions the two can
instead run in parallel. This would allow the controller to react to the monitor
only when certain complex condition hold while the controller is active doing
other things (e.g., the monitor might send an interruption request to the con-
troller when a certain sequence of events happens within a certain amount of
time, while the controller is busy ensuring a fairness property).

We could also have many triggers that run in parallel activating different
controllers, or even some meta-monitor that acts as an orchestrator to enable
and disable controllers depending on certain conditions. This might require to
extend /modify the semantics since the interaction might be done asynchronously.

We would like to address the limitation of controller synthesis concerning
what to do when the assumptions are not satisfied. It is well-known that in
order to be able to automatically synthesise a controller very often one must
have strong assumptions, and nothing is said in case the assumptions are not
satisfied. We would like to explore the use of monitors to monitor the violation of
assumptions and interact with the controller in order to coordinate how to handle
those situations (we can for instance envisage a procedure that automatically
extends the controller with transitions that takes the controller to a recovery
state if the assumptions are violated).
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A Full Definitions and Proofs for Section 2 (Background)

Definition 6 (General LTL Satisfaction).

def

055 -t = true
def

oi; - ff = false
def

055 Fe =eco;

gijb—d =0k ¢)

oijFdNY Z(oii b @) Aoy b @)

oijE VY (o b @)V (o, b @)

oi;FXo Zji>iANoi ko

o F U ZN-1<jAo b ¢ AVE-i<kE<IAoy;F ¢

0i;FGp Zj=coAVk-k>i = o}, ¢
Definition 7. The semantics of flagging monitors [3] is given over configura-
tions of type Q x ©, with transitions labeled by X, and the transition — defined

by the following rules:

1. A transition from a non-flagging and non-sink configuration is taken when
the guard holds on the event and valuation, and the latter updated according
to the transition’s action:

o % g g(B6) g gFU{l}
(41,8) 2 (2, a(E,0))

2. If there is no available transition whose guard holds true on the current
valuation then transition to the same configuration (stutter):

3QQ1 m q2 'Q(an)
(41,0) 2 (q1,6)

3. A sink configuration cannot be left:

(1,0) 5 (L,0)
4. A flag configuration always transitions to a sink configuration.
gr € F
(ar,0) = (L,0)
Proposition [I} Vo € 2 -VneN-o; ;IF DAn >0 = o0, 4n I D.
Proof. If 0; j IF D, then (qo,6o) % (qr,0'). By the last rule of the semantics
Def. then (go, ) ~ 3™ (L, #’), and by the third rule of the semantics (L, ')

is a sink state, and thus gr cannot be reached. Thus no extension can satisfy D,
since satisfaction requires exactly reaching qr.
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Proposition 2} Vo € 2% and Vi € N-0;; |- Dy,y.

Proof. Given a general i then o; is of the form (E), and by definition of D,y
and by the first rule of Defn. [2.1] then (go,00) £ (g, 00). By the definition of

flagging traces then o; I- D,y follows immediately.

B Proofs for Section (3| (Monitors as Triggers for LTL
Formulas)

Proposition o0i; Do = Yk >j 0,1/ D; @E

Proof. (=) If 0, ; = D; ¢ then o;; can be divided into ;5 and oj ; such
that o; j IF D and o ; IF ¢ is also true.

An easy corollary of Proposition [I] is that there if a trace flags then any
strict prefix of it does not flag. Then ;' is unique here. Furthermore, Deﬁnition
ensures that o ; does not a strict prefix that also satisfies .

Consider for contradiction that 3k > j - 0, = D;¢. Then we know that
oi o IF D and o/ 1 IF ¢ (as determined before the choice of j” here is the only
choice). Definition [2| here causes a contradiction, since o/ ; IF ¢ implies that
oj i @, but oy IF @ implies that o; ; I/ ¢. O

Proposition [4} o+ ¢ <= o+ D(,y:6[7

Proof. (=) By definition of 0, cc = D (s):9, Deﬁnition then 35-0 < jA (00,5 IF
Dy = 0j00 F ¢). Since D,y flags upon only one event, by Proposition
then oq ; IF D,y is true for j = 0. But 0¢,o = @) is equivalent to o = ¢, which
we assumed. O

( <= ) Suppose o = D,y:¢. Then og I Dy, from Proposition [2, Then
by the first rule of Definition [3| 0¢,oc - ¢, which is equivalent to the left-hand
side. O

C Proofs for Section [4| (Synthesising Monitor-Triggered
Controllers)

Theorem The formula t(w) = v — @ is tightly realisable iff it is realisable.
A Mealy machine tightly realising t(m) can be constructed from Cyy with the
same complexity.

Proof. Clearly, if t() is not realisable then it cannot be tightly realisable.
Suppose that ¢(r) is realisable and let Cy(r) be the Mealy machine realising
it. We show how to augment Cy(,) with accepting states.
First, given a co-safety formula ¢, we can construct a deterministic finite
automaton accepting all finite prefixes u such that wug |, = ¢. Construct an

11 Proof can be found in Appendix B.
12 Proof can be found in Appendix B.
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alternating weak automaton (AWW) A, for ¢ using standard techniques [16].
The only states of this automaton that have self loops are states of the form
11Uy, Tt follows that the only option for this automaton to accept is by a
transition to tt. We construct a nondeterministic finite automaton (NFW) N,
from A, by using a version of the subset construction and having the empty set
as the only accepting state of the NF'W. We then construct a deterministic finite
automaton D, by applying the classical subset construction to IV,,.

The AWW A, is linear in ¢, the NFW N, is at most exponential in ¢, and
the DFW D,, is at most doubly exponential in ¢.

We then take the product of D, with the Mealy machine Cy(r.

As Cy () realises t(m), whenever a word w satisfies + it must satisfy ¢ as well.
Then, as D, accepts all prefixes that satisfy (tightly) ¢, the first prefix of w that
satisfies ¢ is accepted by the Mealy machine

Note that the construction identifying violating prefixes for a safety language
[1I'7] would not produce the required result: the automaton constructed using that
technique would identify the empty trace as satisfying Xtt. O

Theorem Let Cy(r) be a Mealy machine realising t(m) when 7' is a simple-
trigger LTL, and tightly realising t(w) when 7' is a repeating-trigger LTL. Then
there is a Mealy machine M » Cy(r) that realises .

Proof. We give a construction for such a controller, and prove it realises 7.

The monitor-activated controller M » C' is defined as the Mealy machine
with the following components (S, 5o, Pin, Pout, —, D), where S = (Qar X Opr) U
Qc, so = (¢%,00), Pin and P,y are shared among all three. The transition
relation — is the minimal relation respecting:

1. If the monitor is in a state that has an outgoing transition to a non-final
state then take that transition. Note that this also applies to sink states.

I
v €F (g, 0) = (dhr, 0")
1/0
(qnr,0) == (apr,0)
2. If the monitor is in a state that has an outgoing transition to a final state
then take that transition synchronously with a corresponding transition from
the controller initial state.

I 1/0
o € Fur (aan,0) = (dh,0) ¢ L5c qc

770
(qnr,0) /—HJC

3. If the controller C is in a non-accepting state take transitions from that
state.

1/0
qc ¢ Fo qgc ——c q¢

/0,
qc — 4¢

13 We conjecture that realisability procedures relying on determinisation and the Mealy
machines constructed from them could be further analysed to produce the required
tight Mealy machine without requiring the additional automaton D.,.
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4. If the controller C' has a transition to an accepting state then transition
to the initial state of the monitor. Note that this will not be activated in
the case of simple triggers, for which we will be using controllers without
accepting states.

1/0
g € Fe  qc — 4o

I1/0
qc — (qg4760)

To prove this construction realises 7, we consider two cases, when 7’ is a
simple-trigger formula D:¢ and when it is a repeating-trigger formula (D;p)*.
Throughout we assume we are considering traces that satisfy the assumption,
otherwise the specification is trivially satisfied.

In the case of a simple trigger, it is easy to see that there are two cases: either
the monitor never flags, or it flags. If the monitor never flags (i.e. only rule 1 is
ever used), then 7 is trivially satisfied. If the monitor flags, then a suffix of the
trace is produced by Cy(,) (note rules 2 and 3). That is, there is a j such that
00,5 IF D and 0 « is produced by Cy(,). Note that rule 4 in the construction is
never activated, since Cy(,) will not have accepting states. However every trace
produced by Cy(,) also satisfies (), since the former realises the latter . The
result then easily follows.

In the case of a repeating trigger, there are two cases: either the monitor
flags finitely often, or the monitor flags infinitely often.

Suppose the monitor flags finitely often. Consider by induction that the monitor
flags zero times, then it is easy to see that the trace satisfies (D;p)*, since D
never flags. The inductive step, when the monitor flags n+ 1 times, can be easily
reduced to nth case by pruning from the trace the prefix that satisfies D;p. This
prefix must exist since the monitor must flag at least once and upon entering
Cy(r), which tightly realises the co-safety formula ¢(7) and thus will accept.

Suppose the monitor flags infinitely often, and for contradiction suppose the
formula is not realised. There must then be some trace whose prefix does not
satisfy D;p. This prefix in turn must have a prefix that satisfies D, otherwise
the whole specification D;yp is satisfied. However, since D must flag on this
violating trace then, since Cy(ry tightly realises the co-safety formula t(7), we
are guaranteed the prefix will eventually be extended to accept and satisfy .
Thus D;p must be satisfied by the prefix, which creates a contradiction. O
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