
pyNeVer: a Framework for Learning and
Verification of Neural Networks

Dario Guidotti1, Luca Pulina2, and Armando Tacchella1,B

1 University of Genoa, Italy
2 University of Sassari, Italy

dario.guidotti@edu.unige.it,

lpulina@uniss.it, armando.tacchella@unige.it

1 Summary

Automated verification of neural networks (NNs) was first proposed in [1] and
it is an established research topic with several contributions to date — see,
e.g., [2]. The taxonomy proposed in [2] suggests a division among verification
tools providing deterministic guarantees, e.g., Marabou [3], and those providing
sound approximations, e.g., ERAN [4] and NNV [5]. pyNeVer borrows basic
techniques from [5] and casts them into an abstraction approach inspired by [4];
like ERAN and NNV, it features complete verification methods, but it features
a distinctive abstraction mechanism. Networks comprising layers of affine trans-
formations and layers of activation functions such as Rectified Linear Units (Re-
LUs) and sigmoids are abstracted to mappings between polytopes represented
as generalized star sets [6]; the main novelty is that the abstraction level of each
layer can be controlled down to a single neuron to support various refinement
policies. Additionally, pyNeVer can also load popular datasets and NN models
in ONNX [7] and PyTorch [8] formats, and supports training of NNs carried
out transparently through PyTorch. Additionally, NNs can be manipulated
through network slimming and weight pruning to ease verification — see [9].
Here we focus on verification with pyNeVer and provide a brief experimental
account. pyNeVer sources, documentation and examples are accessible at

https://github.com/NeVerTools/pyNeVer

In the remainder of this section, we briefly introduce some basic definitions and
notation used in the paper.

Star sets. To represent polytopes and define abstract computations we consider
a subclass of generalized star sets, introduced in [6] and defined as follows —
the notation is adapted from [10]. Given a basis matrix V ∈ Rn×m obtained
arranging a set of m basis vectors {v1, . . . , vm} in columns, a point c ∈ Rn
called center and a predicate R : Rm → {>,⊥}, a generalized star set is a tuple
Θ = (c, V,R) yielding the set of points:

[[Θ]] ≡ {z ∈ Rn | z = V x+ c such that R(x1, . . . , xm) = >}. (1)

2 Guidotti et al.

In the following we denote [[Θ]] also as Θ. We consider only star sets such that
R(x) := Cx ≤ d, where C ∈ Rp×m and d ∈ Rp for p ≥ 1, i.e., R is a conjunction
of p linear constraints; we further require that the set Y = {y ∈ Rm | Cy ≤ d}
is bounded. We refer to generalized star sets obeying our restrictions simply as
stars, and it is easy to show that such sets are polytopes in Rn whose set we
represent as 〈Rn〉. Given a star Θ = (c, V,R) and an affine mapping f : Rn → Rm

with f = Ax + b, the affine mapping of the star is defined as f(Θ) = (ĉ, V̂ , R)
where ĉ = Ac+ b and V̂ = AV . Notice that, if Θ ∈ 〈Rn〉 then also f(Θ) ∈ 〈Rm〉,
i.e., the affine transformation of a polytope is still a polytope.

Neural networks. Given a finite number p of functions f1 : Rn → Rn1 , . . . , fp :
Rnp−1 → Rm — also called layers — we define a feed forward neural network as
a function ν : Rn → Rm obtained through the compositions of the layers, i.e.,
ν(x) = fp(fp−1(. . . f1(x) . . .)). The layer f1 is called input layer, the layer fp is
called output layer, and the remaining layers are called hidden. Given x ∈ Rn,
we consider two types of layers: the mapping f(x) = Ax + b with A ∈ Rm×n
and b ∈ Rm is an affine layer implementing the linear mapping f : Rn →
Rm; the mapping f(x) = (σ1(x1), . . . , σn(xn)) is a functional layer f : Rn →
Rn consisting of n activation functions — also called neurons; usually σi =
σ for all i ∈ [1, n], i.e., the function σ is applied to each component of the
vector x. We consider two kinds of activation functions σ : R → R that find
widespread adoption: the ReLU function defined as σ(r) = max(0, r), and the
logistic function — of the family of sigmoids — defined as σ(r) = 1

1+e−r . For
a neural network f : Rn → Rn, the task of classification is about assigning to
every input vector x ∈ Rn one out of m labels: an input x is assigned to a class
k when ν(x)k > ν(x)j for all j ∈ [1,m] and j 6= k; the task of regression is about
approximating a functional mapping from Rn to Rm.

2 Abstraction algorithms

In Algorithm 1 we detail the abstract mapping of a ReLU node — abstraction of
sigmoid nodes and affine transformations are also implemented. Let us assume
that the concrete functional layer contains n activation functions. The function
compute layer takes as input an indexed list of N stars Θ1, . . . , ΘN repre-
senting an abstraction of the input and an indexed list of n positive integers
called refinement levels. For each neuron, the refinement level tunes the grain
of the abstraction: level 0 corresponds to the coarsest abstraction that we con-
sider and the greater the level, the finer the abstraction grain becomes. In the
case of ReLUs, all non-zero levels map to the same (precise) refinement, i.e., a
piece-wise affine mapping. Notice that, since each neuron features its own re-
finement level, Algorithm 1 controls abstraction down to the single neuron as
expected, enabling the computation of layers with mixed degrees of abstraction.
The output of function compute layer is still an indexed list of stars, that
can be obtained by independently processing the stars in the input list. For
this reason, the for loop starting at line 3 is parallelized in the actual imple-
mentation. Given a single input star Θi ∈ 〈Rn〉, each of the n dimensions is

pyNeVer: a Framework for Learning and Verification of Neural Networks 3

Algorithm 1 Abstraction of the ReLU activation function.
1: function compute layer(input = [Θ1, . . . , ΘN], refine = [r1, . . . , rn])
2: output = []
3: for i = 1 : N do
4: stars = [Θi]
5: for j = 1 : n do stars = compute relu(stars, j, refine[j], n)

6: append(output, stars)

7: return output

8: function compute relu(input = [Γ1, . . . , ΓK], j, level, n)
9: output = []
10: for k = 1 : K do
11: (lb, ub) = get bounds(input[k], j)
12: M = [e1 ... ej−1 0n ej+1 ... en]
13: if lb ≥ 0 then S = input[k]
14: else if ub ≤ 0 then S = M * input[k]
15: else
16: if level > 0 then
17: Θlow = input[k] ∧ zj < 0; Θupp = input[k] ∧ zj ≥ 0
18: S = [M * Θlow, Θupp]
19: else
20: (c, V, Cx ≤ d) = input[k]

21: C1 = [0 0 ... − 1] ∈ R1×m+1, d1 = 0

22: C2 = [Vj − 1] ∈ R1×m+1, d2 = −cj
23: C3 = [−ub

ub−lbVj − 1] ∈ R1×m+1, d3 = ub
ub−lb (cj − lb)

24: C0 = [C 0m×1], d0 = d

25: Ĉ = [C0; C1; C2; C3], d̂ = [d0; d1; d2; d3]

26: V̂ = MV , V̂ = [V̂ ej]

27: S = (Mc, V̂ , Ĉx̂ ≤ d̂)
28: append(output, S)

29: return output

processed in turn by the for loop starting at line 5 and involving the function
compute relu. Notice that the stars obtained processing the j-th dimension
are fed again to compute relu in order to process the j+ 1-th dimension. The
function append(p1, p2) (line 6) takes an indexed list p1 and either an element
or another indexed list p2 and appends it to p1. For each star given as input, the
function compute relu first computes the lower and upper bounds of the star
along the j-th dimension by solving a linear-programming problem — function
get bounds at line 11. Independently from the abstraction level, if lb ≥ 0 then
the ReLU acts as an identity function (line 13), whereas if ub ≤ 0 then the
j-th dimension is zeroed (line 14). The “asterisk” operator (*) takes a matrix
M , a star Γ = (c, V,R) and returns the star (Mc,MV,R). In this case, M is
composed of the standard orthonormal basis in Rn arranged in columns, with
the exception of the j-th dimension which is zeroed. When lb < 0 and ub > 0
we must consider the refinement level. For any non-zero level, the input star
is “split” into two stars, one considering all the points z < 0 (Θlow) and the
other considering points z ≥ 0 (Θupp) along dimension j. Both Θlow and Θupp
are obtained by adding to the input star input [k] the appropriate constraints.
Notice that, if the analysis at lines 17-18 is applied throughout the network,
and the input abstraction is precise, then the abstract output range will also be
precise, i.e., it will coincide with the concrete one: we call complete the analy-

4 Guidotti et al.

property net complete mixed overapprox
time verified time verified time verified

3 1 1 460 T 25 T 2 F
1 3 83 T 11 T 3 F
2 3 33 T 9 T 2 F
4 3 319 T 31 T 3 F
5 1 44 T 10 T 2 F

4 1 1 143 T 11 F 3 F
1 3 96 T 16 F 3 F
3 2 67 T 20 T 3 F
4 2 177 T 15 T 3 F

Table 1. Performances of pyNeVer on a subset of ACAS XU networks. Columns
property and net report the property and the network considered, respectively.
The other columns report the verification time (time) and the result of verification
(verified) for complete, mixed and over-approximate analyses, respectively.

sis of pyNeVer in this case. Currently, pyNeVer does not attempt to merge
stars. Therefore, in the complete analysis, the number of stars is worst-case ex-
ponential — see [5]. If the refinement level is 0, then the ReLU is abstracPted
using the tightest polyhedral abstraction available, i.e. a triangle with vertices
in (lb, 0), (0, 0) and (ub, ub). The computation of the resulting star is carried out
from line 21 to line 25. Intuitively, given the predicates of the input star Cx ≤ d,
the matrix C and the vector d are modified to constrain the output star within
the points inside the triangle defining the abstraction, given the points of the
input star. If the analysis at lines 21-25 is carried out throughout the network,
assuming that the input star contains all potential input points, then the out-
put star will be a (sound) over-approximation of the concrete output range: we
call over-approximate the analysis of pyNeVer in this case. As we mentioned
before, we can mix different levels of abstraction, down to the single neuron: we
call mixed an analysis that adopts different levels of abstraction.

3 Experimental evaluation

In this section, we provide some empirical results about pyNeVer3. Our ex-
periments are focused on the verification task, i.e., given a neural network
ν : Rn → Rm we wish to verify algorithmically that it complies to stated post-
conditions on the output as long as it satisfies pre-conditions on the input. In
the first experiment, we compare the three different verification methodologies
available in pyNeVer, namely complete, mixed and over-approximate analy-
sis. In this experiment, the mixed strategy is implemented by refining a fixed
amount of neurons in each layer. The results that we present are obtained refin-
ing at most a single neuron for each layer. Clearly, different refinement heuristics
may yield different results, but a thorough experimentation of such heuristics is
beyond the scope of this paper. Here, we just wish to show how combining con-
crete and over-approximate analysis, even with a very straightforward approach,

3 All experiments ran on a laptop equipped with an Intel i7-8565 CPU (8 core at
1.8GHz) and 16 GB of memory with Ubuntu 20 operating system

pyNeVer: a Framework for Learning and Verification of Neural Networks 5

p net erancp erancz eranop eranoz marabou nnvc nnvo

time ver time ver time ver time ver time ver time ver time ver
3 1 1 139 T 73 T 105 F 65 F 7073 T 329 T 1 F

1 3 9 T – – 9 T 36 F 3451 T 37 T <1 F
2 3 4 T 3 T 4 T 2 T 966 T 17 T <1 F
4 3 4 T 4 T 4 T 5 T 1452 T 112 T <1 F
5 1 7 T 3 T 8 T 4 T 763 T 17 T <1 F

4 1 1 11 T 6 T 11 T 7 T 2401 T 141 T 1 F
1 3 8 T 3 T 8 T 3 T 756 T 41 T <1 F
3 2 4 T 3 T 5 T 2 T 63 T 21 T <1 F
4 2 4 T 2 T 4 T 2 T 44 T 59 T <1 F

Table 2. Performances of a pool of state-of-the-art tools on a subset of ACAS XU
networks. The table is organized similarly to Table 1. In the results, “<1” indicates
that the CPU time spent was less than 1 second, while a dash (“–”) denotes that the
tool exhausted the available memory.

may yield improvements in the overall verification time. For the comparison, we
consider networks and properties from the ACAS Xu evaluation [11]. ACAS Xu
is an airborne collision avoidance system based on NNs whose purpose is to issue
advisory commands to an autonomous vehicle (ownship) about evasive maneu-
vers to be be performed in case another vehicle (intruder) comes too close. In
particular, we selected Property 3 and 4 since they can be easily expressed as a
single verification query in our tool. In the words of [11], these safety properties
“deal with situations where the intruder is directly ahead of the ownship, and
state that the NN will never issue a COC (clear of conflict) advisory”. Consid-
ering the analysis in [11], each property can be assessed on 42 different networks
depending on the choice of two parameters. Among the 84 networks available,
we selected those for which our over-approximate analysis was not able to find
a definitive answer, ending with a total of 9 networks. Notice that Property 3
and Property 4 are always satisfied in these networks. Table 1 shows the results
of this experiment. Looking at the table, we can see that the complete analysis
of pyNeVer is able to answer all the queries, whereas the over-approximate
analysis does not succeed on any of them. Considering the results of the mixed
analysis, we see that pyNeVer is able to answer all but two queries and the
total amount of CPU time spent is noticeably less than the complete analysis
and uniformly closer to the one reported for the over-approximate one. Arguably,
the mixed methodology provides a good trade-off between precision and speed.

Our second experiment aims to compare pyNeVer to a pool of state-of-
the-art tools. In particular, we consider four versions of ERAN [12, 13], i.e. the
ones resulting from the combination of complete (c) and over-approximate (o)
methodologies, using either polytopes (p) or zonotopes (z); we consider also
Marabou [3], and two versions of NNV [10] featuring both complete and over-
approximate methodologies (NNVc and NNVo, respectively). We report the re-
sults in Table 2, where we denote ERAN versions with ERANxy, where x ∈ {c, o}
indicates the analysis, while y ∈ {p, z} denotes the polyhedron type. Focusing on
complete analyses, i.e., the results of ERANcp, ERANcz, Marabou and NNVc,
and comparing them with the related results of pyNeVer reported in Table 1,
we can see that the complete analysis of pyNeVer is in the same ballpark as all

6 Guidotti et al.

but one of the other tools — ERANcz exhausts available memory in one query.
The same comparison, but focusing on over-approximation techniques, yields a
different result: ERAN seems to strike a better balance between speed and preci-
sion since it is able to verify the properties even when using over-approximation.
On the other hand, the performances of pyNeVer are on the same page with
the ones reported for NNVo. Finally, looking at Table 1 and focusing on the
results related to the mixed analysis, we can see that it outperforms NNVo and
it is close to ERANop and ERANoz in terms of verified properties.

References

1. L. Pulina and A. Tacchella. An abstraction-refinement approach to verification of
artificial neural networks. In Proc. of CAV’10, pages 243–257, 2010.

2. X. Huang, D. Kroening, M. Kwiatkowska, W. Ruan, Y. Sun, E. Thamo, M. Wu,
and X. Yi. Safety and trustworthiness of deep neural networks: A survey. arXiv
preprint arXiv:1812.08342, 2018.

3. G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W. Barrett.
The marabou framework for verification and analysis of deep neural networks. In
Proc. of CAV’19, pages 443–452, 2019.

4. G. Singh, T. Gehr, M. Püschel, and M. T. Vechev. Boosting robustness certification
of neural networks. In Proc. of ICLR’19, 2019.

5. H. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak, and
T. T. Johnson. NNV: the neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. CoRR, abs/2004.05519, 2020.

6. S. Bak and P. S. Duggirala. Simulation-equivalent reachability of large linear
systems with inputs. In Proc. of CAV’17, pages 401–420. Springer, 2017.

7. Open Neural Network Exchange the open standard for machine learning interop-
erability. https://onnx.ai/.

8. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Proc. of NIPS’19,
pages 8024–8035, 2019.

9. D. Guidotti, F. Leofante, L. Pulina, and A. Tacchella. Verification of neural net-
works: Enhancing scalability through pruning. In Proc. of ECAI’20, volume 325 of
Frontiers in Artificial Intelligence and Applications, pages 2505–2512. IOS Press,
2020.

10. H. Tran, D. M. Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang, and T. T.
Johnson. Star-based reachability analysis of deep neural networks. In Proc. of
FM’19, volume 11800, pages 670–686. Springer, 2019.

11. G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Proc. of CAV’17,
volume 10426 of Lecture Notes in Computer Science, pages 97–117, 2017.

12. G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev. Fast and effective
robustness certification. In Proc. of NIPS’18, pages 10825–10836, 2018.

13. G. Singh, T. Gehr, M. Püschel, and M. T. Vechev. An abstract domain for certi-
fying neural networks. Proc. ACM Program. Lang., 3(POPL):41:1–41:30, 2019.

