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Abstract. Analysing correlations between streams of events is an
important problem. It arises for example in Neurosciences, when the
connectivity of neurons should be inferred from spike trains that record
neurons’ individual spiking activity. While recently some approaches for
inferring delayed synaptic connections have been proposed, they are lim-
ited in the types of connectivities and delays they are able to handle, or
require computation-intensive procedures. This paper proposes a faster
and more flexible approach for analysing such delayed correlated activ-
ity: a statistical Analysis of the Connectivity of spiking Events (ACE),
based on the idea of hypothesis testing. It first computes for any pair of
a source and a target neuron the inter-spike delays between subsequent
source- and target-spikes. Then, it derives a null model for the distri-
bution of inter-spike delays for uncorrelated neurons. Finally, it com-
pares the observed distribution of inter-spike delays to this null model
and infers pairwise connectivity based on the Pearson’s χ2 test statis-
tic. Thus, ACE is capable to detect connections with a priori unknown,
non-discrete (and potentially large) inter-spike delays, which might vary
between pairs of neurons. Since ACE works incrementally, it has potential
for being used in online processing. In an experimental evaluation, ACE is
faster and performs comparable or better than four baseline approaches,
in terms of AUPRC (reported here), F1, and AUROC (reported on our
website), for the majority of the 11 evaluated scenarios.

Keywords: Machine learning from complex data · Event streams ·
Neurosciences · Neural connectomics · Connectivity inference

1 Introduction

An important problem in various applications is detecting correlations between
streams of events. This is of particular importance in Neurosciences, where
it arises for example when inferring the functional connectivity of neurons
[PGM67]. Given spike trains with recordings of the neuron’s individual spike
activity, the objective is to detect correlations between the spike activities of
pairs or networks of neurons. Most of the existing approaches are designed for
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Fig. 1. Schematic visualisation of ACE (Analysis of Connectivity of spiking Events).

detection of correlated synchronous activity, considering solely events within the
same discretised time interval. More recently, the detection of delayed synaptic
connections has gained attention. However, existing methods have limitations in
the types of connectivities and delays they are able to handle, for example due
to requiring range-parameters for expected delays, or they require computation-
intensive procedures, such as computing cross-correlation histograms or perform-
ing cross-evaluations of parameter values.

We propose a faster and more robust approach for the detection of delayed
correlated activity. The principle of this statistical Analysis of Connectivity of
spiking Events (ACE) of neural spikes is illustrated in Fig. 1. This statistical
approach follows the idea of hypothesis testing: Starting (A) with data in the
form of spike trains that are recorded for several neurons, the aim is to infer
for any pair of source (NS) and target neuron (NT ) the pairwise connectivity
between them. For this purpose, we compute in step (B) for any pair of neurons
the inter-spike intervals, i.e. the delays between their subsequent spikes (dS,S ,
dS,T1 and dS,T2). In the third step (C), we use the inter-spike intervals of a
potential source neuron to determine the null distribution of delays for uncon-
nected target neurons (shown on top as P (dS,unconnected)). If a target neuron is
not connected to the source neuron, the observed distribution of the inter-spike
intervals should follow this distribution (shown on the bottom as H(dS,T2)). In
contrast, if this observed distribution (shown at the center as H(dS,T1)) differs
sufficiently, we assume that these two neurons are connected. Thus, in step (D)
we use the Pearson’s χ2 test statistic to determine the connectivity for each pair
of neurons.

As a consequence, and in contrast to existing methods, our approach works
incrementally. It requires neither a cross-correlation histogram (faster), nor pre-
specified range-parameters for expected delays (more flexible), but assumes that
the signal reaches the target neuron faster than the source neuron fires again.
This makes it particularly interesting for online processing. Summarising, the
contributions of our statistical ACE approach are:
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– A statistical, principled approach based on hypothesis testing, by modelling
the null distribution of delays between pairs of unconnected neurons,

– which is fast and robust (no sensitive parameters),
– does not assume a particular type of connectivity pattern,
– capable to detect connections with unknown, non-discrete delays, that might

vary in length between connections.
– Based on the distribution of the F1 score for different datasets with simi-

lar neuron types (with known ground truth), experiments indicate that the
threshold is a robust parameter (transferable to other data sets, see [KKP20]).

2 Related Work

There is a rich literature on analysing neuronal spike train data for inferring con-
nectivity. This comprises recent reviews, e.g., [MYD18], and a recent machine
learning challenge on neural connectomics [BGL+17]. Following [MYD18], we
distinguish model-based approaches from model-free ones. An important limi-
tation of model-based approaches is that they rely on assumptions on the data
generating process. Their structure and function depend on a large number of
factors, resulting in a variety of models and approaches [MYD18]. These include
autoregressive models, which are fast but assume a directed linear interaction
and generalised linear models, which despite recent extensions to handle trans-
mission delays remain limited to small and uniform delays within the network.

In contrast, model-free approaches rely on principles from descriptive statis-
tics, information theory, and supervised learning. This comprises approaches
based on the correlation between the activities of neurons, which was the
key component in the winning approach of the neural connectomics chal-
lenge [BGL+17]. While in the simplest form only simultaneous spikes are con-
sidered, the extension to cross correlation allows for a delay τ between spike
times [IHH+11]. Extending the idea presented at the neural connectomics chal-
lenge, [Moh14] suggested to use inverse covariance estimates together with an
initial convolution filter to preprocess the data. The convolution kernel and
other parameter are learned by optimising the binomial log-likelihood function
[Moh14] on a training data set, where ground truth is known. In the above men-
tioned challenge they report comparable AUC scores and accuracy compared to
the winner, while being noticeably faster.

A further group of model-free approaches are based on information theo-
retic approaches. Their applicability for neural connectomics was investigated in
[GNMM09], comparing methods based on Mutual Information, Joint-Entropy,
Transfer Entropy (TE) and Cross-Correlation. This study revealed Transfer
Entropy and Joint-Entropy being the best of the aforementioned methods.
Transfer Entropy (TE) is equivalent to Granger causality for Gaussian vari-
ables [BBS09], which describes a statistical hypothesis test that measures the
ability of predicting future events of a time series based on past events of related
time series. However, pairwise Granger causality only detects direct correla-
tions. This leads to problems when two neurons are driven by a common third
neuron with different delays [CDHD08]. In [IHH+11], two different TE-based
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approaches are proposed, one using Delayed TE (DTE) and one using Higher
Order TE (HOTE). DTE calculates the TE for multiple delays (e.g. 1–30 ms),
which is extended in HOTE by considering multiple bins for each delay.

Recently, statistical methods for analysing synchrony across neurons were
reviewed in [HAK13]. Therein, it is emphasised that the statistical identification
of synchronous spiking presumes a null model that describes spiking without
synchony. Then, if the observed synchrony is not consistent with the distribution
under the null model, i.e. there is more synchony than expected by chance, the
null hypothesis of no synchrony is rejected. For hypothesis testing, [HAK13] focus
their discussion on deriving the test statistics from a cross-correlation histogram
(CCH). This shows the observed frequency of different time delays between two
spike trains, but is scaling dependent and computationally costly.

Convolutional Neural Networks have also been used [Rom17] to learn connec-
tivity directly from calcium imaging data. This scored worse than the correlation-
based approaches, and required extremely high computation time [BGL+17].

3 A Method for Analysing Potential Connectivity in
Events

The new method ACE (Analyser for Correlated spiking Events) is a statistical
approach following the idea of hypothesis testing. Observing the inter-spike inter-
vals of a potential source neuron, we determine the null distribution of delays
for unconnected target neurons. If the real observed distribution differ suffi-
ciently (using the Pearson’s χ2 test statistic), we infer that these two neurons
are connected. In contrast to existing methods, our approach works incremen-
tally without using a cross-correlation histogram (faster) and without providing
range-parameters for expected delays (more flexible).

The complete analysis pipeline of our algorithm is provided in Fig. 1: In the
first step, we compute the delays of two consecutive spikes of all neurons to deter-
mine the neuron’s parameters λ and RP (Sect. 3.1, Fig. 1B (top)). Thereby, we
are able to reconstruct the neuron’s delay distribution and to determine the null
model for the delay distribution between two neurons (Sect. 3.2, Fig. 1C (top)).
As we estimate the null model in advance, we have information on the expected
delay distribution and can use the histogram with intervals according to the
quantiles to estimate the distribution of observed delays (Sect. 3.3). Then, the
real delays from the source neurons to the target neurons are determined and the
histogram is completed (Fig. 1C (bottom)). The χ2 statistic provides a score for
distinguishing connected and unconnected neurons (Sect. 3.4, Fig. 1D). A thresh-
old is used to determine if the connection score was sufficiently large. A detailed
description follows in the next subsections, while the threshold specification is
discussed in the evaluation section.

3.1 Modeling Spiking Behaviour of a Single Neuron

As we will show in Sect. 3.2, the null-distribution for the delays between uncon-
nected source and target neurons depends on the distribution of time intervals



142 G. Krempl et al.

(delays) d between consecutive spikes of the source neuron (NS). To model the
random variable (XNS→NS

) corresponding to these delays, we use an exponen-
tial distribution as a simplification of the gamma distribution, in accordance to
[Pil09]. This yields two parameters: the refractory period RP , describing the
time a neuron is inhibited to spike again, and the firing rate λ, defining the
shape of the exponential distribution. The probability density function (pdf) of
XNS→NS

= EXP (λ) + RP and its first two moments are given as:

fNS→NS
(d) =

{
λ exp(−λ(d − RP )) d ≥ RP
0 d < RP

(1)

E(XNS→NS
) = E(EXP (λ) + RP ) = E(EXP (λ)) + RP = 1/λ + RP (2)

V (XNS→NS
) = V (EXP (λ) + RP ) = V (EXP (λ)) = 1/λ2 (3)

The expectation value E(XNS→NS
) and the variance V (XNS→NS

) can be
incrementally calculated [BDMO03] to find the values for both parameters RP
and λ.

λ = 1/
√

V (XNS→NS
) RP = E(XNS→NS

) − 1/λ (4)

3.2 Determining the Null-Distribution for Uncorrelated Neurons

Our approach follows the idea of a statistical test: Instead of deriving models
for cases when a source neuron (NS) is connected to a target neuron (NT ),
we develop a model to describe the delays d if NS and NT are unconnected.
Observing a spike at the target neuron at time t, and knowing the time tS of
the source neuron’s last spike, this delay is d = t − tS .

If the source neuron (NS) is not connected to the target neuron (NT ), spikes of
NT seem to appear randomly from the perspective of NS as they are independent.
Instead of using the real spike time points, we could also use an equal number of
randomly chosen time points. Thus, the null-distribution solely depends on the
firing frequency of the source neuron, which is defined by its parameters RP and
λ. Determining the distribution of delays d = t− tS corresponds to estimating the
probability P (XNS→NS

> d) that NS has not spiked again within [ts, t]:

P (XNS→NS > d) = 1−
∫ d

0

fNS→NS (d′) dd′ =

{
exp(−λ(d − RP )) d ≥ RP
1 0 ≤ d < RP

(5)∫ ∞

0

P (XNS→NS > d) dd′ = RP +
1

λ

∫ ∞

0

λ exp(−λd) dd′ = RP +
1

λ
(6)

Using the normalised probability from above, we obtain the distribution XNS→N?

of delays between NS and an unconnected neuron N?:

fNS→N?(d) =
P (XNS→NS

> d)∫ ∞
0

P (XNS→NS
> d′) dd′ =

{
exp(−λ(d−RP ))

RP+1/λ
d ≥ RP

1
RP+1/λ

0 ≤ d < RP
(7)
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Summarising, this null model describes the distribution of delays between two
unconnected neurons. Hence, our model is based on (but not similar) to the
interspike intervals of neuron NS which depends on the refractory period (RP )
and the firing rate (λ).

3.3 Estimating the Distribution of Observed Delays

To compare the true distribution of observed delays to the distribution under the
null model, we build a histogram with B bins such that every bin should contain
the same amount of delays following the null distribution. The delay interval of
bin b ∈ {1, . . . , B} is given in Eq. 8 with F−1 being the quantile function (inverse
cumulative distribution function) of the null distribution:

Ib =
[
F−1

(
b − 1

B

)
, F−1

(
b

B

)[
(8)

Given the source neuron’s RP and λ, this quantile function is:

F−1(q) =

⎧⎨
⎩RP − ln

(
1−(q− RP

RP+1/λ
)·(λRP+1)

)

λ q > RP
RP+1/λ

q · (RP + 1/λ) q ≤ RP
RP+1/λ

(9)

3.4 Infering Connectivity Using the Pearson’s χ2-test Statistic

Following the null hypothesis (neurons are not connected), the previously men-
tioned histogram should be uniformly distributed. Hence, the frequencies Hb of
bin b should be similar to Hb ≈ N/B (N =

∑
Hb, which is the total number of

delays). Our method uses the Pearson’s χ2-Test statistic to find a threshold for
distinguishing connected and unconnected neurons.

χ2 =
B∑

b=1

(Hb − N
B )2

N
B

(10)

Instead of calculating the p value, we directly use the χ2 statistic to determine
a threshold as the degrees of freedom (B−1) are similar for every pair of neurons.

4 Experimental Evaluation

We evaluate our algorithm to the most used baseline techniques [MYD18] regard-
ing its detection quality and its robustness to parameters like the detection
threshold. All code and data are available at our repository1.

1 https://bitbucket.org/geos/ace-public.
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4.1 Baseline Algorithms and Performance Scores

We compare our algorithm with the method proposed by [Moh14] (denoted as
IC ), which is as the winner of the Neural Connectomics Challenge based on
inverse covariance but faster, and the higher order transfer entropy (HOTE )
approach [IHH+11]. Besides the threshold that all connectivity detection algo-
rithms have in common, both methods require an additional binning parameter
that influences the performance. Following the suggestions, we use realistic stan-
dard parameters and two variants with 20 and 50 bins. The experiments were
implemented in MATLAB (HOTE was provided by the author of [IHH+11]).

As in the challenge and common in literature, we compare the algo-
rithms’ connection scores using the Area Under the Precision-Recall Curve
(AUPRC) (see [Pow11] and [MYD18]). This describes the relationship between
precision TP

TP+FP and recall TP
TP+FN at different thresholds [MYD18].

4.2 Sensitivity of the Algorithms

To evaluate the sensitivity of algorithms to different neural patterns, in our first
series of experiments we used artificially generated data with varying neural
parameters, which are summarised in Table 1. Each parameter range has been
chosen according to animal studies [Izh06] and related comparisons [MYD18].

To evaluate the detection capabilities for each algorithm, we show the
AUPRC scores in Table 1. Our algorithm outperforms all competitors except
for the data set NU H with higher number of neurons (equal performances with
the HOTE approach) and the data set with high delays (DE H) which is more
difficult for all algorithms. To explain our poor performance on the latter, we
need to recall that the self-initiated firing rate is between 17 ms and 36 ms,
calculated as the interval given in expected latency (default [10, 25)) plus the
RP ([7, 11)) for the DE H data set. If we observe delays longer than the source
neuron’s inter-spike intervals (here: 9ms ≤ d < 120 ms) it is likely that the
source neuron spiked again before its signal reaches the target neuron. Hence,
we are not able to link the spike of the source with the spike of the target neu-
ron which makes it impossible to find the respective connection. Fortunately,
this behaviour is rare in real neural systems [Izh06].

Unfortunately, it is not possible to set the detection threshold of the algo-
rithms to a fixed value. In this section, we aim to evaluate the sensitivity of the
respective parameter mentioned in Table 1. Therefore, we use each of the three
different configurations (low, mid, high) as one fold of an experiment. For each
fold, we tune the detection threshold on the remaining folds and calculate the
F1 score accordingly. Except for the data set with varying delays, our approach
shows superior performance than the baseline algorithms although the AUPRC
score differences have not been that large. This indicates that our detection score
is more robust to changes in the number of neurons (NU), the latency (LA), the
number of connections (CO) and noise (NO). The F1 scores for the delay (DE)
data sets for our approach ACE are: DE L 0.6164, DE M = ST 0.7539 and
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DE H = 0.1100. We see that the previously discussed low performance on DE H
is the reason for the low mean score.

In the experiments, we presented two variants of IC and HOTE as they
need an additional parameter which highly influences the results. Our param-
eter B has not such an influence on the performance and the runtime (see also
Sect. 4.3) of ACE. This is visualised in Fig. 3 which plots the AUPRC w. r. t.
the number of bins B on the ST data set. The plot shows that the performance
generally increases with higher resolution, but only marginally beyond B = 100,
our default for further experiments.

Table 1. Area Under the Precision-Recall Curve values for all algorithms on data sets
with varying characteristics. The default values for unvaried characteristics are 100
neurons (in the dataset), [10, 25) ms + RP expected latency (between two consecutive
spikes), 1% as relative number of connections, [5, 9) ms delay (between two connected
neurons), and +0 ms noise (when determining spike times). The length of the spike
stream is 30s and the refractory period (RP) is uniformly between 7 and 11 ms. The
data set name is composed by the characteristic abbreviation and a suffix for either
low, mid or high. Thus, the setting with 200 Neurons is called NU H.

Characteristic ACE IC20 IC50 HOTE20 HOTE50

ST Defaults 0.8626 0.2028 0.1409 0.7832 0.7761

NU L 50 neurons 0.8519 0.0834 0.0616 0.6310 0.6186

NU H 200 neurons 0.9504 0.2586 0.1038 0.9552 0.9553

LA L [1, 10) ms + RP latency 0.8652 0.0219 0.0138 0.5579 0.5546

LA H [25, 50) ms + RP latency 0.8135 0.2500 0.1430 0.8126 0.8119

CO L 5o/oo connections 0.8850 0.2656 0.1620 0.8738 0.8739

CO H 2% connections 0.8086 0.0406 0.0317 0.5952 0.5894

DE L [2, 5) ms delay 0.7598 0.2770 0.1528 0.7671 0.7670

DE H [9, 120) ms delay 0.1334 0.1687 0.1053 0.1505 0.3669

NO M +[0, 3) ms noise 0.7838 0.2248 0.1225 0.7246 0.7224

NO H +[0, 5) ms noise 0.8518 0.2246 0.1021 0.8322 0.8309

4.3 Computational Complexity

To provide a computational run time complexity bound of ACE, let N denote the
number of neurons, M the number of spikes over all neurons, and B the number
of bins used in the histogram. ACE’s first step is estimating the refractory period
RP and firing rate λ for each neuron by iterating once over all its spikes, suming
up to O(M) constant time operations for all neurons. Second, for each neuron’s
bin the frequencies according to its null model are computed, resulting overall
in O(N · B). Third, the histograms of all neurons are updated after each spike,
requiring to insert the observed delay into the corresponding bin. Using a k-
d-tree, this requires overall O(M · N · log(B)). Fourth, the χ2-test statistic is
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computed and tested for each pair of neurons, requiring O(N2 · B) operations.
The last two steps dominate, giving an overall complexity of O(M · N · log(B))
or O(N2 ·B), respectively. In practice, the third step might be the bottleneck, as
the number of spikes depends on the number of neurons, i.e., M > N , and the
number of bins is small (e.g., B = 100). In contrast, HOTE’s time complexity is
O(N2 ·(F ·D ·R+2R)), with firing rate F , recording duration after discretisation
D, and R being the total order (k + l + 1) used in the calculations. IC’s time
complexity is O(N2 ·T +N2 · log(N)), with T as number of considered time lags.

Fig. 2. Runtime over data sets with
varying number of neurons.

Fig. 3. AUPRC scores of ACE with vary-
ing bin sizes on the ST dataset.

Figure 2 shows the empirical runtime2 of all strategies according to the num-
ber of neurons in the data set. Those runtimes are obtained by creating datasets
that duplicate the spike trains from NE L and evaluating them 10 times. One
can see that ACE is the fastest. IC20 and IC50 only differ slightly in runtime.
HOTE20’s runtimes are higher than the ones from IC20 and IC50 for N ≤ 300.
The number of bins affects HOTE’s runtime, making HOTE50 the slowest.

5 Conclusion

This paper proposed ACE for detecting correlated, but delayed event patterns in
streams, e.g., for detecting delayed connectivity of neurons. Using a null model
for the distribution of inter-spike delays of uncorrelated neurons, ACE employs
principles from hypothesis testing. Against this null-distribution, the distribution
of observed inter-spike delays is compared using a Pearson’s χ2 test statistic.

In an experimental evaluation, this algorithm was compared against recently
proposed approaches based on inverse covariance and higher order transfer
entropy, on data sets with varying characteristics based on our own data gen-
erator. On all data sets, ACE is faster and performs comparable or better in
terms of AUPRC, F1 and AUROC (see [KKP20]) score, except for networks
with very long inter-spike delays that interfere with uncorrelated spike activity.
In particular, ACE performs also better on the publicly available, state-of-the-
art benchmark data generator with realistic spike characteristics. ACE has only
2 Experiments were performed using a Intel(R) Core(TM) i7-6820HK CPU @

2.70 GHz, 16 GB RAM.
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two parameters, both being very robust and transferable between data sets of
similar characteristic. ACE is fast and flexible, allowing to detect connections
with a priori unknown, non-discrete delays, that might vary in length between
connections. Furthermore, due to its incremental nature, ACE has potential for
being used in online processing.
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