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Abstract. Many code smell detection techniques and tools have been
proposed, mainly aiming to eliminate design flaws and improve software
quality. Most of them are based on heuristics which rely on a set of
software metrics and corresponding threshold values. Those techniques
and tools suffer from subjectivity issues, discordant results among the
tools, and the reliability of the thresholds. To mitigate these problems, we
used machine learning to automate developers’ perception in code smells
detection. Different from other existing machine learning used in code
smell detection we trained our models with an extensive dataset based
on more than 3000 professional reviews on 518 open source projects. We
conclude by an empirical evaluation of the performance of the machine
learning approach against PMD, a widely used metric-based code smell
detection tool for Java. The experimental results show that the machine
learning approach outperforms the PMD classifier in all evaluations.
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1 Introduction

Code smells are properties of the source code that may indicate either flaws
in its design or some poor implementation choices. Differently from a bug, a
code smell does not necessarily affect the technical correctness of a program,
but rather it may be a symptom of a bad design pattern affecting the quality of
a software system. Also, the experimental evaluation shows a direct correlation
between code smells and software evolution issues, design vulnerabilities, and
software failure in the long run [6,25,30]. Even in well-managed and designed
projects, code smells could be inadvertently added into the code by inexperienced
developers, and as such it is very important to detect them early in the design
process [18,28].

Typically, code refactoring is a solution to the design problem coming from
code smells [10,11]. Due to the subjectivity of their definition, detection of code
smells, and the associated refactoring, are non-trivial tasks. The manual detec-
tion process requires tremendous efforts and is infeasible for large-scale software.
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Commonly used automated approaches in tools and academic prototypes are
search-based, metric-based, symptom-based, visualization-based, probabilistic-
based, and machine learning [2,13,24]. The metric-based approach defines code
smells systematically using a fixed set of metrics and corresponding threshold
values. It is the most commonly used approach in both open-source and com-
mercial tools and the idea has been adopted for more than a decade. The major
problems of the metric-based approach are: (1) matching subjective perception
of developers who often perceive code smells differently than the metrics classi-
fication and (2) reliability of the threshold values. Currently, many well-known
code smell detectors adopt the metrics and their threshold values from Lanza
and Marinescu’s work [15] in 2006 as reference points. However, finding the
best-fit threshold values for a certain type of code smell requires significant
efforts on data collection and calibration. For example, Lanza and Marinescu’s
analysis [15] is based on their manual review of few dozen mid-size projects.
Moreover, the concept of code smells was introduced and cataloged more than
20 years ago. During this period, programming languages have been evolving
to today’s modern programming language which comprises both functional and
advanced object-oriented features. To obtain more reliable code smell detection
results, human perceptions on design issues should be integrated into an auto-
mated analysis. Machine learning is one of the promising solutions for this case
because it enables a machine to mimic the intelligence and capabilities of humans
to perform many functions.

Following this direction, we define the following research questions:

– RQ1: Can we mimic a developer’s perception of a code smell?
– RQ2: How does machine learning perform when comparing to existing tools?

We use a large dataset of industry projects reviewed by developers [17], we clean
and prepare the data so to be utilized in training a machine learning model, and
finally, we compare the results with those coming from a modern tool using a
metric-based approach. This includes the validation of the two approaches con-
cerning the perception by human experts. We make the dataset publicly available
on OpenML [29]. Each of the above steps can be considered as a contribution to
our work on its own. From the experimental results, we can conclude a better
performance of the machine learning approach for code smells detection, com-
pared to the tools based on static rules.

2 Related Work

While there is no general agreement on the definition of code smells or of their
symptoms, many approaches have been introduced in the literature to automate
code smell identification. There exist both commercial and open-source tools.
Detection approaches can be classified from guided manual inspection to fully
automated: manual, symptom-based, metric-based, probabilistic, visualization-
based, search-based, and cooperative-based [12]. The metric-based approach is
the most used technique in both research and tools. In this case, the generic code
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smell identification process involves source code analysis and matching the exam-
ining source code to the code smell definition and specification by using specific
software metrics [24]. Object-oriented metrics suite [4] and their threshold values
are commonly used in the detection process. The accuracy of the metric-based
approach depends on (i) the metric selection, (ii) choosing the right threshold
values, and (iii) on their interpretation.

In recent years, many studies adopted artificial intelligence and machine
learning algorithms for code smell identification [27], classification [5,8,13,16],
and prioritization [9,20]. Machine learning techniques provide a suitable alter-
native to detect code smells without human intervention and errors, solving the
difficulty in finding threshold values of metrics for identification of bad smells,
lack of consistency between different identification techniques, and developers’
subjectiveness in identifying code smells. Those techniques differ in the type of
code smell detected, the algorithms used, the size of the dataset used for training,
and the evaluation approaches and performance metrics.

Originally, Kreimer [14] proposed a prediction model based on decision trees
and software metrics to detect blobs and long methods in Java code. The results
were evaluated experimentally with regard to accuracy. The efficiency in using
decision trees has been confirmed in mid-size open-source software projects [1].
For an extensive review of the existing approaches and their comparison, we
refer the reader to [13].

Two closest works to ours are [8] and [5]. They both applied machine learning
techniques to detect data class, blob, feature envy, and long method. In [8]
the results of 16 supervised machine learning algorithms were evaluated and
compared using 74 software systems from Qualitas Corpus. A large set of object-
oriented metrics were extracted and computed from this training data by using
deterministic rules in the sampling and manual labeling process. Labeling results
were confirmed by master students. Due to their limited software engineering
experience, relying on them can be considered a limitation of this work. The
authors of [5] repeated the work of the authors of [8] to reveal critical limitations.
In contrast, our work is based on a dataset constructed by more than 3000
reviews by human experts on more than 500 mid- to large-size software projects.

3 Dataset Construction and Pre-processing

To conduct our empirical study, we need to collect (1) data or a reliable and
up-to-date dataset reporting human perceptions on a set of code smells that
is large enough to train a machine learning model, and (2) software metrics of
the software projects matching to (1). To achieve this, we first surveyed exist-
ing datasets and discussed with their contributors the scientific definitions and
data collection process. From this study, we selected the dataset that fitted our
requirements best. Finally, we used the selected dataset to define (1) a set of
software projects, (2) the types of code smells we were interested in and their
corresponding detectors, and (3) a set of software metrics to be extracted from
the set of software projects.
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The MLCQ Dataset. Madeyski and Lewowski contributed the MLCQ data set
which contains industry-relevant code smells with severity levels, links to code
samples, the location of each code smell in the Java project, and background
information of the experts [17]. More specifically, they collaborated with 26 pro-
fessional software developers to review the code samples with regard to four
types of code smells both at class and function levels: blob, data class, feature
envy, and long method. The reviews are based on four severity levels, i.e., criti-
cal, major, minor, and none. The none severity level is assigned to a code sample
when the expert does not consider it as a code smell, i.e., a negative result. If
however the sample is marked by any of the other severity levels then the sample
should be considered as a positive result and thus as a code smell. In summary,
the samples contain 984, 1057, 454, and 806 positive cases of blob, data class,
feature envy, and long method, respectively. For negative results, 3092, 3012,
2883, and 2556 samples are available. The MLCQ dataset captures the contem-
porary understanding of professional developers towards code smells from 524
active Java open-source projects. This improves on other existing datasets that
either rely on graduate and undergraduate students to collect and review soft-
ware projects or use automatic code smell detectors tools that impose threshold
values from legacy literature, to identify certain types of code smells. However,
MLCQ is not ready to be used for our research as it does not provide any soft-
ware metric of the code samples and software projects. Therefore, we expanded
the dataset accordingly. Furthermore, since there are 14,853 reviews on 4,770
code samples, it is often more than one expert review on the same code samples.
We thus needed to pre-process the dataset. Next, we describe this step.

Pre-processing and Code Smell Selection. Expert reviewers can disagree
on the interpretation of a code smell on a given code sample, in particular to the
severity levels assigned to it. To combine the multiple reviews on a code sample
to a single result, we need to ensure the validity of the results. In other words, the
combined result must stay positive when the majority of the reviewers did not
evaluate the severity level of the code sample as none. Likewise, the combined
results must be negative if the majority assigned none to the sample. Thus,
we mapped the severity level of a review to a corresponding numerical severity
score (critical = 3, major = 2, minor = 1, none = 0), and calculated the average
severity score for each code sample. The result of the last step can be considered
as the average review score. If the experts agree on the definition of a code smell
but they have different opinions for the severity level, the approach still can
identify which sample is a certain type of code smells and which is not.

Table 1 presents the distribution of the number of reviews together with the
average of the average review score and standard deviation calculated for each
group of reviews separately. Surprisingly, for blob and data class, the review
results have no significant difference. However, when considering long method
and feature envy, we noticed a considerable disagreement on the reviews. For
blob, the variation is mostly within one category, either in critical to major
(occurring in one sample with 6 reviews) or in minor to none (as we see in
the cases of 3 to 5 reviews per sample). A similar situation happens when we
consider the data class. In case of feature envy, however, when there are four
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Table 1. Distribution of the number of reviews (first column). Per code smell, we
show for each encountered number of reviewers, the average of the average review
score (ARS) that was granted, as well as the average standard deviation (calculated
across standard deviations per code sample).

Rev. Blob Data class Feature envy Long method

No. of

Samp.

Average

ARS± Std

No. of

Samp.

Average

ARS± Std

No. of

Samp.

Average

ARS± Std

No. of

Samp.

Average

ARS± Std

1 1562 0.00 ± 0.00 1566 0.00 ± 0.00 1954 0.00 ± 0.00 1967 0.00 ± 0.02

2 147 0.88 ± 0.12 147 0.49 ± 0.00 82 0.20 ± 0.16 162 0.68 ± 1.16

3 409 0.50 ± 0.70 411 0.66 ± 0.69 303 0.43 ± 0.73 302 0.00 ± 0.31

4 198 0.66 ± 0.84 196 0.79 ± 0.79 70 0.73 ± 0.97 73 0.96 ± 1.96

5 39 0.73 ± 0.88 39 0.87 ± 0.88 6 0.53 ± 0.87 7 0.97 ± 2.20

6 1 2.33 ± 0.52 1 0.00 ± 0.00 0 N/A 0 N/A

reviews for a sample, the combined severity score has a variation from none to
major, which indicates a diversity of reviewers’ opinions. This is not an incident,
as the numbers in the table refers to 70 samples. The situation for the long
method is even worse. There are 73 code samples with four reviews, leading to
an average of the average review score of 0.96 with a standard deviation of 1.96.
There are 7 code samples with 5 reviewers, having an average of the average
review score of 0.97 and standard deviation of 2.20. The high average standard
deviation in these two cases reveal a more spread out disagreement among the
human experts. Therefore, we decided to omit feature envy and long method
from our experiments.

Selecting Code Smell Detectors. Among all the popular tools in the litera-
ture [7,19,24], we selected PMD [22] because it is an active source code analyzer
that can automatically analyze a Java project to identify our targeted code
smells and also long method, by using metrics and threshold values. By explor-
ing PMD’s documentation, relevant sets of Java rules, and PMD source code, we
found that the latest version of PMD (6.35.0) available at the time of writing this
paper still adopts metrics and threshold values from [15]. Therefore, we decided
to use PMD as a representative of metric-based code smell detectors based on
threshold values from legacy literature to describe the characteristics of a class
containing a particular code smell.

PMD detects blobs by using the following metrics: weighted method count
(WMC), access to foreign data (AFTD), and tight class cohesion (TCC) [22].
PMD detects data classes by using the following metrics: weight of class (WOC),
number of public attributes (NOPA), number of accessor methods (NOAM),
and WMC are employed to identify a sign of encapsulation violation, poor data
behavior proximity, and strong coupling [22]. For long method, PMD uses 100
lines of code as a default threshold value to indicate excessive method length [22].
We could not find out on what study this value is based on. However, to the
best of our knowledge, there seems not to be a common agreement on threshold
values for long methods. According to the MLCQ dataset, the average length of
code samples identified as a long method is 20.7 lines, a threshold much lower
than the one used in PMD.
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Table 2. Performance of PMD methods against code smells determined by human
experts. The assessment of the human expert was labelled as code smell if the average
review was higher than 0.75.

Code smells TP TN FP FN Precision Recall F1-score

Blob 111 1822 207 186 0.349 0.374 0.361

Data class 80 1987 46 217 0.635 0.269 0.378

Long method 80 1830 326 166 0.197 0.325 0.245

As a preliminary experiment, we deploy the results from PMD on the classes
evaluated in the MLCQ dataset. As such, we compared the detection results
against the average review score we calculated from the MLCQ dataset. Because
there are a few archives of Java projects in the MLCQ datasets that are either
corrupted or no longer exist, we could only analyze and compare 518 projects
in total. These can be considered as a baseline of the contemporary understand-
ing of professional developers. Table 2 presents the comparison results in terms
of the number of true positive (TP), true negative (TN), false positive (FP),
false negative (FN), as well as precision, recall, and F1-Score.

From the comparison results, we can see that the metric-based approach is far
from being accurate when considering human experts’ perceptions of code smells.
The only exception is perhaps the precision of data class (with a poor recall),
but we will see later that even in this case, the machine learning approach will
perform better. Note that the precision scores are the lowest for long method,
indicating the discrepancy between the threshold value set by PMD and the
much lower perceived average value calculated from the expert reviews.

Collecting the Software Metrics. In order to deploy machine learning models
to detect code smells, we need to extract metrics from each code file. PMD is a
metric-based code smell detector, and the API allows us to extract the metrics
it calculates, which turns out to be a good starting point. When we employed
PMD to analyze the 518 Java open-source projects, PMD presented the code
smell identification results with the corresponding metrics. However, PMD does
not provide any metric information for the healthy classes and methods as well
as their locations in the project. In other words, PMD only provides positive
cases with a set of metrics and identified locations. To obtain the negative cases,
we customized PMD to present relevant metric information for every path PMD
traversed. For instance, when the customized PMD is run and the GodClass rule
(for detecting the code smell blob) for a Java program is called, WMC, AFTD,
and TCC are calculated for the examining class. Note that there are cases when
TCC cannot be calculated, e.g., there is no violation of a certain rule. In which
case, PMD presents NaN as the metric value.

Additionally, we employed the Understand tool by SciTools [26] version 6.0
(build 1055) to analyzed the 518 Java projects. Understand is static code anal-
ysis and code visualization tool that can analyze 60 metrics for Java, project
structure, and relationships among files, classes, functions, and variables. The
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metrics calculated by Understand also cover the CK metrics suite [4]. As a result,
we constructed another set of data containing a wide variety of metrics and a
very detailed program structure.

4 Empirical Study Definition and Evaluation

Generally, these machine learning models are induced based on a dataset D =
{(xj , yj) | j = 1, . . . , n} with n datapoints to map an input x to output f(x),
which closely represents y. In this setting, xi is typically the vector of numerical
features F(C) from some code block C. To deploy a machine learning classifier on
the task of predicting whether a certain piece of code is considered code smell, we
need to have a notion of ground truth (labels) and some features that describe
labeled pieces of code. The human expert described per class that was inspected
whether it is considered to be a certain type of code smell or not, representing
our n data points, and for each of these we now have label yj (human expert
assessment). The main challenge is representing a piece of code C as feature
vector F(C). For this, we will use two sources of features: features extracted by
PMD and features extracted by the Understand tool.

Although both Understand and the human experts report a fully-qualified
Java name (which can also be at a subclass in a specific file), PMD uses a
different convention. Although PMD is also capable of reporting at (sub-)class
level, it does not report the fully-qualified Java name, meaning that ambiguities
can arise with duplicated class names, when automatically making the mapping
with the class labels. We solve this by predicting code smells at the file level,
rather than at the class level. As such, we have more observations in our dataset
than actual observations from the human expert dataset. For each class in which
a code smell was detected, we now need to study all subclasses as well. If in either
of these a code smell was detected, we consider this file a positive case.

We are confronted with the following design choice. The human experts have
graded the code smell severity with four levels, i.e., none, minor, major and
critical. Additionally, since some code pieces were judged by multiple reviewers,
we have a broad range of severity levels. If we were to employ a binary classifier,
we have to decide from which severity level we consider a piece of code a positive
class (code smell). As such, we have to determine a severity threshold. To avoid
subjectivity, we run the experiment with various ranges of severity. The cate-
gorical assessments of the human experts are averaged as described in Sect. 3,
such that severity levels around 0 correspond to a negative class, severity levels
around 1 correspond to minor code smell, severity levels around 2 correspond to
major code smell, and severity levels around 3 correspond to critical code smell.
As such, the assumption is that when increasing the severity threshold, detect-
ing the code smell should become easier for the machine learning approach. We
ran the experiment several times, with each severity threshold ranging from 0.25
until 2.50 with intervals of 0.25.
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(a) Acc. Blob (b) Prec. Blob (c) Acc. Data class (d) Prec. Data class

Fig. 1. Results of various machine learning classifiers on prediction whether a certain
file has a code smell of the indicated type, where Acc. is accuracy and Prec. is precision.

5 Results and Discussion

We compared the performance of the machine learning approach in identifying
the code smell based on the ground truth decided by human experts. Although
we could use any model, we show decision tree [23] and random forest [3], as these
both have a good trade-off between performance and interpretability. Both are
used as implemented in Scikit-learn [21]. Additionally, we also show the major-
ity class classifier. As most important baseline, we employ the PMD classifier.
Indeed, the PMD classifier can also identify code smell based on its own decision
rules, and this can be evaluated against the ground truth set by human experts.
Note that the PMD classifier is a set of static decision rules, whereas the machine
learning models learn these patterns based on the data. Per figure, we show a
different performance measure: accuracy and precision. For the majority class
classifier we only show accuracy, as it fails to identify any positive class.

Figure 1a and b show the results for blob. The x-axis shows the severity
threshold at which a certain experiment was run, and the y-axis shows the perfor-
mance of the given experiment. As can be seen, the machine learning approaches
outperform both baselines in terms of accuracy and precision. Also in terms of
recall, the machine learning models are better than the PMD classifier for most
of the severity thresholds (figures omitted). It seems that the random forest has
a slight edge over the decision tree classifier, and also focuses slightly more on
precision.

For data class, the results in Fig. 1c and d confirm that the machine learning
techniques have superior accuracy and precision. Altogether, the results seem to
indicate that the machine learning techniques are capable of better identifying
blob and data class than the static PMD rules.

6 Conclusion and Future Directions

This research intends to mimic contemporary developer’s perception of code
smell to machine learning and support automated analysis. More specifically,
our first research question was ‘Can we mimic a developer’s perception of a code
smell?’

To this aim, we investigated which data we could leverage for building a
machine learning classifier. A recent and reliable dataset containing code smells
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and developers’ perceptions of the design flaws are crucial for this. MLCQ con-
tains four types of code smell, due to constraints with other tools we could use
two (data class and blob) for this research. This provides for a wide number of
classes information whether a developer considers it a code smell or not. As such,
we can employ a binary classifier. We enriched this dataset by automatically
extracted metrics from two common tools, i.e., Understand and PMD. These
features enable us to train machine learning models on the data and make the
machine learning model detect code smells. The machine learning models were
able to outperform a majority class baseline on all settings.

The second research question was ‘How does machine learning perform when
comparing to existing tools?’ We compared this machine learning model to PMD,
a static metric-based code smell detection tool. We employed both the random
forest and decision tree classifier, in settings that had to classify code smells from
various severity levels. We measured both accuracy and precision. The results
indicate that the machine learning-based models outperform the metric-based
tool for both code smells.

Finally, we also make the dataset derived from MLCQ and developed in
this research publicly available on OpenML [29]. The dataset would elevate and
support advanced studies in the research areas.
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