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Abstract. The need for learning from unlabeled data is increasing in
contemporary machine learning. Methods for unsupervised feature rank-
ing, which identify the most important features in such data are thus
gaining attention, and so are their applications in studying high through-
put biological experiments or user bases for recommender systems. We
propose FRANe (Feature Ranking via Attribute Networks), an unsuper-
vised algorithm capable of finding key features in given unlabeled data
set. FRANe is based on ideas from network reconstruction and network
analysis. FRANe performs better than state-of-the-art competitors, as we
empirically demonstrate on a large collection of benchmarks. Moreover,
we provide the time complexity analysis of FRANe further demonstrat-
ing its scalability. Finally, FRANe offers as the result the interpretable
relational structures used to derive the feature importances.

Keywords: feature ranking · feature selection · unsupervised learning ·
attribute networks · PageRank.

1 Introduction

Increasing amounts of high-dimensional data, in fields such as molecular and
systems’ biology, require development of fast and scalable feature ranking al-
gorithms [14]. By being able to prioritize the feature space with respect to
a given target, feature ranking algorithms already offer, e.g., novel biomarker
candidates. However, the amount of available labeled data is potentially much
smaller when compared to the amount of unlabeled data, which remains largely
unexploited. In response, unsupervised feature ranking algorithms (that operate
only on unlabeled data) are actively developed.

We propose FRANe, a Feature Ranking approach based on Attribute Networks),
schematically shown in Fig. 1. FRANe achieves state-of-the-art performance by
exploiting data-derived relations between the features (which form an undirected
weighted graph). The contributions of this work are manifold, and can be sum-
marized as follows:
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Fig. 1: Overview of the FRANe method.

1. We propose FRANe, a fast algorithm for unsupervised feature ranking based
on reconstructing attribute networks and subsequent node ranking.

2. We demonstrate the algorithm’s state-of-the-art performance on 26 datasets,
validating our claims via Bayesian and classical performance analysis.

3. We present an extensive theoretical analysis of the proposed algorithm.

4. We offer an implementation of FRANe as a simple-to-use, freely available
Python library, which also includes other baseline approaches.

The remainder of this work is structured as follows. In Section 2, we discuss
the related work that has led us to propose FRANe. We describe the proposed
method in Section 3. Next, we discuss the experimental setup (Section 4), fol-
lowed by our results (Section 5) and conclusions (Section 6).

2 Related Work

Unsupervised feature ranking is a relatively new research endeavor. An overview
of unsupervised ranking algorithms [13] was published only recently. Some of
the currently well-established methods for unsupervised feature ranking include:
Laplace [8], MCFS, and NDFS. All of them construct a network of instances
by employing an instance similarity measure. Finally, recent work – awarded the
best paper award at ECML PKDD 2019 – uses autoencoder [7]: the AgnoS-S
algorithm gives feature ranking scores as a parameter vector at the early stages
of a neural network, which learns to reconstruct the input space and assigns each
input variable a score as a side-result.

Apart from the unsupervised feature ranking literature, we also draw inspi-
ration from the literature on network reconstruction and its applications in gene
expression analysis [12,9,5]. Network reconstruction derives a network from a
tabular data set, so that relations between instances (rows) or features (columns)
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are identified, maintained, and used for a given down-stream task. Once a tab-
ular data set is converted to a network (graph), various centrality measures can
be used to determine the centrality of the nodes in the network. Our method
uses PageRank centrality measure [11] and its generalization to weighted graphs.
While we use it in the unsupervised fashion (somewhat similarly to [16]), it can
be also used in the supervised scenario [1].

3 Method

Real data often consists of groups of similar features. Intuitively, each such group
has a representative feature that is most similar to all others. This feature can
be expected to predict the values of the other features in the group reasonably
well, making the others redundant. Thus, the most central features are poten-
tially good candidates for a set of features that a feature selection algorithm
would return. When the number of features in the data goes into thousands
and more, it is expected that many of them are effectively random noise or
completely redundant. The corresponding noisy weights could prevent discov-
ering the wanted centrality values: We therefore introduce a minimal weight
threshold and only connect the features that are similar enough.

It is not clear in advance which threshold value is the best. Therefore, we
try out a set of candidate thresholds, following geometric threshold progression
and ranging from the minimal to the maximal edge weight. We calculate the
centrality (feature importance) values from the corresponding graphs, and obtain
a set of feature rankings. Among those, we choose the one that maximizes the
heuristic that is based on the intuition that the feature importance values in a
good ranking have a large spread. Rankings obtained with low thresholds are
expected to be similar, whereas small increases of high thresholds can cause large
changes in the rankings. Sets of candidate thresholds with few low thresholds
and many large ones, e.g., the geometric threshold sequence, are expected to
give good results.

3.1 Algorithm

Let X = [xi,j ]i,j ∈ Rm×n be a data set, where m is the number of examples and
n is the number of features. The i-th example (row in the matrix X), 1 ≤ i ≤ m,
is given as xi = [xi,1, . . . , xi,n]. The j-th feature, 1 ≤ j ≤ n, is given as a feature
vector (column in the matrix X) fj = [x1,j , . . . , xm,j ]

T .

The computation of FRANe is given in Alg. 1. At input, it takes the (training)
data X, a minimal edge threshold and the number of iterations I. First, it
computes the feature similarly matrix W = [wj,k] ∈ Rn×n. It then computes
the geometric sequence T of (edge-weight) thresholds as follows. First, we define
the set of similarities between different features W ′ = {wj,k | j 6= k}, together
with M ′ = max(W ′) and m′ = min(W ′). Then, the dissimilarity values D =
{M ′ − w|w ∈ W ′ ∧ w < M ′} are computed. Finally, the thresholds ti ∈ T are
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defined as T = [t1, . . . , tI ] where

ti = M ′ −min(D) ·
(

max(D)

min(D)

)(i−1)/(I−1)

(1)

The temporary resort to dissimilarities is necessary, because we want to analyze
the region of larger similarities more thoroughly. For every threshold ti ∈ T , we
build a weighted graph G(ti) with n vertices that correspond to features. An
edge with the weight wj,k between fj and fk exists in G(ti), if wj,k ≥ ti. To
avoid too sparse graphs, we consider only those, for which the average degree
ē = |{wj,k|j < k ∧ wj,k ≥ ti}|/n exceeds ēmin = 1.

We run a PageRank on the graph G(ti), which returns a possible ranking
r(ti) = [PR(f1), . . . ,PR(fn)], where PR(fj) is the PageRank importance PR (j)
of the node of feature fj in G(ti), as defined in [1,11]. After iterating through
all thresholds, calculating the rankings r(ti) for each ti ∈ T , we pick as output
the ranking with the highest value of the ranking quality heuristic RQH, where

RQH(r) =
second largest score in r

second smallest score in r
. (2)

The second largest and smallest scores are taken for stability reasons as the
medians of the three largest and smallest scores, respectively.

Algorithm 1: FRANe(X, ēmin, I)

1 W = compute [wj,k]nj,k=1 = [PearsonCorr(fj ,fk) + 1]nj,k=1 // wjk ≥ 0
2 S = [] // candidate rankings

3 T = list of I thresholds ti // Eq. (1)
4 for ti ∈ T do
5 ē = |{wj,k|j, k ∧ wj,k ≥ ti}|/n // Avoid sparse graphs

6 if ē ≥ ēmin then
7 r = PageRank(G(ti))
8 add r to S

9 return argmaxr∈S RQH(r) // Eq. (2)

The first step of the algorithm requires the computation of pairwise similari-
ties, yielding time complexity of O(mn2). Then, all the graphs G(ti) can be con-
structed in the total time of O(n2), if we start with a fully connected graph and
then incrementally remove the edges with the weights on the intervals [ti−1, ti).
Using the power method for PageRank and assuming that the number of it-
erations is upper-bounded with some constant [11], computing PageRank takes
O(n2) steps. Thus, the total number of steps in the algorithm is O(m·n2+I ·n2).
Note that the most time-consuming step (similarity computation) can be easily
parallelized, and that computing PageRank demands only vectorizable matrix-
vector multiplication and vector-vector addition.
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4 Experimental Setup

In this section, we describe the experimental procedure that we employ to inves-
tigate the following questions: i) How does FRANe compare to state-of-the-art
methods for unsupervised feature ranking, and ii) What is the influence of the
different parameters or FRANe on its performance?

We first give a brief description of the data sets used, continue with the
evaluation procedure and finish with the parametrization of the methods. Note
that the code that allows for replicating our experiments (including the
computation of training and testing splits) is freely available at https://github
.com/FRANe-team/FRANe-dev.

We obtained the data from the Scikit-feature repository [10]. We wanted
to use all the datasets, but had to exclude three data sets from the study
(orlraws10P, lung-small and warpAR10P) to meet the independence assump-
tions of the statistical tests. Table 1 gives a more detailed description of the
data, including their domains. When evaluating the feature ranking algorithms,

Table 1: Number of features (n), examples (m) and the domain of the used benchmarks.
n m domain n m domain

gli-85 22283 85 biology glioma 4434 50 biology
smk-can-187 19993 187 biology relathe 4322 1427 text data
cll-sub-111 11340 111 biology lymphoma 4026 96 biology
arcene 10000 200 mass spectrometry lung 3312 203 biology
pixraw10p 10000 100 face image pcmac 3289 1943 text data
nci9 9712 60 biology warppie10p 2420 210 face image
carcinom 9182 174 biology colon 2000 62 biology
allaml 7129 72 biology coil20 1024 1440 face image
leukemia 7070 72 biology orl 1024 400 face image
prostate-ge 5966 102 biology yale 1024 165 face image
tox-171 5748 171 biology isolet 617 1560 speech recognition
gisette 5000 7000 digit recognition madelon 500 2600 artificial
baseshock 4862 1993 text data usps 256 9298 drawings

we follow the approach of [7]. Here, an algorithm is evaluated via 10-fold cross-
validation. For a given partition of a data set into test part (one of the folds)
and train part (the remaining 9 folds), feature ranking is computed on the train
part. Then, the n′ top-ranked features are selected and the 5 nearest neighbor
(5NN) model that uses only these features for predicting the values of all the
features is trained (on the train part of the data). Finally, the performance of
the feature ranking algorithm is measured in terms of the predictive performance
of the 5NN model on the test set. As evaluation measure, we use the average

relative mean absolute error RMAE = 1
n

∑n
i=1

1
mTEST

∑mTEST

j=1
|x̂ij−xij |
σ(fi)

, where

mTEST is the number of examples in the test set, x̂ij is the 5NN’s prediction for

xij , and σ(fi) =
√

Var (fi) is the standard deviation of the feature fi. A low

https://github.com/FRANe-team/FRANe-dev
https://github.com/FRANe-team/FRANe-dev
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value of RMAE means that the subset of n′ chosen features can well reconstruct
all the feature values.

The obtained RMAE values are averaged over the 10 folds. To see how
the predictive performance of 5NN changes as more and more top-ranked fea-
tures are considered, one can build a series of 5NN models that use n′ ∈
{1, 2, . . . , 2k} ∪ {n}, where 2k ≤ n < 2k+1 features, as shown in Fig. 2. This
may be more informative, but is harder to analyze when comparing different al-
gorithms through statistical tests. For such comparisons, performance at n′ = 16
is chosen. The hierarchical Bayesian t-test considered in this work is discussed
in more detail in [2]. The test approximates the posterior probability of the dif-
ference in performance between a pair of classifiers. The posterior plot can be
visualized as a simplex, where each point represents a sample from the poste-
rior distribution. By counting such samples in different parts of the simplex, the
probability of one classifier outperforming the other is estimated.

The number of iterations in FRANe was set to I = 100 and the threshold
for the average number of edges was set to ēmin = 1. For the decay factor δ in
PageRank, the recommended value of δ = 0.85 was used. For other algorithms,
we used the recommended parameter values. Additionally, the number of clusters
for the methods MCFS and NDFST was set to the number of classes in the
datasets at hand. This was possible since we used classification datasets from
the Scikit-feature repository. The classes were otherwise ignored.

5 Results

In this section, we first report the results of the comparison between FRANe
and its competitors. We then focus on different parts of FRANe and consider
alternative design choices.

The RMAE values for the different feature ranking methods, i.e., the corre-
sponding 5NN models, are shown in Table 2. We can see that FRANe outper-
forms its competitors. First of all, it has the best average rank (1.88) among
the considered algorithms. The second best algorithm (in terms of the average
rank) is Laplace with an average rank of 2.54. The difference between FRANe
and the other algorithms is even more visible when we compare the numbers of
wins: FRANe is the best performing algorithm in 12 cases (46% win rate). The
second highest number of wins (5) is achieved by NDFS.

To also show some statistical evidence for the quality of the FRANe rankings,
we employ the Bayesian hierarchical t-test [2], since it directly answers which
of the two compared algorithms is better. The other popular option – frequen-
tist non-parametric tests such as Friedman and Bonferroni-Dunn [6] – allow for
comparison of more than one algorithm, but these tests are typically too weak
(as follows from their definitions [6]), and are harder to interpret.
The Bayesian comparison indicates that FRANe dominates its closest competitor
(Laplace), in 26% of the cases, whereas the Laplace method is better in only 2%
of the cases. In the other cases, the difference in performance is smaller than 0.001
and is considered practically insignificant. This is consistent with the results in
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Table 2: The performance (measured in terms of RMAE) of 5NN models that use the
n′ = 16 top-ranked features from a given feature ranking. The last two rows of the
table additionally give the average rank of each algorithm and its number of wins, i.e.,
the number of times it is ranked first. The best result in each row is shown in bold.

FRANe Laplace NDFS Agnos-S MCFS SPEC

gli-85 0.745 0.736 0.775 0.774 0.747 0.797
smk-can-187 0.610 0.612 0.62 0.656 0.626 0.597
cll-sub-111 0.716 0.738 0.736 0.763 0.77 0.777
arcene 0.759 0.457 0.457 0.734 0.457 0.733
pixraw10p 0.348 0.412 0.412 0.352 0.412 0.377
nci9 0.763 0.771 0.771 0.839 0.771 0.807
carcinom 0.719 0.739 0.751 0.743 0.717 0.743
allaml 0.711 0.726 0.747 0.775 0.744 0.749
leukemia 0.824 0.833 0.833 0.857 0.833 0.836
prostate-ge 0.485 0.503 0.482 0.552 0.509 0.649
tox-171 0.725 0.77 0.785 0.734 0.776 0.781
gisette 0.440 0.481 0.481 0.509 0.481 0.533
baseshock 0.174 0.188 0.163 0.182 0.191 0.197
glioma 0.609 0.643 0.636 0.716 0.615 0.685
relathe 0.182 0.174 0.183 0.284 0.187 0.218
lymphoma 0.774 0.873 0.873 0.804 0.873 0.873
lung 0.700 0.708 0.734 0.749 0.701 0.780
pcmac 0.156 0.147 0.160 0.168 0.147 0.163
warppie10p 0.370 0.526 0.526 0.316 0.526 0.526
colon 0.652 0.661 0.661 0.666 0.661 0.661
coil20 0.234 0.364 0.205 0.407 0.786 0.528
orl 0.572 0.703 0.703 0.479 0.703 0.703
yale 0.608 0.749 0.749 0.572 0.749 0.749
isolet 0.567 0.548 0.562 0.523 0.619 0.643
madelon 0.853 0.856 0.856 0.86 0.856 0.856
usps 0.371 0.338 0.283 0.337 0.422 0.394

average rank 1.88 2.54 2.88 4.04 3.19 4.42
number of wins 12 4 5 4 3 1

Table 2: the overall win-rate of FRANe is notably higher (12 against 4), even
though these two algorithms differ by less than one in average rank values. A
detailed (and more global) comparison of the rankings (where the number of
chosen features varies from 1 to n) on Gisette data set is given in Fig. 2. It is
clear that the FRANe rankings are the best as its corresponding curve is below
the curves of all other rankings.
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Fig. 2: Error curves for the different rankings on Gisette dataset.

5.1 Alternative Design Choices

After we have proved that FRANe offers state-of-the-art performance, we now
investigate the sensitivity of its performance to varying its key components.
Due to space constraints, we only vary the similarity measure used in the com-
putation of the matrix W , the threshold progression that defines the list of
edge-weight thresholds T , and the ranking quality heuristic RQH, while the
node-centrality measure is left fixed (PageRank), and left for further work. We
first give a brief description of the considered threshold progressions and similar-
ity measures between different features W ′ = {wj,k | j 6= k}, with m′ = minW ′,
and M ′ = maxW ′.

Similarity measures. Let fj = [x1,j , . . . , xm,j ],fk = [x1,k, . . . , xm,k] ∈ Rm be two
feature vectors. Besides correlation, other similarity measures can be used. They

are all based on different distance measures d(fj ,fk): i) Canberra (
∑m
i=1

|xi,k−xi,j |
|xi,j |+|xi,k| ,

ii) Chebyshev (maxmi=1 |xi,k − xi,j |), iii) Manhattan (
∑m
i=1 |xi,k − xi,j |), and

iv) Euclidean (
(∑m

i=1 |xi,k − xi,j |2
)1/2

). The corresponding similarity measures
are defined as sim(fjfk) = M ′ − d(fjfk).

Threshold functions. The definition of the thresholds ti from Eq. (1) originally
follows the geometric progression. The alternatives are: i) Linear(m′,M ′), ii)
Linear(mean(W ′),M ′), iii) Linear(median(W ′),M ′), and iv) Quantile, where
ti = i-th I-quantile of W ′’s for the latter, and ti = b−a

I−1 (i−1)+a for Linear(a, b).
The motivation for using linear progression that starts at the mean (or its more
stable analogue the median) of theW ′ values is that, intuitively, larger thresholds
are more interesting to analyze, since the corresponding graphs are sparser.

The results (see Fig. 3) show that FRANe is quite robust with respect to
the chosen threshold progression and to the chosen similarity measure. Except
for the correlation similarity (works best for 10/26 data sets), and the geometric
threshold progression (works best in 9/26 cases), all the similarity measures
and threshold progressions perform approximately equally well. Still, no fixed
(progression, similarity) pair has more than 3 wins. The detailed results are
available at https://github.com/FRANe-team/FRANe). They also include the
experiments with RQH, where we show that RQH outperforms random search
(in 22/26 cases), which is often considered a strong baseline in optimization [3].

https://github.com/FRANe-team/FRANe
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Fig. 3: Average ranks (over datasets) of different combinations similarity metric
- threshold progression. The legend denotes the average rank of a given metric-
progression combination (the lower, the better).

6 Conclusion

In this work we have presented FRANe, an algorithm for network-based unsu-
pervised feature ranking. In contrast to existing approaches, FRANe attempts
to reconstruct a representative network of features. By ranking nodes in this
network via the efficient PageRank approach, we achieve state-of-the-art results
for the task of unsupervised feature ranking.

The results indicate that the proposed unsupervised ranking algorithm is
indeed a strong competitor to the existing approaches. Theoretical analysis in-
dicates the O(n2) complexity of the distance computation as one of the main
bottlenecks. The current implementation of FRANe, however, exploits highly op-
timized compiled routines and scales seamlessly for each of the considered data
sets. An extension which would reduce the quadratic complexity could include
random subspace sampling (where the probability of choosing a feature depends
on its variance).

The proposed methodology is suitable from the interpretability point of view,
as the key nodes (features) and their, e.g., correlation-based neighborhoods are
easily inspected. This can potentially offer novel insights into key parts of the
feature space governing a given data set’s structure.

Given that the main spatial bottleneck is related directly to computation
of PageRank scores (maintaining the graph in the memory), we believe that
an option for further scalability could potentially include distributed storage-
based matrix operations [4,15], which would facilitate ranking of attributes when
considering very large data sets.

As further work, we believe that distances between features could be also
computed in latent space, where embeddings of features would be first obtained
(via the transposed feature matrix), potentially speeding up the correlation com-
putation, as well as providing more robust rankings. Furthermore, the body of
work related to metric learning could similarly prove useful when determining
the most suitable similarity score.
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