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Abstract. We propose an automated method for proving termination
of π-calculus processes, based on a reduction to termination of sequential
programs: we translate a π-calculus process to a sequential program, so
that the termination of the latter implies that of the former. We can then
use an off-the-shelf termination verification tool to check termination of
the sequential program. Our approach has been partially inspired by
Deng and Sangiorgi’s termination analysis for the π-calculus, and checks
that there is no infinite chain of communications on replicated input
channels, by converting such a chain of communications to a chain of
recursive function calls in the target sequential program. We have imple-
mented an automated tool based on the proposed method and confirmed
its effectiveness.

1 Introduction

We propose a fully automated method for proving termination of π-calculus
processes. Although there have been a lot of studies on termination analysis for
the π-calculus and related calculi [13,11,26,19,29,12,28], most of them have been
rather theoretical, and there have been surprisingly little efforts in developing
fully automated termination verification methods and tools based on them. To
our knowledge, Kobayashi’s TyPiCal [18,19] is the only exception that can
prove termination of π-calculus processes (extended with natural numbers) fully
automatically, but its termination analysis is quite limited (see Section 6).

Our method is based on a reduction to termination analysis for sequential
programs: we translate a π-calculus process P to a sequential program SP ,
so that if SP is terminating, so is P . The reduction allows us to use pow-
erful, mature methods and tools for termination analysis of sequential pro-
grams [17,14,24,21,7].

The idea of the translation is to convert a chain of communications on repli-
cated input channels to a chain of recursive function calls of the target sequential
program. Let us consider the following Fibonacci process:

∗ fib?(n, r).if n < 2 then r!(1)

else (νs1)(νs2)(fib!(n− 1, s1) | fib!(n− 2, s2) | s1?(x).s2?(y).r!(x + y))

| fib!(m, r)
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Here, the process ∗fib?(n, r). . . . is a function server that computes the n-th
Fibonacci number in parallel and returns the result to r, and fib!(m; r) sends a
request for computing the m-th Fibonacci number; those who are not familiar
with the syntax of the π-calculus may wish to consult Section 2 first. To prove
that the process above is terminating for any integer m, it suffices to show that
there is no infinite chain of communications on fib:

fib(m, r) → fib(m1, r1) → fib(m2, r2) → · · · .

We convert the process above to the following program:3

let rec fib(n) = if n<2 then () else (fib(n-1) [] fib(n-2)) in

fib(m)

Here, [] represents the non-deterministic choice. Note that, although the calcu-
lation of Fibonacci numbers is not preserved, for each chain of communications
on fib, there is a corresponding sequence of recursive calls:

fib(m) → fib(m1) → fib(m2) → · · · .

Thus, the termination of the sequential program above implies the termination
of the original process. As shown in the example above, (i) each communication
on a replicated input channel is converted to a function call, (ii) each commu-
nication on a non-replicated input channel is just removed (or, in the actual
translation, replaced by a call of a trivial function defined by f(x̃) = ( )), and
(iii) parallel composition is replaced by a non-deterministic choice. We formalize
the translation outlined above and prove its correctness.

The basic translation sketched above sometimes loses too much information.
For example, consider the following process:

∗ pred?(n, r).r!(n − 1)

| ∗f?(n, r).if n < 0 then r!(1) else (νs)(pred !(n, s) | s?(x).f !(x, r))

| f !(m, r)

The translation sketched above would yield:

let pred(n) = n-1 in

let rec f(n) = if n<0 then () else (pred(n) [] f(*)) in

f(m)

Here, * represents a non-deterministic integer: since we have removed the input
s?(x), we do not have information about the value of x. As a result, the sequential
program above is non-terminating, although the original process is terminating.
To remedy this problem, we also refine the basic translation above by using a
refinement type system for the π-calculus. Using the refinement type system, we
can infer that the value of x in the original process is less than n, so that we can
refine the definition of f to:

3 The actual translation given later is a little more complex.
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let rec f(n) = ... else (pred(n) [] let x=* in assume(x<n);f(x))

The target program is now terminating, from which we can deduce that the
original process is also terminating. We have implemented an automated tool
based on the refined translation above.

The contributions of this paper are summarized as follows.

– The formalization of the basic translation from the π-calculus (extended with
integers) to sequential programs, and a proof of its correctness.

– The formalization of a refined translation based on a refinement type system.
– An implementation of the refined translation, including automated refine-

ment type inference based on CHC solving, and experiments to evaluate the
effectiveness of our method.

The rest of this paper is structured as follows. Section 2 introduces the source
and target languages of our translation. Section 3 formalizes the basic transla-
tion, and proves its correctness. Section 4 refines the basic translation by using a
refinement type system. Section 5 reports an implementation and experiments.
Section 6 discusses related work, and Section 7 concludes the paper.

2 Source and Target Languages

This section introduces the source and target languages for our reduction. The
source language is the polyadic π-calculus [22] extended with integers and con-
ditional expressions, and the target language is a first-order functional language
with non-determinism.

2.1 π-Calculus

Syntax Below we assume a countable set of variables ranged over by x, y, z, w,. . .
and write Z for the set of integers, ranged over by i. We write ·̃ for (possibly
empty) finite sequences; for example, x̃ abbreviates a sequence x1, . . . , xn. We
write len(x̃) for the length of x̃ and ǫ for the empty sequence.

The sets of processes and simple expressions, ranged over by P and v respec-
tively, are defined inductively by:

P (processes) ::= 0 | x!(ṽ; w̃).P | x?(ỹ; z̃).P | ∗x?(ỹ; z̃).P | (P1 | P2) | (νx : κ)P

| if v then P1 else P2 | let x̃ = ⋆̃ in P

v (simple expressions) ::= x | i | op(ṽ)

The syntax of processes on the first line is fairly standard, except that the values
sent along each channel consist of two parts: ṽ for integers, and w̃ for channels;
this is for the sake of technical convenience in presenting the translation to
sequential programs. The process 0 denotes an inaction, x!(ṽ; w̃).P sends a tuple
(ṽ, w̃) along the channel x and behaves like P , and the process x?(ỹ; z̃).P receives
a tuple (ṽ, w̃) along the channel x, and behaves like [ṽ/ỹ, w̃/z̃]P . We often just
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write ṽ for ṽ; ǫ or ǫ; ṽ. The process ∗x?(ỹ; z̃).P represents infinitely many copies
of x?(ỹ; z̃).P running in parallel. The process P1 | P2 runs P1 and P2 in parallel,
and (νx :κ)P creates a fresh channel x of type κ (where types will be introduced
shortly) and behaves like P . The process if v then P1 else P2 executes P1 if the
value of v is non-zero, and P2 otherwise. The process let x̃ = ⋆̃ in P instantiates
the variables x̃ to some integer values in a non-deterministic manner, and then
behaves like P . The meta-variable op ranges over integer operations such as +
or ≤.

The free and bound variables are defined as usual. The only binders are
(νx : κ) (which binds x), let x̃ = ⋆̃ in (which binds x̃), x?(ỹ; z̃). and ∗x?(ỹ; z̃).
(which bind ỹ and z̃). Processes are identified up to renaming of bound variables,
and we implicitly apply α-conversions as necessary.

We write P → Q for the standard one-step reduction relation on processes.
The base cases of the communication are given by:

x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → [̃i/ỹ, w̃/z̃]P1 | P2

∗x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → ∗x?(ỹ; z̃).P1 | [̃i/ỹ, w̃/z̃]P1 | P2

provided that ṽ evaluates to ĩ. The full definition is given in Appendix A. We
say that a process P is terminating if there is no infinite reduction sequence
P → P1 → P2 → · · ·.

In the rest of the paper, we consider only well-typed processes. We write ι
for the type of integers. The set of channel types, ranged over by κ, is given by:

κ ::= chρ(ι̃; κ̃)

The type chρ(ι̃; κ̃) describes channels used for transmitting a tuple (ṽ; w̃) of
integers ṽ and channels w̃ of types κ̃. Below we will just write ι̃ for ι̃; ǫ and κ̃ for
ǫ; κ̃. The subscript ρ, called a region, is a symbol that abstracts channels; it is
used in the translation to sequential programs. For example, chρ1

(ι; chρ2
(ι)) is

the type of channels that belong to the region ρ1 and are used for transmitting
a pair (i, r) where r is a channel of region ρ2 used for transmitting integers. We
use a meta-variable σ for an integer or channel type.

Type judgments for processes and simple expressions are of the form Γ ;∆ ⊢ P
and Γ ;∆ ⊢ v : σ, where Γ and ∆ are sequences of bindings of the form x : ι
and x : κ, respectively. The typing rules are shown in Figure 1. Here Γ ;∆ ⊢ ṽ : σ̃
means Γ ;∆ ⊢ vi : σi holds for each i ∈ {1, . . . , len(ṽ)}. We omit the explanation
of the typing rules as they are standard.

2.2 Sequential Language

We define the target language of our translation, which is a first-order functional
language with non-determinism.
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Γ ;∆ ⊢ 0
Γ ;∆ ⊢ v : ι Γ ;∆ ⊢ P1 Γ ;∆ ⊢ P2

Γ ;∆ ⊢ if v then P1 else P2

Γ ;∆ ⊢ P1 Γ ;∆ ⊢ P2

Γ ;∆ ⊢ P1 | P2

Γ ;∆, x : κ ⊢ P

Γ ;∆ ⊢ (νx : κ)P

Γ, x̃ : ι̃;∆ ⊢ P

Γ ;∆ ⊢ let x̃ = ⋆̃ in P

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P

Γ ;∆ ⊢ x?(ỹ; z̃).P

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ ;∆ ⊢ ṽ : ι̃ Γ ;∆ ⊢ w̃ : κ̃ Γ ;∆ ⊢ P

Γ ;∆ ⊢ x!(ṽ; w̃).P

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P

Γ ;∆ ⊢ ∗x?(ỹ; z̃).P

x : ι ∈ Γ
Γ ;∆ ⊢ x : ι

x : κ ∈ ∆
Γ ;∆ ⊢ x : κ Γ ;∆ ⊢ i : ι

Γ ;∆ ⊢ ṽ : ι̃

Γ ;∆ ⊢ op(ṽ) : ι

Fig. 1. The typing rules of the simple type system for the π-calculus

A program is a pair (D, E) consisting of (a set of) function definitions D and
an expression E, defined by:

D (function definitions) ::= {f1(x̃1) = E1, . . . , fn(x̃n) = En}

E (expression) ::= ( ) | let x̃ = ⋆̃ in E | f(ṽ) | E1 ⊕ E2

| if v then E1 else E2 | Assume(v);E

v (simple expressions) ::= x | i | op(ṽ)

In a function definition fi(x1, . . . , xki
) = Ei, the variables x1, . . . , xki

are bound
in Ei; we identify function definitions up to renaming of bound variables, and im-
plicitly apply α-conversions. The function names f1, . . . , fn need not be distinct
from each other. If there are more than one definition for f , then one of the defini-
tions will be non-deterministically used when f is called. We explain the informal
meanings of the nonstandard expressions. The expression let x̃ = ⋆̃ in E instan-
tiates x̃ to some integers in a non-deterministic manner. The expression E1⊕E2

non-deterministically evaluates to E1 or E2. The expression Assume(v);E eval-
uates to E if v is non-zero; otherwise the whole program is aborted. The other
expressions are standard and their meanings should be clear.

We write (D, E) (D, E′) for the one-step reduction relation, whose defini-
tion is given in Appendix A. We say that a program is terminating if there is no
infinite reduction sequence.

3 Basic Transformation

This section presents our transformation from a π-calculus process to a sequential
program, so that if the transformed program is terminating then the original
process is terminating.
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Table 1. Correspondence between processes and sequential programs

processes sequential programs

replicated input (∗x?(ỹ; z̃). · · ·) function definition fρx(ỹ) = · · ·

non-replicated input (x?(ỹ; z̃). · · ·) non-deterministic instantiation (let ỹ = ⋆̃ in · · ·)

output (x!(ṽ; w̃). · · ·) function call (fρx(ṽ)⊕ · · ·)

parallel composition (· · · | · · ·) non-deterministic choice (· · · ⊕ · · ·)

As explained in Section 1, the idea is to transform an infinite chain of message
passing on replicated input channels to an infinite chain of recursive function
calls. Table 1 summarizes the correspondence between processes and sequential
programs. As shown in the table, a replicated input process is transformed to
a function definition, whereas a non-replicated input process is just ignored,
and integer bound variables are non-deterministically instantiated. Note that
channel arguments z̃ are ignored in both cases. Instead, we prepare a global
function name fρ for each region ρ; ρx in the table indicates the region assigned
to the channel type of x.4

We define the transformation relation Γ ;∆ ⊢ P ⇒ (D, E), which means that
the π-calculus process P well-typed under Γ ;∆ is transformed to the sequential
program (D, E). The relation is defined by the rules in Figure 2.

We explain some key rules. In SX-Nil, 0 is translated to (D, ( )), where D is
the set of trivial function definitions. In SX-In, a (non-replicated) input is just
removed, and the bound variables are instantiated to non-deterministic integers;
this is because we have no information about ỹ; this will be refined in Section 4.
In contrast, in SX-RIn, a replicated input is converted to a function definition.
Since D generated from P may contain ỹ, they are bound to non-deterministic
integers and merged with the new definition for fρ. In SX-Out, an output is
replaced by a function call. In SX-Par, parallel composition is replaced by non-
deterministic choice.

Example 1. Let us revisit the Fibonacci example used in the introduction to
explain the actual translation. Using the syntax we introduced, the Fibonacci
process Pfib can now be defined as:

(νfib : chρ1
(ι; chρ2

(ι))) ∗ fib?(n; r).

if n < 2 then r!(1) else (νr1 : chρ2
(ι))(νr2 : chρ2

(ι))

(fib!(n− 1; r1) | fib!(n− 2; r2) | r1?(x).r2?(y).r!(x + y))

| let m = ⋆ in (νr : chρ2
(ι))fib!(m; r)

4 Thus, the simple type system with “regions” introduced in the previous section is
used here as a simple may-alias analysis. If x and y may be bound to the same
channel during reductions, the type system assigns the same region to x and y,
hence x and y are mapped to the same function name fρx by our transformation.
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Γ ;∆ ⊢ 0 ⇒ ({fρ(ỹ) = ( ) | x : chρ(ι̃; κ̃) ∈ ∆, len(ỹ) = len(ι̃)}, ( ))
(SX-Nil)

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P ⇒ (D, E)

Γ ;∆ ⊢ x?(ỹ; z̃).P ⇒ (let ỹ = ⋆̃ in D, let ỹ = ⋆̃ in E)
(SX-In)

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P ⇒ (D, E)

Γ ;∆ ⊢ ∗x?(ỹ; z̃).P ⇒ ({fρ(ỹ) = E} ∪ (let ỹ = ⋆̃ in D), ( ))
(SX-RIn)

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ ;∆ ⊢ ṽ : ι̃ Γ ;∆ ⊢ w̃ : κ̃ Γ ;∆ ⊢ P ⇒ (D, E)

Γ ;∆ ⊢ x!(ṽ; w̃).P ⇒ (D, fρ(ṽ)⊕E)
(SX-Out)

Γ ;∆ ⊢ P1 ⇒ (D1, E1) Γ ;∆ ⊢ P2 ⇒ (D2, E2)

Γ ;∆ ⊢ P1 | P2 ⇒ (D1 ∪ D2, E1 ⊕E2)
(SX-Par)

Γ ;∆,x : κ ⊢ P ⇒ (D, E)

Γ ;∆ ⊢ (νx : κ)P ⇒ (D, E)
(SX-Nu)

Γ ;∆ ⊢ v : ι Γ ;∆ ⊢ P1 ⇒ (D1, E1) Γ ;∆ ⊢ P2 ⇒ (D2, E2)

Γ ;∆ ⊢ if v then P1 else P2 ⇒ (D1 ∪ D2, if v then E1 else E2)
(SX-If)

Γ, x̃ : ι̃;∆ ⊢ P ⇒ (D, E)

Γ ;∆ ⊢ let x̃ = ⋆̃ in P ⇒ (let x̃ = ⋆̃ in D, let x̃ = ⋆̃ in E)
(SX-LetND)

let x̃ = ⋆̃ in D :={f(ỹ) = (let x̃ = ⋆̃ in E) | f(ỹ) = E ∈ D}

Fig. 2. The rules of simple type-based program transformation

Note that (νfib) and let m = ⋆ in have been added to close the process. We can
derive ∅; ∅ ⊢ Pfib ⇒ (D, E), where D and E are given as follows:5

D = {fρ1
(z) = if z < 2 then fρ2

(1) else (fρ1
(z − 1)⊕ fρ1

(z − 2)

⊕ let x = ⋆ in let y = ⋆ in fρ2
(x + y)),

fρ2
(z) = ( )}

E = let m = ⋆ in fρ1
(m)

Here fρ1
is the “Fibonacci function” because ρ1 is the region assigned to the

channel fib in Pfib. The function call fρ2
(x+y) corresponds to the output r!(x+y);

the argument of the function call is actually a nondeterministic integer because
r?(x) and r?(y) are translated to non-deterministic instantiations. Since the
program (D, E) is terminating, we can verify that Pfib is also terminating. ⊓⊔

5 The program written here has been simplified for the sake of readability. For in-
stance, we removed some redundant ( ), trivial function definitions, and unused non-
deterministic integers. The other examples that will appear in this paper are also
simplified in the same way.
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Example 2. To help readers understand the rule SX-RIn, we consider the fol-
lowing process, which contains a nested input:

∗f?(x; r). ∗ g?(y, z).(if y ≤ 0 then r!(z) else g!(y − 1, x+ z)) | f !(2; r).g!(3, 0)

where f :chρ1
(ι; chρ2

(ι)) and g :chρ3
(ι, ι). This process computes x∗y+z (which

is 6 in this case) and returns that value using r. This program is translated to:

fρ1
(x) = ( ) fρ2

(z) = ( )

fρ3
(y, z) = let x = ⋆ in if y ≤ 0 then fρ2

(z) else fρ3
(y − 1, x+ z)

with the main expression fρ1
(2)⊕ fρ3

(3, 0). Note that the body of fρ1
, which is

the function corresponding to f , is ( ). This is because when the rule SX-RIN is
applied to ∗g?(y, z) . . ., the main expression of the translated program becomes
( ). Observe that the function definition for fρ3

still contains a free variable x at
this moment. Then fρ3

is closed by let x = ⋆ in when we apply the rule SX-RIn
to ∗f?(x; r) . . .. We can check that the above program is terminating, and thus
we can verify that the original process is terminating. Note that some precision
is lost in the application of SX-RIn above since we cannot track the relation
between the argument of fρ1

and the value of x used inside fρ3
. This loss causes

a problem if, for example, the condition y ≤ 0 in the process above is replaced
with y ≤ x. The body of fρ3

would then become let x = ⋆ in if y ≤ x · · ·,
hence the sequential program would be non-terminating. ⊓⊔

Remark 1. A reader may wonder why a non-replicated input is removed in
SX-In, rather than translated to a function definition as done for a replicated in-
put. It is actually possible to obtain a sound transformation even if we treat non-
replicated inputs in the same manner as replicated inputs, but we expect that
our approach of removing non-replicated inputs often works better. For example,
consider x?(y).x!(y) | x!(0). Our translation generates ({fρx

(z) = ( )}, (let y =
⋆ in fρx

(y)) ⊕ fρx
(0)) which is terminating, whereas if we treat the input in

the same way as a replicated input, we would obtain ({fρx
(z) = fρx

(z)}, fρx
(0))

which is not terminating. Our approach also has some defect. For example, con-
sider x!(0) | x?(y).if y = 0 then 0 else Ω where Ω is a diverging process.
Our translation yields ({fρx

(z) = ( )}, fρx
(0) ⊕ let y = ⋆ in if y = 0 then ( )

else Ω′) which is non-terminating. On the other hand, if we treat the input like a
replicated input, we would obtain ({fρx

(z) = if z = 0 then ( ) else Ω′}, fρx
(0))

which is terminating. This issue can, however, be mitigated by the extension with
refinement types in Section 4. Our choice of removing non-replicated inputs is
also consistent with Deng and Sangiorgi’s type system [13], which prevents an
infinite chain of communications on replicated input channels by using types and
ignores non-replicated inputs. ⊓⊔

The following theorem states the soundness of our transformation.

Theorem 1 (soundness). Suppose ∅; ∅ ⊢ P ⇒ (D, E). If (D, E) is terminat-
ing, then so is P .
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We briefly explain the proof strategy; see Appendix B for the actual proof.
Basically, our idea is to show that the translated program simulates the original
process. Then we can conclude that if the original process is non-terminating
then so is the sequential program. However, there is a slight mismatch between
the reduction of a process and that of the sequential program that we need to
overcome. Recall that ∗f?(x).P | f !(1) | f !(2) is translated to fρf

(1) ⊕ fρf
(2)

with a function definition for fρf
. In the sequential program, we need to make

a “choice”, e.g. if fρf
(1) is called, we cannot call fρf

(2) anymore. On the other
hand, the output f !(2) can be used even if f !(1) has been used before. To fill
this gap, we introduce a non-standard reduction relation, which does not discard
branches of non-deterministic choices and show the simulation relation using that
non-standard semantics. Then we show that if there is an infinite non-standard
reduction sequence, then there is an infinite subsequence that corresponds to
a reduction along a certain choice of non-deterministic branches. This step is
essentially a corollary of the König’s Lemma. This is because the infinite non-
standard reduction sequence can be reformulated as an infinite tree in which
branches correspond to non-deterministic choices ⊕ (thus the tree is finitely
branching) and paths correspond to reduction sequences.

The following example indicates that the basic transformation is sometimes
too conservative.

Example 3. Let us consider the following process Pdec:

∗ pred?(n; r).r!(n − 1)

| ∗f?(n; r).if n < 0 then r!(1) else (νs : chρ2
(ι))(pred !(n; s) | s?(x).f !(x; r))

| f !(m; r)

where pred : chρ1
(ι; chρ2

(ι)), f : chρ3
(ι; chρ4

(ι)) and r : chρ4
(ι). This process,

which also appeared in the introduction, keeps on decrementing the integer m
until it gets negative and then returns 1 via r. We can turn this process into a
closed process P ′

dec
by restricting the names pred , f , r and adding let m = ⋆ in

in front of the process. Note that P ′

dec is terminating.

The process P ′

dec is translated to:

fρ1
(n) = fρ2

(n− 1), fρ2
(x) = ( ), fρ4

(x) = ( ),

fρ3
(n) = if n < 0 then fρ4

(1)

else (fρ1
(n)⊕ let x = ⋆ in fρ3

(x))

with the main expression let m = ⋆ in fρ3
(m). Observe that the function fρ3

is applied to a non-deterministic integer, not n − 1. Thus, this program is not
terminating, meaning that we fail to verify that the original process is terminat-
ing. This is due to the shortcoming of our transformation that all the integer
values received by non-replicated inputs are replaced by non-deterministic inte-
gers. This problem is addressed in the next section. ⊓⊔
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4 Improving Transformation Using Refinement Types

In this section, we refine the basic transformation in the previous section by
using a refinement type system.

Recall that in Example 3, the problem was that information about values
received by non-replicated inputs was completely lost. By using a refinement
type system for the π-calculus, we can statically infer that x < n holds between
x and n in the process in Example 3. Using that information, we can transform
the process in Example 3 and obtain

fρ3
(n) = if n < 0 then · · · else (fρ1

(n)⊕ let x = ⋆ in Assume(x < n); fρ3
(x))

for the definition of fρ3
. This is sufficient to conclude that the resulting program

is terminating.
In the rest of this section, we first introduce a refinement type system in Sec-

tion 4.1 and explain the refined transformation in Section 4.2. We then discuss
how to automatically infer refinement types and achieve the refined transforma-
tion in Section 4.3.

4.1 Refinement Type System

The set of refinement channel types, ranged over by κ, is given by:

κ ::= chρ(x̃;φ; κ̃)

Here, φ is a formula of integer arithmetic. We sometimes write just chρ(x̃;φ) for
chρ(x̃;φ; ǫ). Intuitively, chρ(x̃;φ; κ̃) describes channels that are used for trans-
mitting a tuple (x̃; ỹ) such that (i) x̃ are integers that satisfy φ, and (ii) ỹ are
channels of types κ̃. For example, the type chρ1

(x; true; chρ2
(z; z < x)) de-

scribes channels used for transmitting a pair (x, y), where x may be any integer,
and y must be a channel of type chρ2

(z; z < x), i.e., a channel used for passing
an integer z smaller than x.Thus, if u has type chρ1

(x; true; chρ2
(z; z < x)),

then the process u?(n; r).r!(n − 1) is allowed but u?(n; r).r!(n) is not.
Type judgments for processes and expressions are now of the form Γ ;Φ;∆ ⊢

P and Γ ;Φ;∆ ⊢ v :σ, where Φ is a sequence of formulas. Intuitively, Γ ;Φ;∆ ⊢ P
means that P is well-typed under the environments Γ and ∆ assuming that all
the formulas in Φ holds.

The selected typing rules are shown in Figure 3. The rules for the other
constructs are identical to that of the simple type system; the complete list of
typing rules appears in Appendix C. The rules shown in Figure 3 are fairly
standard rules for refinement type systems. In RT-Out, the notation Φ � φ
means that φ is a logical consequence of Φ; for example, x < y, y < z � x < z
holds. In the typing rules, we implicitly require that all the type judgments are
well-formed, in the sense that all the integer variables occurring in a formula is
properly declared in Γ or bound by a channel type constructor; see Appendix C
for the well-formedness condition.
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Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;∆, z̃ : κ̃ ⊢ P
(RT-In)

Γ ;Φ;∆ ⊢ x?(ỹ; z̃).P
Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ ;Φ;∆ ⊢ ṽ : ι̃ Φ � [ṽ/ỹ]φ

Γ ;Φ;∆ ⊢ w̃ : [ṽ/ỹ]κ̃ Γ ;Φ;∆ ⊢ P

Γ ;Φ;∆ ⊢ x!(ṽ; w̃).P
(RT-Out)

Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;∆, z̃ : κ̃ ⊢ P
(RT-RIn)

Γ ;Φ;∆ ⊢ ∗x?(ỹ; z̃).P

Γ ;Φ;∆ ⊢ v : ι Γ ;Φ, v 6= 0;∆ ⊢ P1 Γ ;Φ, v = 0;∆ ⊢ P2

(RT-If)
Γ ;Φ;∆ ⊢ if v then P1 else P2

x : κ ∈ ∆
(RT-Var-Ch)

Γ ;Φ;∆ ⊢ x : κ

Fig. 3. Selected typing rules of the refinement type system for the π-calculus

4.2 Program Transformation

Based on the refinement type system above, we refine the transformation relation
to Γ ;Φ;∆ ⊢ P ⇒ (D, E). The only change is in the following rule for non-
replicated inputs.6

Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;∆, z̃ : κ̃ ⊢ P ⇒ (D, E)

Γ ;Φ;∆ ⊢ x?(ỹ; z̃).P
⇒ (let ỹ = ⋆̃ in Assume(φ);D, let ỹ = ⋆̃ in Assume(φ);E)

(RX-In)

Here, we insert Assume(φ), based on the refinement type of x. The expres-
sion let ỹ = ⋆̃ in Assume(φ);E first instantiates ỹ to some integers in a non-
deterministic manner, but proceeds to evaluate E only if the values of ỹ satisfy
φ. Thus, the termination analysis for the target sequential program may assume
that ỹ satisfies φ in E.

Example 4. Let us explain how the process Pdec introduced in Example 3 is
translated by the refined translation. Recall that the following simple types were
assigned to the channels:

pred : chρ1
(ι; chρ2

(ι)), f : chρ3
(ι; chρ4

(ι)), r : chρ4
(ι), s : chρ2

(ι).

By the refinement type system, the above types can be refined as:

pred : chρ1
(n; true; chρ2

(x;x < n)), f : chρ3
(n; true; chρ4

(x; true)),

r : chρ4
(x; true), s : chρ2

(x;x < n).

For example, one can check that the output r!(n − 1) on the first line of Pdec

is well-typed because |= [n − 1/x]x < n holds. Note that this r is the variable
bound by pred?(n; r) and thus has the type chρ2

(x;x < n).

6 The rule for replicated inputs is also modified in a similar manner.
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Therefore, by the rule RX-In, the input s?(x).f !(x; r) is now translated as
follows:

Γ ;Φ;∆ ⊢ s : chρ2
(x;x < n) Γ, x : ι;Φ, x < n;∆ ⊢ f !(x; r) ⇒ (D, fρ3

(x))

Γ ;Φ;∆ ⊢ s?(x).f !(x; r)
⇒ ((let x = ⋆ in Assume(x < n);D), (let x = ⋆ in Assume(x < n); fρ3

(x)))

with suitable Γ , Φ and ∆. By translating the whole process, we obtain

fρ3
(n) = if n < 0 then fρ4

(1)

else (fρ1
(n)⊕ let x = ⋆ in Assume(x < n); fρ3

(x))

as desired. The other function definitions are given as in the case of Example 3
(except for the fact that some redundant assertions let x = ⋆ in Assume(x <
n) are added).

The soundness of the refined translation is obtained from the following ar-
gument. We first extend the π-calculus with the Assume statement. Then the
refined translation can be decomposed into the following two steps: (a) given
a π-calculus process P , insert Assume statements based on refinement types
and obtain a process P ′; and (b) apply the translation of Section 3 to P ′ (where
Assume is just mapped to itself) and obtain a sequential program S. The sound-
ness of step (b) follows by an easy modification of the proof in Appendix B for the
basic transformation (just add the case for Assume). So, the termination of S
would imply that of P ′. Now, from the soundness of the refinement type system
(which follows from a standard argument on type preservation and progress), it
follows that the Assume statements inserted in step (a) always succeed. Thus,
the termination of P ′ would imply that of P . We can, therefore, conclude that
if S is terminating, so is P .

4.3 Type Inference

This section discusses how to infer refinement types automatically to automati-
cally achieve the transformation. As in refinement type inference for functional
programs [25,27,5], we can reduce refinement type inference for the π-calculus
to the problem of CHC (Constrained Horn Clauses) solving [4].

We explain the procedure through an example. Once again, we use the process
Pdec introduced in Example 3. We first perform type inference for the simple type
system in Section 2, and (as we have seen) obtain the following simple types for
pred and f :

pred : chρ1
(ι; chρ2

(ι)), f : chρ3
(ι; chρ4

(ι))

Here, we have omitted the types for other (bound) channels r, s, y, as they can
be determined based on those of pred and f . Based on the simple types, we
prepare the following templates for refinement types.

pred : chρ1
(n;P1(n); chρ2

(x;P2(n, x))), f : chρ3
(n;P3(n); chρ4

(x;P4(n, x))).
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Here, Pi (i ∈ {1, . . . , 4}) is a predicate variable that represents unknown condi-
tions.

Based on the refinement type system, we can generate the following con-
straints on the predicate variables.

∀n.(P1(n) =⇒ P2(n, n− 1)) ∀n.(P3(n) ∧ n < 0 =⇒ P4(n, 1))
∀n.(P3(n) ∧ n ≥ 0 =⇒ P1(n− 1))
∀n, x.(P3(n) ∧ n ≥ 0 ∧ P2(n− 1, x) =⇒ P3(x))
∀m.(true =⇒ P3(m))

Here, the first constraint comes from the first line of the process, and the second
constraint (the third and fourth constraints, resp.) comes from the then-part
(the else-part, resp.) of the second line of the process. The last constraint comes
from f !(m; r).

The generated constraints are in general a set of Constrained Horn Clauses
(CHCs) [4] of the form ∀x̃.(P1(ṽ1) ∧ · · · ∧ Pk(ṽk) ∧ φ =⇒ H), where P1, . . . , Pk

are predicate variables, φ is a formula of integer arithmetic (without predicate
variables), and H is either of the form P (ṽ) or φ′. The problem of finding a
solution (i.e. an assignment of predicates to predicate variables) of a set of CHCs
is undecidable in general, but there are various automated tools (called CHC
solvers) for solving the problem [20,5]. Thus, by using such a CHC solver, we
can solve the constraints on predicate variables, and obtain refinement types by
substituting the solution for the templates of refinement types.

For the example above, the following is a solution.

P1(n) ≡ true P2(n, x) ≡ x < n P3(x) ≡ true P4(n, x) ≡ true.

This is exactly the predicates we used in Example 4 to translate Pdec using the
refined approach.

Adding extra CHCs. Actually, a further twist is necessary in the step of
CHC solving. As in the example above, all the CHCs generated based on the
refinement typing rules are of the form · · · =⇒ Pi(ṽ) (i.e., the head of every
CHC is an atomic formula on a predicate variable). Thus, there always exists a
trivial solution for the CHCs, which instantiates all the predicate variables to
true. For the example above,

P1(n) ≡ true P2(n, x) ≡ true P3(n) ≡ true P4(n, x) ≡ true

is also a solution, but using the trivial solution, our transformation yields the
non-terminating program. This program is essentially the same as the one in
Example 3 since let x = ⋆ in Assume(true);E is equivalent to let x = ⋆ in E.
Typical CHC solvers indeed tend to find the trivial solution.

To remedy the problem above, in addition to the CHCs generated from the
typing rules, we add extra constraints that prevent infinite loops. For the example
above, the definition of fρ3

(which corresponds to the channel f) in the translated
program is of the form

fρ3
(n) = ifn < 0 then ( )else fρ1

(n)⊕ (let x = ⋆ in Assume(P2(n, x)); fρ3
(x)).
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Thus we add the clause:

P2(n, x) =⇒ n 6= x

to prevent an infinite loop fρ3
(m) → fρ3

(m) → · · ·. With the added clause, a
CHC solver HoIce [5] indeed returns n < x as the solution for P2(n, x).

In general, we can add the extra CHCs in the following, counter-example-
guided manner.

1. C := the CHCs generated from the typing rules
2. θ := callCHCsolver (C)
3. S := the sequential program generated based on the solution θ
4. if S is terminating then return OK; otherwise, analyze S to find an infinite

reduction sequence, add an extra clause to C to disable the infinite sequence,
and go back to 2.

More precisely, in the last step, the backend termination analysis tool generates
a lasso as a certificate of non-termination. We extract a chain f(x̃) → · · · →
f(x̃′) of recursive calls from the lasso, and add an extra clause requiring x̃ 6= x̃′

to C. This is naive and insufficient for excluding out an infinite sequence like
f(1) → f(2) → f(3) → · · ·. We plan to refine the method by incorporating more
sophisticated techniques developed for sequential programs [16].

5 Implementation and Preliminary Experiments

5.1 Implementation

We have implemented a termination analysis tool for the π-calculus based on
the method described in Sections 3 and 4. This tool was written in OCaml. We
chose C language as the actual target of our translation, and used Ultimate
Automizer [17] (version 0.2.1) as a termination analysis tool for C.

For the refinement type inference described in Section 4.3, we have used
HoIce [5] (version 1.8.3) and Z3 [10] (version 4.8.10) as backend CHC solvers.
Since a stronger solution for CHCs is preferable as discussed at the end of Sec-
tion 4.3, if HoIce and Z3 return different solutions {P1 7→ φ1, . . . , Pn 7→ φn} and
{P1 7→ φ′

1, . . . , Pn 7→ φ′

n}, then we used the solution {P1 7→ φ1 ∧ φ′

1, . . . , Pn 7→
φn ∧ φ′

n} for inserting Assume commands.
To make the analysis precise, the implementation is actually based on an

extension of the refinement type system in Section 4.1 with subtyping; see Ap-
pendix D.

5.2 Preliminary Experiments

We prepared a collection of π-calculus processes, and ran our tool on them. Our
experiment was conducted on Intel Core i7-10850HCPU with 32GBmemory. For
comparison, we have also run the termination analysis mode of TyPiCal [18,19]
on the same instances.
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Table 2. Results of the experiments

Test case Basic Refined TyPiCal

client-server 2.5 2.7 0.006
stateful-server-client FAIL FAIL 0.006

parallel-or 2.4 2.9 0.006
broadcast 3.6 3.3 0.004

btree FAIL FAIL 0.011
stable FAIL FAIL 0.003

ds-ex5-1 FAIL FAIL 0.002
factorial 3.9 4.4 0.002

ackermann 22.4 26.0 0.003

fibonacci 4.8 4.4 0.003
even/odd 7.0 7.6 0.002

factorial-pred FAIL 28.2 FAIL
fibonacci-pred FAIL 28.2 FAIL
even/odd-pred FAIL 10.1 FAIL

sum-neg 7.6 13.1 FAIL
upperbound 3.8 3.9 FAIL

nested-replicated-input1 2.3 2.4 FAIL
nested-replicated-input2 FAIL FAIL FAIL
nested-replicated-input3 3.7 4.0 0.010

deadlock FAIL 2.9 FAIL

The experimental results are summarized in Table 2. The columns “Ba-
sic” and “Refined” show the results for the basic method in Section 3 and
the refined method in Section 4 respectively. The numbers show the running
times measured in seconds, and “FAIL” means that the verification failed due
to the incompleteness of the reduction; non-terminating sequential programs
were obtained in those cases. The column “TyPiCal” shows the analogous
result for TyPiCal. The termination analysis of TyPiCal roughly depends
on Deng and Sangiorgi’s method [13]. “FAIL” in the column means that the
process does not satisfy the (sufficient) conditions for termination [13]. The ter-
mination analysis of TyPiCal treats numbers as natural numbers, and is ac-
tually unsound in the presence of arbitrary integers (for example, f !(m; r) |
∗f?(x; r).if x = 0 then r!(1) else f !(x− 1; r) is judged to be terminating for
any m).

The test cases consist of two categories. The first one, shown above the hor-
izontal line, has been taken from the sample programs of TyPiCal. Among
them, we have excluded out those that are not related to termination analysis
(note that TyPiCal can perform deadlock/lock-freedom analysis and informa-
tion flow analysis besides termination analysis). The second category, shown be-
low the horizontal line, consists of those prepared by us,7 including the samples
discussed in the paper. All the processes in the test cases are terminating.

7 Unfortunately, there are no standard benchmark set for the termination analysis for
the π-calculus.
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For “stateful-server-client”, “btree”, “stable”, and “ds-ex5-1” in the first cat-
egory, and “nested-replicated-input2” in the second category, our analysis fails
for essentially the same reason. The following is a simplified version of “ds-ex5-
1”:

a!() | b!() | ∗a?().b?().a!().

The process above is terminating because each run of the third process con-
sumes a message on b. Our reduction however ignores communications on b and
produces the following non-terminating program:

({fρa
() = fρa

(), fρb
() = ( )}, fρa

()⊕ fρb
()).

For the second category, our refined method clearly outperforms the basic
method and TyPiCal. We explain some of the test cases in the second category.
The test cases “fibonacci” and “nested-replicated-input3” are from Example 1
and 2 respectively, and “even/odd” is a mutually recursive process that judges
whether a given number is even or odd. The process “deadlock” is the following
one:

∗loop?().loop !() | r?().loop !().

This process is terminating, because the subprocess r?().loop !() is blocked for-
ever, without ever sending a message to loop. With the refinement type system,
the channel r is given type: chρ(ǫ; false), and r?().loop !() is translated to:

let ǫ = ǫ in Assume(false); fρloop
(),

which is terminating by Assume(false). The process “upperbound” is the fol-
lowing process:

f !(0) | ∗f?(x).if x > 10 then 0 else f !(x+ 1).

It is terminating because the argument of f monotonically increases, and is
bounded above by 10. TyPiCal cannot make such reasoning.

6 Related Work

As mentioned in Section 1, there have been a number of studies on termination
of the π-calculus [13,11,26,19,29,12,28], but most of them have been rather the-
oretical, and few tools have been developed. Our technique has been partially
inspired by Deng and Sangiorgi’s work [13], especially by their observation that
a process is terminating just if there is no infinite chain of communications on
replicated input processes. Deng and Sangiorgi ensured the lack of infinite chains
by using a type system. They actually proposed four system, a core system and
three kinds of extensions. Our approach roughly corresponds to the first ex-
tension of their system ([13], Section 4), which requires that, in every chain of
communications, the values of messages monotonically decrease. An advantage
of our approach is that we can use mature tools for sequential programs to reason
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about how the values of messages change. Our approach does not subsume the
second and third extensions of Deng and Sangiorgi’s system, which take into ac-
count synchronizations over multiple channels; it is left for future work to study
whether such extensions can be incorporated in our approach.

To our knowledge, TyPiCal [18,19] is the only automated termination anal-
ysis tool. TyPiCal’s termination analysis is based on Deng and Sangiorgi’s
method [13], but is quite limited in reasoning about the values sent along chan-
nels; it only considers natural numbers, and the ordering on them is limited to
the standard order on natural numbers. Thus, for example, TyPiCal cannot
prove the termination of the process “upperbound” as described in Section 5.

Recently, there have been studies on type systems for estimating the (time)
complexity of processes for the π-calculus [1,2] and related session calculi [9,8].
Since the existence of a finite upper-bound implies termination, those analyses
can, in principle, be used also for reasoning about termination, but the result-
ing termination analysis would be too conservative. It would be interesting to
investigate whether our approach of reduction to sequential programs can be
extended to achieve complexity analysis for the π-calculus. Refinement types for
variants of the π-calculus have been studied before [15,3]. Our contribution in
this regard is the application to termination analysis.

Cook et al. [6] proposed a method for proving termination of multi-threaded
programs. Their technique also makes use of a termination tool for sequen-
tial programs. As their language model is quite different from ours (they deal
with imperative programs with shared memory and locks, rather than message-
passing programs), however, their method is quite different from ours.

7 Conclusion

We have proposed a method for reducing termination verification for the π-
calculus to that for sequential programs and implemented an automated ter-
mination analysis tool based on the method. Our approach allows us to reuse
powerful termination analysis tools developed for sequential programs.

Future work includes (i) a further refinement of our reduction and (ii) appli-
cations of our method to other message-passing-style concurrent programming
languages. As for the first point, there are a few known limitations in the current
reduction. Besides the issues mentioned at the end of Example 2 and Section 5,
there is a limitation that channels of the same region are merged to the same
function, which leads to the loss of precision. For example, consider:

∗ c?(x).if x < 0 then 0 else c!(x− 1)

| ∗d?(x).if x > 0 then 0 else d!(x+ 1)

| e!(c) | e!(d) | c!(0)

The process is terminating, but our approach fails to prove it. Since the same
region is assigned to c and d (because both are sent along e), the replicated input
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processes are translated to non-deterministic function definitions:

fρ(x) = if x < 0 then ( ) else fρ(x− 1)

fρ(x) = if x > 0 then ( ) else fρ(x+ 1),

which cause an infinite reduction fρ(0) → fρ(−1) → fρ(0) → · · ·. One remedy to
this problem would be to introduce region polymorphism and translate processes
to higher-order functional programs.
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len(ỹ) = len(ṽ) len(z̃) = len(w̃) ṽ ⇓ ĩ
(R-Comm)

x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → [̃i/ỹ, w̃/z̃]P1 | P2

P1 → P ′

1 (R-Par)
P1 | P2 → P ′

1 | P2

P → P ′

(R-Nu)
(νx : κ)P → (νx : κ)P ′

len(ỹ) = len(ṽ) len(z̃) = len(w̃) ṽ ⇓ ĩ
(R-RComm)

∗x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → ∗x?(ỹ; z̃).P1 | [̃i/ỹ, w̃/z̃]P1 | P2

v ⇓ i 6= 0
(R-If-T)

if v then P1 else P2 → P1

v ⇓ 0
(R-If-F)

if v then P1 else P2 → P2

len(x̃) = len(̃i)
(R-LetND)

let x̃ = ⋆̃ in P → [̃i/x̃]P

P ≡π P1 → P ′

1 ≡π P ′

(R-Cong)
P → P ′

(R-Int)
i ⇓ i

ṽ ⇓ ĩ
(R-Op)

op(ṽ) ⇓ JopK(̃i).

Fig. 4. The reduction rules of the π-calculus. Here JopK : Zn → Z represents the inter-
pretation of the operation op whose arity is n.

A Operational Semantics

A.1 Reduction Semantics of the π-Calculus

We define a reduction relation [22] as the operational semantics of the π-calculus.

As usual, we first define the structural congruence relation ≡π on the set of
processes.

Definition 1 (structural congruence for processes). The structural con-
gruence relation ≡π on π-calculus processes is defined as the least congruence
relation that satisfies the following rules.

P1 | P2 ≡π P2 | P1 (P1 | P2) | P3 ≡π P1 | (P2 | P3)

P | 0 ≡π P (νx)0 ≡π 0 (νx)(νy)P ≡π (νy)(νx)P

(νx)(P1 | P2) ≡π P1 | (νx)P2 if x does not freely occur in P1

Next, we define the reduction relation on processes.

Definition 2. The reduction relation → on processes is defined by the set of
rules in Figure 4. We write →∗ and →+for the reflexive transitive closure and
the transitive closure of the reduction relation →, respectively.
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len(x̃) = len(̃i)
(SR-LetND)

(D, let x̃ = ⋆̃ in E) (D, [̃i/x̃]E)

(λỹ.E) ∈ D(f) len(ỹ) = len(ṽ) ṽ ⇓ ĩ
(SR-App)

(D, f(ṽ)) (D, [̃i/ỹ]E)

v ⇓ i i 6= 0
(SR-If-T)

(D, if v then E1 else E2) (D, E1)

v ⇓ 0
(SR-If-F)

(D, if v then E1 else E2) (D, E2)

(SR-Cho-L)
(D, E1 ⊕ E2) (D, E1)

(SR-Cho-R)
(D, E1 ⊕ E2) (D, E2)

v ⇓ i i 6= 0
(SR-Ass-T)

(D,Assume(v);E) (D, E)

v ⇓ 0
(SR-Ass-F)

(D,Assume(v);E) (D, ( ))

Fig. 5. Reduction rules of the sequential language

A.2 Reduction Semantics of the Sequential Language

Here, we define the reduction semantics for the sequential language. We actually
define two kinds of semantics: one is a standard reduction relation (D, E)  
(D′, E′), which evaluates E1⊕E2 to either E1 or E2; the other is a non-standard
reduction relation (D, E) 99K (D′, E′), which does not discard branches of non-
deterministic choices.

Definition 3. The reduction relation  on sequential programs is defined by
the set of rules in Figure 5. In the rule SR-App we are considering D as a map
that maps f to D(f) = {λx̃.E | f(x̃) = E ∈ D}.

We now define a non-standard reduction relation that keeps all the non-
deterministic branches during the reduction. This non-standard reduction rela-
tion has a better match with the reduction of processes. Since processes have
structural rules, we also introduce structural rules on expressions.

Definition 4 (structural congruence for sequential expressions). The
structural congruence relation for expressions, written E1 ≡E E2, is defined as
the least congruence relation that satisfies the following rules.

E1 ⊕ E2 ≡E E2 ⊕ E1 (E1 ⊕ E2)⊕ E3 ≡E E1 ⊕ (E2 ⊕ E3) E ⊕ ( ) ≡E E

Definition 5. The non-standard reduction relation 99K on the set of sequential
programs is defined by the set of rules in Figure 6 together with all the rules in
Figure 5 (with  replaced by 99K), except for SR-Cho-L and SR-Cho-R. To
simplify the notation, we may write E 99KD E′ for (D, E) 99K (D, E′) or even
E 99K E′ if D is clear from the context.
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E ≡E E1 (D, E1) 99K (D, E′

1) E′

1 ≡E E′

(SR-Cong)
(D, E) 99K (D, E′)

(D, E1) 99K (D, E′

1)
(SR-ChoBody-L)

(D, E1 ⊕ E2) 99K (D, E′

1 ⊕ E2)

(D, E2) 99K (D, E′

2)
(SR-ChoBody-R)

(D, E1 ⊕E2) 99K (D, E1 ⊕ E′

2)

Fig. 6. Additional rules for the non-standard reduction relation

(D-Id)
D E D

D = D1 ∪ D2 (D-Splt)
D E D1

D = (let x̃ = ⋆̃ in D′) len(x̃) = len(ṽ)
(D-ND)

D E [ṽ/x̃]D′

D1 E D′

1 (D-Mrg)
D1 ∪ D2 E D′

1 ∪ D2

D1 E D2 D2 E D3
(D-Trns)

D1 E D3

Fig. 7. Preorder on function definitions

For the proof of the soundness of our transformation (given in Appendix B),
we also prepare a relation D E D′, which intuitively means that D can simulate
D′ so that if (D, E) is terminating, so is (D′, E) (cf. Lemma 1).

Lemma 1. Suppose that D E D′ and (D′, E) 99K (D′, E′). Then (D, E) 99K+

(D, E′).

Proof. By induction on the derivation of D E D′. ⊓⊔

B Proof of the Soundness

Here we prove the soundness of the translation (Theorem 1) saying that if the
sequential program (D, E) obtained by translating P is terminating, P is also
terminating. The proof is split into two steps. First, we show that reductions from
P can be simulated by non-standard reductions from (D, E) (Lemma 4). This
implies that if (D, E) is terminating with respect to the non-standard reduction,
then P is terminating. Then we show that if (D, E) is terminating with respect
to the standard reduction, then (D, E) is terminating with respect to the non-
standard reduction (Lemma 6).

We start by preparing some auxiliary lemmas that are used to show the
simulation relation.

Lemma 2 (substitution). If Γ ;∆ ⊢ ṽ : ι̃, Γ ;∆ ⊢ w̃ : κ̃ and Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢
P ⇒ (D, E), then Γ ;∆ ⊢ [ṽ/ỹ, w̃/z̃]P ⇒ ([ṽ/ỹ]D, [ṽ/ỹ]E).

Proof. By induction on the derivation of Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P ⇒ (D, E). ⊓⊔
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Lemma 3. If P ≡π P ′ and Γ ;∆ ⊢ P ⇒ (D, E), then there exists E′ such that
E ≡E E′ and Γ ;∆ ⊢ P ′ ⇒ (D, E′).

Proof. By induction on the construction of P ≡π P ′. ⊓⊔

Now we prove the simulation relation.

Lemma 4. If P → P ′ and Γ ;∆ ⊢ P ⇒ (D, E), then there exist D′, E′ such
that D E D′, (D′, E) 99K+ (D′, E′) and Γ ;∆ ⊢ P ′ ⇒ (D′, E′).

Proof. By induction on the construction of P → P ′. We only give detailed proofs
for interesting cases; the other cases are sketched.

Case R-Comm: In this case P → P ′ must be of the form

x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → [̃i/ỹ, w̃/z̃]P1 | P2,

where len(ỹ) = len(ṽ), len(z̃) = len(w̃) and ṽ ⇓ ĩ. Also Γ ;∆ ⊢ P ⇒ (D, E)
must be the form of

Γ ;∆ ⊢ P ⇒ ((let ỹ = ⋆̃ in D1) ∪ D2, (let ỹ = ⋆̃ in E1)⊕ (fρ(ṽ)⊕ E2)),

where

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ ;∆ ⊢ ṽ : ι̃ Γ ;∆ ⊢ w̃ : κ̃

Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P1 ⇒ (D1, E1) (1)

Γ ;∆ ⊢ P2 ⇒ (D2, E2). (2)

By applying Lemma 2 to (1) with Γ ;∆ ⊢ ĩ : ι̃, Γ ;∆ ⊢ w̃ : κ̃, we obtain
Γ ;∆ ⊢ [̃i/ỹ, w̃)/z̃]P1 ⇒ ([̃i/ỹ]D1, [̃i/ỹ]E1). From this and (2), we have

Γ ;∆ ⊢ [̃i/ỹ, w̃/z̃]P1 | P2 ⇒ ([̃i/ỹ]D1 ∪ D2, [̃i/ỹ]E1 ⊕ E2)

by applying the rule SX-Par. Observe that we also have

D = (let ỹ = ⋆̃ in D1) ∪D2 E [̃i/ỹ]D1 ∪ D2.

Therefore, for (D′, E′) we can take ([̃i/ỹ]D1 ∪ D2, [̃i/ỹ]E1 ⊕ E2) with the
following matching reduction sequence:

E = (let ỹ = ⋆̃ in E1)⊕ fρ(ṽ)⊕ E2

99KD′ [̃i/ỹ]E1 ⊕ fρ(ṽ)⊕ E2 (SR-LetND)

99KD′ , [̃i/ỹ]E1 ⊕ ( )⊕ E2 (by (SR-App) and λỹ.( ) ∈ D′(fρ))

≡E [̃i/ỹ]E1 ⊕ E2.
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Case R-RComm: In this case P → P ′ is of the form

∗x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → ∗x?(ỹ; z̃).P1 | [(̃i, w̃)/(ỹ, z̃)]P1 | P2,

where len(ỹ) = len(ṽ), len(z̃) = len(w̃) and ṽ ⇓ ĩ. Moreover, the judgment
Γ ;∆ ⊢ P ⇒ (D, E) must be of the form

Γ ;∆ ⊢ P ⇒ ({fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1) ∪D2, ( )⊕ fρ(ṽ)⊕ E2),

where

Γ ;∆ ⊢ x : chρ(ι̃; κ̃) Γ ;∆ ⊢ ṽ : ι̃ Γ ;∆ ⊢ w̃ : κ̃

Γ ;∆ ⊢ ∗x?(ỹ; z̃).P1 ⇒ ({fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1), ( )) (3)

Γ, ỹ : ι̃;∆, z̃ : κ̃ ⊢ P1 ⇒ D1;E1 (4)

Γ ;∆ ⊢ P2 ⇒ (D2, E2). (5)

Since Γ ;∆ ⊢ ĩ : ι̃ and Γ ;∆ ⊢ w̃ : κ̃, we can apply the substitution lemma
(Lemma 2) to (4) and obtain

Γ ;∆ ⊢ [̃i/ỹ, w̃/z̃]P1 ⇒ ([̃i/ỹ]D1, [̃i/ỹ]E1).

From this, (3) and (5), we have

Γ ;∆ ⊢ P ′ ⇒
({fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1) ∪ [̃i/ỹ]D1 ∪ D2,

( )⊕ [̃i/ỹ]E1 ⊕ E2)

So we can take {fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1) ∪ [̃i/ỹ]D1 ∪ D2 as D′ and
( )⊕ [̃i/ỹ]E1⊕E2 as E′. Now it remains to show that D E D′ and that there
is a reduction sequence from (D′, E) to (D′, E′). The relation D E D′ holds
because

D = ({fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1) ∪ D2

= {fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1) ∪ (let ỹ = ⋆̃ in D1) ∪ D2

E {fρ(ỹ) = E1} ∪ (let ỹ = ⋆̃ in D1) ∪ [̃i/ỹ]D1 ∪ D2 (D-ND)

= D′

Finally, by SR-App, we obtain

E = ( )⊕ fρ(ṽ)⊕ E2 99KD′ ( )⊕ [̃i/ỹ]E1 ⊕ E2 = E′

as desired.
Case R-If-T: In this case P → P ′ and Γ ;∆ ⊢ P ⇒ (D, E) must be of the form

if v then P1 else P2 → P1

Γ ;∆ ⊢ if v then P1 else P2 ⇒ (D1 ∪ D2, if v then E1 else E2)
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where

v ⇓ i 6= 0 Γ ;∆ ⊢ v : ι

Γ ;∆ ⊢ P1 ⇒ (D1, E1)

Γ ;∆ ⊢ P2 ⇒ (D2, E2).

We can take (D1, E1) for (D′, E′) because D1 ∪ D2 E D1, and E 99KD1
E1,

which is trivial from SR-If-T.
Case R-If-F: Similar to the previous case.
Case R-Cong: In this case P → P ′ must be of the form

P ≡π P1 → P ′

1 ≡π P ′.

By Lemma 3, we have

Γ,∆ ⊢ P1 ⇒ (D, E1) and E ≡E E1

for some E1. Thus, by the induction hypothesis, we have

Γ,∆ ⊢ P ′

1 ⇒ (D′, E′

1) (6)

(D′, E1) 99K
+ (D′, E′

1) (7)

where D E D′. By applying Lemma 3 to (6), we obtain

Γ,∆ ⊢ P ′ ⇒ (D′, E′) and E′

1 ≡E E′

for some E′. It remains to show that (D′, E) 99K+ (D′, E′), but this is
easily shown by repeatedly applying the rule SR-Cong along the reduction
sequence (7).

Case R-Par, R-Nu and R-LetND: Similar to the previous case, i.e. follows
from the definition of the translation and the induction hypothesis together
with Lemma 1.

⊓⊔

Lemma 5. Suppose that ∅; ∅ ⊢ P ⇒ (D, E). If (D, E) is terminating with re-
spect to 99K, then P is terminating.

Proof. We show the contraposition. Assume that P is not terminating, i.e. as-
sume that there exists an infinite reduction sequence P = P0 → P1 → · · · . Let
D0 = D and E0 = E. By applying Lemma 4, for each natural number k ≥ 1,
we obtain Dk, Ek such that ∅; ∅ ⊢ Pk ⇒ (Dk, Ek), (Dk, Ek−1) 99K

+ (Dk, Ek)
and D E Dk. Hence, by Lemma 1 there exists an infinite reduction sequence
(D, E) = (D, E0) 99K

+ (D, E1) 99K
+ · · · . ⊓⊔

We now show the relation between standard and non-standard reductions.

Lemma 6. Assume that ∅; ∅ ⊢ P ⇒ (D, E). If (D, E) is terminating with respect
to the standard reduction  , then (D, E) is also terminating with respect to the
non-standard reduction relation 99K.
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len(x̃) = len(̃i)

(D, let x̃ = ⋆̃ in E) 99Kǫ (D, [̃i/x̃]E)
(NSR-LetND)

(λỹ.E) ∈ D(f) len(ỹ) = len(ṽ) ṽ ⇓ ĩ

(D, f(ṽ)) 99Kǫ (D, [̃i/ỹ]E)
(NSR-App)

v ⇓ i i 6= 0

(D, if v then E1 else E2) 99Kǫ (D, E1)
(NSR-If-T)

v ⇓ 0

(D, if v then E1 else E2) 99Kǫ (D, E2)
(NSR-If-F)

(D, E1) 99Kγ (D, E′

1)

(D, E1 ⊕ E2) 99K1·γ (D, E′

1 ⊕E2)
(NSR-ChoBody-L)

(D, E2) 99Kγ (D, E′

2)

(D, E1 ⊕ E2) 99K2·γ (D, E1 ⊕E′

2)
(NSR-ChoBody-R)

v ⇓ i i 6= 0

(D,Assume(v);E) 99Kǫ (D, E)
(NSR-Ass-T)

v ⇓ 0

(D,Assume(v);E) 99Kǫ (D, ( ))
(NSR-Ass-F)

Fig. 8. A variation of the non-standard reduction relation

To prove the lemma above, we introduce a slight variation of the non-standard
reduction relation: (D, E) 99Kγ (D′, E′) where γ ∈ {1, 2}∗. (Actually, D does not
change during the reduction.) It is defined by the rules in Figure 8.

The only differences of (D, E) 99Kγ (D′, E′) from (D, E) 99K (D′, E′) are that
the reduction is annotated with the position γ that indicates where the reduction
occurs, and that the rule SR-Cong for shuffling expressions is forbidden. Since
the rule SR-Cong does not affect the reducibility, we can easily observe the
following property. (We omit the proof since it is trivial.)

Lemma 7. If (D, E) has an infinite reduction sequence with respect to 99K,
(D, E) has an infinite reduction sequence also with respect to 99Kγ .

It remains to show that if (D, E) has an infinite reduction sequence

(D, E) 99Kγ1
(D, E1) 99Kγ2

(D, E2) 99Kγ3
(D, E3) 99Kγ4

· · · ,

then (D, E) has an infinite reduction sequence also with respect to  .
We write γ � γ′ if γ is a prefix of γ′. We have the following property.

Lemma 8. If

(D, E) 99Kγ1
(D, E1) 99Kγ2

(D, E2) 99Kγ3
(D, E3) 99Kγ4

· · · ,

then there exists an infinite sequence i1 < i2 < i3 < · · · such that γij � γik for
any j < k.
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Proof. The required property obviously holds if the set {γi | i ≥ 1} is finite. So,
assume that {γi | i ≥ 1} is infinite. Let T be the least binary tree that contains,
for every γi, the node whose path from the root is γi. By the assumption that
{γi | i ≥ 1} is infinite, T is an infinite tree. Thus, by König’s lemma, T must
have an infinite path, which implies that there exists an infinite sequence

γi1 � γi2 � γi3 � · · · ,

as required. ⊓⊔

For an expression E and a position γ ∈ {1, 2}∗, we write E↓γ for the subex-
pression at γ. It is inductively defined by:

E↓ǫ = E

E↓i·γ =

{

Ei↓γ if E is of the form E1 ⊕ E2

undefined otherwise

The following lemma states the correspondence between 99Kγ and  .

Lemma 9. 1. If (D, E) 99Kγ (D, E′), then (D, E↓γ) (D, E′↓γ).
2. Suppose E↓γ′ is defined and γ′ 6� γ. If (D, E) 99Kγ (D, E′), then E↓γ′ =

E′↓γ′.
3. If (D, E) 99Kγ (D, E′), and γ′ � γ, then (D, E↓γ′) ∗ (D, E↓γ).

Proof. The properties follow by a straightforward induction on the derivation of
(D, E) 99Kγ (D, E′). ⊓⊔

We are now ready to prove Lemma 6.

Proof (of Lemma 6). We show the contraposition. Suppose (D, E) has an infinite
reduction sequence with respect to 99K. By Lemma 7, there exists an infinite
reduction sequence

(D, E) 99Kγ1
(D, E1) 99Kγ2

(D, E2) 99Kγ3
(D, E3) 99Kγ4

· · · .

By Lemma 8, there exists an infinite sequence:

γi1 � γi2 � γi3 � · · · .

such that i1 < i2 < i3 < · · ·. Let us choose a maximal one among such sequences,
i.e., a sequence

γi1 � γi2 � γi3 � · · · .

such that, for any ij, γk � γij implies k = ij′ for some j′ ≤ j. Consider the
fragment of the infinite reduction sequence:

(D, Eiℓ−1
) 99Kγiℓ−1+1

(D, Eiℓ−1+1) 99Kγiℓ−1+2
· · · 99Kγiℓ−1

(D, Eiℓ−1) 99Kγiℓ
(D, Eiℓ)

for each ℓ > 0. (Here, we define γ0 = ǫ, i0 = 0 and E0 = E.) By Lemma 9 (1)
and (D, Eiℓ−1) 99Kγiℓ

(D, Eiℓ), we have

(D, Eiℓ−1↓γiℓ
) (D, Eiℓ↓γiℓ

).
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By Lemma 9 (2) (note that since none of γiℓ−1+1, . . . , γiℓ−1 is a prefix of γiℓ by
the assumption on maximality, Eiℓ−1

↓γiℓ
is defined), we have

Eiℓ−1
↓γiℓ

= Eiℓ−1+1↓γiℓ
= · · · = Eiℓ−1 ↓γiℓ

.

Thus, together with Lemma 9 (3), we obtain:

(D, Eiℓ−1
↓γiℓ−1

) ∗ (D, Eiℓ−1
↓γiℓ

) (D, Eiℓ↓γiℓ
).

Therefore, we have an infinite reduction sequence

(D, E) = (D, Ei0↓γi0
) + (D, Ei1↓γi1

) + (D, Ei2↓γi2
) + (D, Ei3↓γi3

) + · · · ,

as required. ⊓⊔

Finally, the soundness (Theorem 1) follows from Lemmas 5 and 6.

C Complete Definition of the Refinement Type System

This section shows the complete definition of the refinement type system we
discussed in Section 4.

First, we define the well-formedness conditions for types and type environ-
ments. We write FV(φ) (FV(Φ), resp.) for the set of variables occurring in φ
(Φ, resp.), and dom(Γ ) for the domain of Γ , i.e., {x | x : ι ∈ Γ}. The relations
Γ ⊢ κ ok and Γ ;Φ;∆ ⊢ ok are defined by:

FV(φ) ⊆ dom(Γ ) ∪ {x̃}
Γ, x̃ : ι̃ ⊢ κi ok for each i ∈ {1, . . . , k}

Γ ⊢ chρ(x̃;φ;κ1, . . . , κk) ok

Γ ⊢ κ ok for every x : κ ∈ ∆
FV(Φ) ⊆ dom(Γ )

Γ ;Φ;∆ ⊢ ok

For example, x : ι ⊢ chρ(y; y < x; ǫ) : ok holds but ∅ ⊢ chρ(y; y < x; ǫ) : ok does
not.

For every type judgment of the form Γ ;Φ;∆ ⊢ P , we implicitly require that
Γ ;Φ;∆ ⊢ ok holds. Similarly, for Γ ;Φ;∆ ⊢ v : κ, we require that Γ ;Φ;∆ ⊢ ok
and Γ ⊢ κ ok hold.

The complete list of typing rules is given in Figure 9.

D Refinement Type System with Subtyping

As mentioned in Section 5, the implementation is based on the following exten-
sion of the refinement type system in Section 4.1.
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(RT-Nil)
Γ ;Φ;∆ ⊢ 0

Γ ;Φ;∆ ⊢ P1 Γ ;Φ;∆ ⊢ P2
(RT-Par)

Γ ;Φ;∆ ⊢ P1 | P2

Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;∆, z̃ : κ̃ ⊢ P
(RT-In)

Γ ;Φ;∆ ⊢ x?(ỹ; z̃).P
Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ ;Φ;∆ ⊢ ṽ : ι̃ Φ � [ṽ/ỹ]φ

Γ ;Φ;∆ ⊢ w̃ : [ṽ/ỹ]κ̃ Γ ;Φ;∆ ⊢ P

Γ ;Φ;∆ ⊢ x!(ṽ; w̃).P
(RT-Out)

Γ ;Φ;∆,x : κ ⊢ P
(RT-Nu)

Γ ;Φ;∆ ⊢ (νx : κ)P

Γ ;Φ;∆ ⊢ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;∆, z̃ : κ̃ ⊢ P
(RT-RIn)

Γ ;Φ;∆ ⊢ ∗x?(ỹ; z̃).P

Γ ;Φ;∆ ⊢ v : ι Γ ;Φ, v 6= 0;∆ ⊢ P1 Γ ;Φ, v = 0;∆ ⊢ P2
(RT-If)

Γ ;Φ;∆ ⊢ if v then P1 else P2

Γ, x̃ : ι̃;Φ;∆ ⊢ P
(RT-LetND)

Γ ;Φ;∆ ⊢ let x̃ = ⋆̃ in P

x : ι ∈ Γ
(RT-Var-Int)

Γ ;Φ;∆ ⊢ x : ι
x : κ ∈ ∆

(RT-Var-Ch)
Γ ;Φ;∆ ⊢ x : κ

(RT-Int)
Γ ;Φ;∆ ⊢ i : ι

Γ ;Φ;∆ ⊢ ṽ : ι̃
(RT-Op)

Γ ;Φ;∆ ⊢ op(ṽ) : ι

Fig. 9. Typing rules of the refinement type system for the π-calculus

The set of refinement i/o channel types, ranged over by κ, is given by:

κ ::= chρ(x̃;φI ; κ̃I ;φO; κ̃O)

Here, chρ(x̃;φI ; κ̃I ;φO; κ̃O) is the type of channels used for receiving tuples (x̃; ỹ)
such that x̃ satisfies φI and ỹ have types κ̃I , and for sending tuples (x̃; ỹ) such
that x̃ satisfies φO and ỹ have types κ̃O. The distinction between the types of
input (i.e. received) values and those of output (i.e. sent) values has been inspired
by the type system of Yoshida and Hennessy [30]. It leads to a more precise type
system than Pierce and Sangiorgi’s subtyping, and is convenient for automatic
refinement type inference [23] (because we need not infer input/output modes
and perform case analysis on the modes).

The subtyping relation on channel types is defined by:

Φ, φI � φ′

I Γ, x̃ : ι̃;Φ, φI ⊢ κ̃I <: κ̃′

I

Φ, φ′

O � φO Γ, x̃ : ι̃;Φ, φ′

O ⊢ κ̃′

O <: κ̃O

Γ ;Φ ⊢ chρ(x̃;φI ; κ̃I ;φO; κ̃O) <: chρ(x̃;φ
′

I ; κ̃
′

I ;φ
′

O; κ̃
′

O)
(RT-Sub-Ch)

Note that the channel type chρ(x̃;φI ; κ̃I ;φO; κ̃O) is covariant on φI and κ̃I , and
contravariant on φO and κ̃O.

We make the following two modifications to the typing rules.
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1. We add the following subsumption rule.

Γ ;Φ;∆ ⊢ v : κ Γ ;Φ ⊢ κ <: κ′

Γ ;Φ;∆ ⊢ v : κ′
(RT-Sub)

2. We refine the well-formedness condition on types and type environments by:

FV(φ) ⊆ dom(Γ ) ∪ {x̃}
Γ, x̃ : ι̃ ⊢ κ̃I ok
Γ, x̃ : ι̃ ⊢ κ̃O ok

Γ ⊢ chρ(x̃;φI ; κ̃I ;φO; κ̃O) ok

FV(Φ) ⊆ dom(Γ )

Γ ;Φ; ∅ ⊢ ok

Γ ⊢ chρ(x̃;φI ; κ̃I ;φO; κ̃O) ok
Φ, φO |= φI Γ, x̃ : ι̃;Φ, φO ⊢ κ̃O <: κ̃I

Γ ;Φ;∆, y : chρ(x̃;φI ; κ̃I ;φO; κ̃O) ⊢ ok

The requirement for the subtyping relation in the last rule ensures the con-
sistency between the types of values expected by a receiver process and
those actually output by a sender process; for example, the channel type
chρ(x;x > 0; ǫ;x < 0; ǫ) is judged to be ill-formed, because the type indi-
cates that a receiver process expects a positive value x but a sender will
output a negative value on the channel.

The following example demonstrates the usefulness of subtyping for refine-
ment channel types.

Example 5. Let us consider the following process:

∗pred?(x; r).r!(x − 1)
| ∗ f?(x).if x < 0 then 0 else (νs)(pred !(x; s) | s?(y).f !(y))
| f !(100)
| ∗ c?(x; r).let y = ⋆ in r!(y)
| d!(pred) | d!(c)

The process consisting of the first three lines is a variation of the process in
Example 3, which is obviously terminating. Without the fourth and fifth lines, we
would be able to assign the type chρ1

(x; true; chρ2
(y; y < x; ǫ)) in the refinement

type system in Section 4, and reduce the process to a terminating program.
The processes on the fifth line, however, force us to assign the same type to

pred and c in the refinement type system in Section 4, and thus we can assign
only chρ1

(x; true; chρ2
(y; true; ǫ)) to pred , failing to transform the process to a

non-terminating program.
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With subtyping, we can assign the following types to pred , c, and d:

pred : chρ1
(x; true; chρ2

(y; true; ǫ; y < x; ǫ); true; chρ2
(y; true; ǫ; y < x; ǫ))

c : chρ1
(x; true; chρ2

(y; true; ǫ; true; ǫ); true; chρ2
(y; true; ǫ; true; ǫ))

d : chρ0
(ǫ; true;κ; true;κ)

where
κ = chρ1

(x; true; chρ2
(y; true; ǫ; y < x; ǫ); true; chρ2

(y; true; ǫ; true; ǫ))

Note that the types of pred and c are subtypes of κ. Here, the type of pred
indicates that the value y sent along the second argument r should be smaller
than the first argument x. Thus, the process on the second line is translated to
the following function definition:

fρf
(x) = if x < 0 then ( ) else

(fpred(x) ⊕ (let y = ⋆ in Assume(y < x); fρf
(y)))
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