Skip to main content

An Autonomous Flight Control Strategy Based on Human-Skill Imitation for Flapping-Wing Aerial Vehicle

  • Conference paper
  • First Online:
  • 3153 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13016))

Abstract

Flapping wing aerial vehicle (FAV) is an aircraft that imitate the flying of birds or insects. Comparing with fixing wing and rotary wing vehicles, FAV is hard to control precisely, because of its inherent vibration and complex dynamic analysis. Therefore, most FAV are controlled by human manipulators. In this paper, we mainly focus on studying the experience of human manipulators, using the experience to control our FAV, also known as HITHawk. We call this control strategy human-skill imitation. Human-skill imitation divides flying stages into three parts, which are takeoff, landing, and cruise. Each stage has its own control logic to fly HITHawk in better performance and safer situation. After that, we test each stage of HITHawk to fly in the air. The takeoff stage needs to climb to expect altitude as soon as possible. The cruise stage needs to fly in a set circle track. HITHawk knows how to keep in the trajectory and go back in case of flying away from the circle. Due to HITHawk’s characteristic, it cannot be controlled the pitch downward to prevent diving while landing. Therefore, the landing stage needs to control the throttle to float and descent until touching the ground.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jackowski, Z.J.: Design and construction of an autonomous ornithopter. Massachusetts Institute of Technology (2009)

    Google Scholar 

  2. Mackenzie, D.: A flapping of wings. Science 335(6075), 1430–1433 (2012)

    Google Scholar 

  3. Karásek, M., Muijres, F.T., De Wagter, C., et al.: A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 361(6407), 1089–1094 (2018)

    Article  MathSciNet  Google Scholar 

  4. Keennon, M., Karl, K., Henry, W.: Development of the nano hummingbird: a tailless flapping wing micro air vehicle. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 588 (2012)

    Google Scholar 

  5. Phan, H.V., Aurecianus, S., Kang, T., Park, H.C.: KUBeetle-S: an insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int. J. Micro Air Vehicl. 11, 1–10 (2019)

    Google Scholar 

  6. Pan, E., et al.: Two experimental methods to test the aerodynamic performance of HITHawk. In: International Conference on Intelligent Robotics and Applications, pp. 386–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27535-8_35

  7. Xu, W., et al.: Flight control of a large-scale flapping-wing flying robotic bird: system development and flight experiment. Chin. J. Aeronaut. 1–7 (2021)

    Google Scholar 

  8. Mi, G., Tian, Z., Jin, Y., Li, Z., Zhou, M.: MIMU update algorithm based on the posture and magnetometer. Chin. J. Sensors Actuat. 28(1), 43–48 (2015)

    Google Scholar 

  9. Wang, Y.: Research on autonomous formation flight control method of large bionic flapping-wing robot. Harbin Inst. Technol. 39–40 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Liu, J., Xu, H., Xu, W. (2021). An Autonomous Flight Control Strategy Based on Human-Skill Imitation for Flapping-Wing Aerial Vehicle. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics