Skip to main content

Research on Tool Wear Detection Method Using Deep Residual Network

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Abstract

During part machining, as the tool usage time and the number of passes increase, the cutting edge of the tool gradually wears out. As a tool for parts processing, the degree of wear of cutting tools has an important influence on the quality of parts processing. In order to understand the tool wear in time and ensure the quality of parts processing, this paper proposes a tool wear monitoring method based on deep learning. The application of deep residual network in tool wear degree monitoring is investigated, the overall scheme of tool wear degree monitoring is designed, and the deep learning scheme is implemented in the PyTorch framework. The vibration and force signals from multiple parallel experiments are first collected by sensors. The signals are analyzed in time and frequency using the short-time Fourier trans-form, after which the transform results are used as the input of the ResNet34 deep residual network for supervised training. Finally, the model effect is tested using test data. The research results show that the accuracy rate of using the deep residual network to monitor the degree of tool wear can reach 98%, which has high monitoring accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukhamadeev, V.R., Mukhamadeev, I.R., Minigaleev, S.M.: Influence of structural changes in the surface of a cutting tool on its wear resistance. Mater. Today Proc. 38, 1894 (2020)

    Google Scholar 

  2. Cook, N.H.: Tool wear sensors. Wear 62(1), 49–57 (1980). https://doi.org/10.1016/0043-1648(80)90036-8

    Article  Google Scholar 

  3. Oguamanam, D.C.D., Raafat, H., Taboun, S.M.: A machine vision system for wear monitoring and breakage detection of single-point cutting tools. Comput. Ind. Eng. 26(3), 575–598 (1994). https://doi.org/10.1016/0360-8352(94)90052-3

    Article  Google Scholar 

  4. Pedersen, K.B.: Wear measurement of cutting tools by computer vision. Int. J. Mach. Tools Manuf. 30(1), 131–139 (1990). https://doi.org/10.1016/0890-6955(90)90047-M

    Article  Google Scholar 

  5. Yao, C.-W., Hong, T.W.: Evaluating tool wear by measuring the real-time contact resistance. Int. J. Adv. Manuf. Technol. 100(9–12), 2349–2355 (2018). https://doi.org/10.1007/s00170-018-2815-y

    Article  Google Scholar 

  6. Jeon, J.U., Kim, S.W.: Optical flank wear monitoring of cutting tools by image processing. Wear 127(2), 207–217 (1988). https://doi.org/10.1016/0043-1648(88)90131-7

    Article  Google Scholar 

  7. Xu, C., Cheng, H., Liu, L.: The fractal characteristic of vibration signals in different milling tool wear periods. In: Seventh International Symposium Instrument Control Technology Measurement Theory System Aeronautics Equipment, vol. 7128, p. 712809, October 2008. https://doi.org/10.1117/12.806434

  8. Goyal, D., Pabla, B.S.: The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch. Comput. Methods Eng. 23(4), 585–594 (2015). https://doi.org/10.1007/s11831-015-9145-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, C., et al.: Tool condition monitoring in milling using a force singularity analysis approach. Int. J. Adv. Manuf. Technol. 107(3–4), 1785–1792 (2019). https://doi.org/10.1007/s00170-019-04664-4

    Article  Google Scholar 

  10. Altintas, Y., Yellowley, I.: In-process detection of tool failure in milling using cutting force models. J. Manuf. Sci. Eng. Trans. ASME 111(2), 149–157 (1989). https://doi.org/10.1115/1.3188744

    Article  Google Scholar 

  11. Gierlak, P.: The manipulator tool state classification based on inertia forces analysis. Mech. Syst. Signal Process. 107, 122–136 (2018). https://doi.org/10.1016/j.ymssp.2018.01.002

    Article  Google Scholar 

  12. Kunpeng, Z., Soon, H.G., San, W.Y.: Multiscale singularity analysis of cutting forces for micromilling tool-wear monitoring. IEEE Trans. Ind. Electron. 58(6), 2512–2521 (2011). https://doi.org/10.1109/TIE.2010.2062476

    Article  Google Scholar 

  13. Zhou, C., Guo, K., Sun, J.: Sound singularity analysis for milling tool condition monitoring towards sustainable manufacturing. Mech. Syst. Signal Process. 157, 107738 (2021). https://doi.org/10.1016/j.ymssp.2021.107738

    Article  Google Scholar 

  14. Zhou, C., Guo, K., Zhao, Y., Zan, Z., Sun, J.: Development and testing of a wireless rotating triaxial vibration measuring tool holder system for milling process. Meas. J. Int. Meas. Confed. 163, 108034 (2020). https://doi.org/10.1016/j.measurement.2020.108034

    Article  Google Scholar 

  15. Rmili, W., Ouahabi, A., Serra, R., Leroy, R.: An automatic system based on vibratory analysis for cutting tool wear monitoring. Meas. J. Int. Meas. Confed. 77, 117–123 (2016). https://doi.org/10.1016/j.measurement.2015.09.010

    Article  Google Scholar 

  16. Prasad, B.S., Sarcar, M.M.M., Ben, B.S.: Surface textural analysis using acousto optic emission- and vision-based 3D surface topography-a base for online tool condition monitoring in face turning. Int. J. Adv. Manuf. Technol. 55(9–12), 1025–1035 (2011). https://doi.org/10.1007/s00170-010-3127-z

    Article  Google Scholar 

  17. Bhuiyan, M.S.H., Choudhury, I.A., Nukman, Y.: Tool condition monitoring using acoustic emission and vibration signature in turning. Lect. Notes Eng. Comput. Sci. 3, 1612–1616 (2012)

    Google Scholar 

  18. Zhou, C., Guo, K., Yang, B., Wang, H., Sun, J., Lu, L.: Singularity analysis of cutting force and vibration for tool condition monitoring in milling. IEEE Access 7, 134113–134124 (2019). https://doi.org/10.1109/ACCESS.2019.2941287

    Article  Google Scholar 

  19. Zhou, C., et al.: Vibration singularity analysis for milling tool condition monitoring. Int. J. Mech. Sci. 166, 105254 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105254

  20. Gan, M., Wang, C., Zhu, C.: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 72–73, 92–104 (2016). https://doi.org/10.1016/j.ymssp.2015.11.014

    Article  Google Scholar 

  21. Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., Leopold, J.: Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia CIRP 31, 29–34 (2015). https://doi.org/10.1016/j.procir.2015.03.016

    Article  Google Scholar 

  22. Chen, Z.Q., Li, C., Sanchez, R.V.: Gearbox fault identification and classification with convolutional neural networks. Shock Vib. 2015, 1–10 (2015)

    Google Scholar 

  23. Guo, K., Pan, Y., Yu, H.: Composite learning robot control with friction compensation: a neural network-based approach. IEEE Trans. Ind. Electron. 66(10), 7841–7851 (2019). https://doi.org/10.1109/TIE.2018.2886763

    Article  Google Scholar 

  24. Miao, H., He, D.: Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53(3), 3057–3065 (2017)

    Article  Google Scholar 

  25. Li, X., Li, J., Qu, Y., He, D.: Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning. Chinese J. Aeronaut. 33(2), 418–426 (2020). https://doi.org/10.1016/j.cja.2019.04.018

    Article  Google Scholar 

  26. Wang, T., He, Y., Li, B., Shi, T.: Transformer fault diagnosis using self-powered RFID sensor and deep learning approach. IEEE Sens. J. 18(15), 6399–6411 (2018). https://doi.org/10.1109/JSEN.2018.2844799

    Article  Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings IEEE Computing Social Conference Computing Vision Pattern Recognition, vol. 2016, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  28. Guo, K., Pan, Y., Zheng, D., Yu, H.: Composite learning control of robotic systems: a least squares modulated approach. Automatica 111, 108612 (2020). https://doi.org/10.1016/j.automatica.2019.108612

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, K., Zheng, D.-D., Li, J.: Optimal bounded ellipsoid identification with deterministic and bounded learning gains: design and application to Euler-Lagrange systems IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2021.3066639.

  30. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method (2012). http://arxiv.org/abs/1212.5701

  32. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference Learning Representations CLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  33. Zhu, K.P., Wong, Y.S., Hong, G.S.: Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. Int. J. Mach. Tools Manuf. 49(7–8), 537–553 (2009). https://doi.org/10.1016/j.ijmachtools.2009.02.003

    Article  Google Scholar 

  34. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992). https://doi.org/10.1109/18.119727

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, Z., et al.: Evaluation of novel tool geometries in dry drilling aluminium 2024–T351/titanium Ti6Al4V stack. J. Mater. Process. Technol. 259, 270–281 (2018). https://doi.org/10.1016/j.jmatprotec.2018.04.044

    Article  Google Scholar 

  36. Zhu, Z., et al.: Evolution of 3D chip morphology and phase transformation in dry drilling Ti6Al4V alloys. J. Manuf. Process. 34, 531–539 (2018). https://doi.org/10.1016/j.jmapro.2018.07.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Q., Guo, K., Sun, J., Sivalingam, V. (2021). Research on Tool Wear Detection Method Using Deep Residual Network. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics