Skip to main content

Design and Modeling of a Multi-joint Reinforced Soft Pneumatic Actuator

  • Conference paper
  • First Online:
  • 3617 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13013))

Abstract

In order to improve the tip force and controllability of soft pneumatic actuator (SPA), this paper presents the design principle and mathematical modeling method of a multi-joint reinforced soft pneumatic actuator (MRSPA). The MRSPA is composed of an equivalent three driven joints and a spring leaf on the bottom of the MRSPA. Through finite element analysis (FEA), the influence of different chamber distribution on the bending performance of a single joint under the same length is explored. In addition, a mathematical model is established to explore the relationship between pressure, load and bending angle of the driven joints and to estimate the curved configuration of the MRSPA. The FEA results show that the uniform chamber distribution is easier to enable the two-way bending of the SPA. The mathematical model of the MRSPA is validated by comparing the simulation results based on the mathematical model with the FEA results.

The main contribution of this paper is to establish a mathematical model to estimate the tip force and configuration of the MRSPA at the same time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shiva, A., et al.: Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robot. Autom. Lett. 1(2), 632–637 (2016). https://doi.org/10.1109/LRA.2016.2523120

    Article  Google Scholar 

  2. Walker, J., et al.: Soft robotics: a review of recent developments of pneumatic soft actuators. Actuators 9(1) (2020). https://doi.org/10.3390/act9010003

  3. Pawlowski, B., Sun, J., Xu, J., Liu, Y., Zhao, J.: Modeling of soft robots actuated by twisted-and-coiled actuators. IEEE/ASME Trans. Mechatron. 24(1), 5–15 (2019). https://doi.org/10.1109/TMECH.2018.2873014

    Article  Google Scholar 

  4. Kang, R., Branson, D.T., Zheng, T., Guglielmino, E., Caldwell, D.G.: Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspiration Biomimetics 8(3) (2013). https://doi.org/10.1088/1748-3182/8/3/036008

  5. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015). https://doi.org/10.1089/soro.2015.0009

    Article  Google Scholar 

  6. Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013). https://doi.org/10.1109/TMECH.2012.2204070

    Article  Google Scholar 

  7. Elsayed, Y., Lekakou, C., Geng, T., Saaj, C.M.: Design optimisation of soft silicone pneumatic actuators using finite element analysis. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 44–49 (2014). https://doi.org/10.1109/AIM.2014.6878044

  8. Mosadegh, B., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014). https://doi.org/10.1002/adfm.201303288

    Article  Google Scholar 

  9. Hao, Y., et al.: Universal soft pneumatic robotic gripper with variable effective length. In: Chinese Control Conference on CCC, vol. 2016-August, pp. 6109–6114 (2016). https://doi.org/10.1109/ChiCC.2016.7554316

  10. Hao, Y., et al.: Modeling and experiments of a soft robotic gripper in amphibious environments. Int. J. Adv. Robot. Syst. 14(3), 1–12 (2017). https://doi.org/10.1177/1729881417707148

    Article  Google Scholar 

  11. Yap, H.K., Ng, H.Y., Yeow, C.H.: High-force soft printable pneumatics for soft robotic applications. Soft Robot. 3(3), 144–158 (2016). https://doi.org/10.1089/soro.2016.0030

    Article  Google Scholar 

  12. Zhang, N.: Ac ce d M us pt. 2D Mater. (2020). https://iopscience.iop.org/article/. https://doi.org/10.1088/2053-1583/abe778

  13. Alici, G., Canty, T., Mutlu, R., Hu, W., Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robot. 5(1), 24–35 (2018). https://doi.org/10.1089/soro.2016.0052

    Article  Google Scholar 

  14. Ma, F., Chen, G.: Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model. J. Mech. Robot. 8(2) (2016). https://doi.org/10.1115/1.4031028

  15. Chen, G., Ma, F., Hao, G., Zhu, W.: Modeling large deflections of initially curved beams in compliant mechanisms using chained beam constraint model. J. Mech. Robot. 11(1) (2019). https://doi.org/10.1115/1.4041585

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, WB., Yang, XJ. (2021). Design and Modeling of a Multi-joint Reinforced Soft Pneumatic Actuator. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89095-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89094-0

  • Online ISBN: 978-3-030-89095-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics