Skip to main content

Learning Robot Grasping from a Random Pile with Deep Q-Learning

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

Grasping from a random pile is a great challenging application for robots. Most deep reinforcement learning-based methods focus on grasping of a single object. This paper proposes a novel structure for robot grasping from a pile with deep Q-learning, where each robot action is determined by the result of its current step and the next n steps. In the learning structure, a convolution neural network is employed to extract the target position, and a full connection network is applied to calculate the Q value of the grasping action. The former network is a pre-trained network and the latter one is a critical network structure. Moreover, we deal with the “reality gap” from the deep Q-learning policy learned in simulated environments to the real-world by large-scale simulation data and small-scale real data.

This work was supported in part by NSFC under Grant number 91848109, supported by Beijing Natural Science Foundation under Grant number L201019, and major scientific and technological innovation projects in Shandong Province Grant number 2019JZZY010430.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goins, A.K., Carpenter, R., Wong, W.K., Balasubramanian, R.: Evaluating the efficacy of grasp metrics for utilization in a gaussian process-based grasp predictor. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3353–3360 (2014). https://doi.org/10.1109/IROS.2014.6943029

  2. Boularias, A., Kroemer, O., Peters, J.: Learning robot grasping from 3-d images with markov random fields. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1548–1553 (2011). https://doi.org/10.1109/IROS.2011.6094888

  3. Balaguer, B., Carpin, S.: Learning end-effector orientations for novel object grasping tasks. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 302–307 (2010). https://doi.org/10.1109/ICHR.2010.5686826

  4. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Rob. Res. 27(2), 157–173 (2008)

    Article  Google Scholar 

  5. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis-a survey. IEEE Trans. Rob. 30(2), 289–309 (2013)

    Article  Google Scholar 

  6. Pinto, L., Gupta, A.: Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3406–3413. IEEE (2016)

    Google Scholar 

  7. Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Rob. 4(26) (2019)

    Google Scholar 

  8. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  9. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  10. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  11. Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., Levine, S.: Visual reinforcement learning with imagined goals. arXiv preprint arXiv:1807.04742 (2018)

  12. Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., Abbeel, P.: Asymmetric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542 (2017)

  13. Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-Maron, G., Vecerik, M., Lampe, T., Tassa, Y., Erez, T., Riedmiller, M.: Data-efficient deep reinforcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073 (2017)

  14. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research 37(4–5), 421–436 (2018)

    Article  Google Scholar 

  15. Sadeghi, F., Toshev, A., Jang, E., Levine, S.: Sim2real view invariant visual servoing by recurrent control. arXiv preprint arXiv:1712.07642 (2017)

  16. Chen, B., Su, J.: Addressing reward engineering for deep reinforcement learning on multi-stage task. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1143, pp. 309–317. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36802-9_33

    Chapter  Google Scholar 

  17. Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T.: Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4238–4245. IEEE (2018)

    Google Scholar 

  18. Wiering, M., Van Otterlo, M.: Reinforcement learning. Adapt. Learn. Optim. 12(3) (2012)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  21. James, S., et al.: Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, B., Su, J., Wang, L., Gu, Q. (2021). Learning Robot Grasping from a Random Pile with Deep Q-Learning. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics