Skip to main content

A High-Performance Normal-Stressed Electromagnetic Fast Tool Servo

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

This paper reports on the design and control of a high-performance fast tool servo (FTS) having a moderate stroke and a high bandwidth, which is actuated by the normal-stressed electromagnetic force. An analytical model of both the mechanical mechanism and electromagnetic driving circuit is established. Assisted by this model, the structural parameters are optimized through a typical genetic algorithm. For the control system, a damping controller combining a lead-lag compensator is firstly adopted to modify the system dynamics, and a PID controller with a feed-forward compensator is further employed for the motion control. Both the open-loop and closed-loop tests are conducted to demonstrate the performance of the FTS.

Supported by National Natural Science Foundation of China (U2013211), Outstanding Youth Foundation of Jiangsu Province of China (BK20211572) and Fundamental Research Funds for the Central Universities (30921013102).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, F., Zhang, X., Weckenmann, A., Zhang, G., Evans, C.: Manufacturing and measurement of freeform optics. CIRP Ann. 62(2), 823–846 (2013)

    Article  Google Scholar 

  2. Liu, Q., Pan, S., Yan, H., Zhou, X., Wang, R.: In situ measurement and error compensation of optical freeform surfaces based on a two dof fast tool servo. Int. J. Adv. Manuf. Technol. 86, 793–798 (2016)

    Article  Google Scholar 

  3. Lu, X.-D., Trumper, D.: Ultrafast tool servos for diamond turning. CIRP Ann. 54(1), 383–388 (2005)

    Article  Google Scholar 

  4. Lu, X.D., et al.: Rotary-axial spindles for ultra-precision machining. CIRP Ann. 58(1), 323–326 (2009)

    Article  Google Scholar 

  5. Nie, Y.H., Fang, F.Z., Zhang, X.D.: System design of Maxwell force driving fast tool servos based on model analysis. Int. J. Adv. Manuf. Technol. 72, 25–32 (2014)

    Article  Google Scholar 

  6. Zhao, D., Zhu, Z., Huang, P., Guo, P., Zhu, L., Zhu, Z.: Development of a piezoelectrically actuated dual-stage fast tool servo. Mech. Syst. Sig. Process. 144, 106873 (2020)

    Article  Google Scholar 

  7. Li, L., Li, C.X., Gu, G., Zhu, L.M.: Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages. Mechatronics 47, 97–104 (2017)

    Article  Google Scholar 

  8. Yang, F., Yang, H.K., Chen, Z.H., Wang, G.L.: Analysis and design of voice-coil actuator used in fast tool servo. J. Nat. Univ. Defense Technol. 31(4), 42–47 (2009)

    Google Scholar 

  9. Zhu, X., Xu, X., Wen, Z., Ren, J., Liu, P.: A novel flexure-based vertical nanopositioning stage with large travel range. Rev. Sci. Instrum. 86(10), 105112 (2015)

    Article  Google Scholar 

  10. Shiou, F.J., Chen, C.J., Chiang, C.J., Liou, K.J., Liao, S.C., Liou, H.C.: Development of a real-time closed-loop micro-/nano-positioning system embedded with a capacitive sensor. Meas. Sci. Technol. 21(5), 54007–54016 (2010)

    Article  Google Scholar 

  11. Muraoka, M., Sanada, S.: Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism. Sens. Actuators A Phys. 157(1), 84–90 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, ZH., Shen, D., Huang, P., Zhu, L., Zhu, Z. (2021). A High-Performance Normal-Stressed Electromagnetic Fast Tool Servo. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics